- 08 3月, 2011 2 次提交
-
-
由 Artem Bityutskiy 提交于
Provide the LEB offset information in the UBI device information data structure. This piece of information is required by UBIFS to find out what are the LEB offsets which are aligned to the max. write size. If LEB offset not aligned to max. write size, then UBIFS has to take this into account to write more optimally. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
由 Artem Bityutskiy 提交于
Incorporate MTD write buffer size into UBI device information because UBIFS needs this field. UBI does not use it ATM, just provides to upper layers in 'struct ubi_device_info'. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
- 07 5月, 2010 1 次提交
-
-
由 Shinya Kuribayashi 提交于
Signed-off-by: NShinya Kuribayashi <shinya.kuribayashi.px@renesas.com> Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
- 30 3月, 2010 1 次提交
-
-
由 Tejun Heo 提交于
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: NTejun Heo <tj@kernel.org> Guess-its-ok-by: NChristoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
-
- 12 1月, 2010 1 次提交
-
-
由 Artem Bityutskiy 提交于
When opening UBI volumes by their character device names, make sure we are opening character devices, not block devices or any other inode type. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
- 24 11月, 2009 1 次提交
-
-
由 Corentin Chary 提交于
Add an 'ubi_open_volume_path(path, mode)' function which works like 'open_bdev_exclusive(path, mode, ...)' where path is the special file representing the UBI volume, typically /dev/ubi0_0. This is needed to teach UBIFS being able to mount UBI character devices. [Comments and the patch were amended a bit by Artem] Signed-off-by: NCorentin Chary <corentincj@iksaif.net> Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
- 02 6月, 2009 1 次提交
-
-
由 Dmitry Pervushin 提交于
UBI volume notifications are intended to create the API to get clients notified about volume creation/deletion, renaming and re-sizing. A client can subscribe to these notifications using 'ubi_volume_register()' and cancel the subscription using 'ubi_volume_unregister()'. When UBI volumes change, a blocking notifier is called. Clients also can request "added" events on all volumes that existed before client subscribed to the notifications. If we use notifications instead of calling functions like 'ubi_gluebi_xxx()', we can make the MTD emulation layer to be more flexible: build it as a separate module and load/unload it on demand. [Artem: many cleanups, rework locking, add "updated" event, provide device/volume info in notifiers] Signed-off-by: NDmitry Pervushin <dpervushin@embeddedalley.com> Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
- 18 5月, 2009 1 次提交
-
-
由 Artem Bityutskiy 提交于
Various minor improvements to the debugging messages which I found useful while hunting problems. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
- 09 1月, 2009 1 次提交
-
-
由 Coly Li 提交于
When I review ocfs2 code, find there are 2 typos to "successfull". After doing grep "successfull " in kernel tree, 22 typos found totally -- great minds always think alike :) This patch fixes all the similar typos. Thanks for Randy's ack and comments. Signed-off-by: NColy Li <coyli@suse.de> Acked-by: NRandy Dunlap <randy.dunlap@oracle.com> Acked-by: NRoland Dreier <rolandd@cisco.com> Cc: Jeremy Kerr <jk@ozlabs.org> Cc: Jeff Garzik <jeff@garzik.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Vlad Yasevich <vladislav.yasevich@hp.com> Cc: Sridhar Samudrala <sri@us.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 24 7月, 2008 3 次提交
-
-
由 Artem Bityutskiy 提交于
Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
由 Artem Bityutskiy 提交于
To flush MTD device caches. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
由 Kyungmin Park 提交于
UBI already checks that @min io size is the power of 2 at io_init. It is save to use bit operations then. Signed-off-by: NKyungmin Park <kyungmin.park@samsung.com> Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
- 25 1月, 2008 1 次提交
-
-
由 Artem Bityutskiy 提交于
drivers/mtd/ubi/cdev.c: In function ‘vol_cdev_read’: drivers/mtd/ubi/cdev.c:187: warning: unused variable ‘vol_id’ CC [M] drivers/mtd/ubi/kapi.o drivers/mtd/ubi/kapi.c: In function ‘ubi_leb_erase’: drivers/mtd/ubi/kapi.c:483: warning: unused variable ‘vol_id’ drivers/mtd/ubi/kapi.c: In function ‘ubi_leb_unmap’: drivers/mtd/ubi/kapi.c:544: warning: unused variable ‘vol_id’ drivers/mtd/ubi/kapi.c: In function ‘ubi_leb_map’: drivers/mtd/ubi/kapi.c:582: warning: unused variable ‘vol_id’ Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
- 27 12月, 2007 9 次提交
-
-
由 Artem Bityutskiy 提交于
Introduce a separate mutex which serializes volumes checking, because we cammot really use volumes_mutex - it cases reverse locking problems with mtd_tbl_mutex when gluebi is used - thanks to lockdep. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
由 Artem Bityutskiy 提交于
This is one more step on the way to "removable" UBI devices. It adds reference counting for UBI devices. Every time a volume on this device is opened - the device's refcount is increased. It is also increased if someone is reading any sysfs file of this UBI device or of one of its volumes. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
由 Artem Bityutskiy 提交于
Add ref_count field to UBI volumes and remove weired "vol->removed" field. This way things are better understandable and we do not have to do whold show_attr operation under spinlock. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
由 Artem Bityutskiy 提交于
This patch fixes error codes of the functions - if the device number is out of range, -EINVAL should be returned. It also removes unneeded try_module_get call from the open by name function. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
由 Artem Bityutskiy 提交于
When a volume is opened, get its kref via get_device() call. And put the reference when closing the volume. With this, we may have a bit saner volume delete. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
由 Artem Bityutskiy 提交于
Transform vtbl_mutex to volumes_mutex - this just makes code easier to understand. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
由 Artem Bityutskiy 提交于
Pass volume description object to the EBA function which makes more sense, and EBA function do not have to find the volume description object by volume ID. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
由 Artem Bityutskiy 提交于
Remove redundant ubi->major field - we have it in ubi->cdev.dev already. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
由 Artem Bityutskiy 提交于
The idea of this interface belongs to Adrian Hunter. The interface is extremely useful when one has to have a guarantee that an LEB will contain all 0xFFs even in case of an unclean reboot. UBI does have an 'ubi_leb_erase()' call which may do this, but it is stupid and ineffecient, because it flushes whole queue. I should be re-worked to just be a pair of unmap, map calls. The user of the interfaci is UBIFS at the moment. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
- 14 10月, 2007 1 次提交
-
-
由 Jesper Juhl 提交于
I can't find anything guaranteeing that 'ubi_num' cannot be <0 in drivers/mtd/ubi/kapi.c::ubi_open_volume(), and in fact the code even tests for that and errors out if so. Unfortunately the test for "ubi_num < 0" happens after we've already used 'ubi_num' as an array index - bad thing to do if it is negative. This patch moves the test earlier in the function and then moves the indexing using that variable after the check. A bit safer :-) Signed-off-by: NJesper Juhl <jesper.juhl@gmail.com> Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
- 18 7月, 2007 3 次提交
-
-
由 Artem Bityutskiy 提交于
Pointed to by viro. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
The use of try_module_get(THIS_MODULE) in ubi_get_device_info does not offer real protection against unexpected driver unloads, since we could be preempted before try_modules_get gets executed. It is the caller who should manipulate the refcounts. Besides, ubi_get_device_info is an exported symbol which guarantees protection when accessed through symbol_get. Signed-off-by: NFernando Luis Vazquez Cao <fernando@oss.ntt.co.jp> Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
由 Artem Bityutskiy 提交于
In case of static volumes it is prohibited to read more data then available. Signed-off-by: NArtem Bityutskiy <Artem.Bityutskiy@nokia.com>
-
- 27 4月, 2007 1 次提交
-
-
由 Artem B. Bityutskiy 提交于
UBI (Latin: "where?") manages multiple logical volumes on a single flash device, specifically supporting NAND flash devices. UBI provides a flexible partitioning concept which still allows for wear-levelling across the whole flash device. In a sense, UBI may be compared to the Logical Volume Manager (LVM). Whereas LVM maps logical sector numbers to physical HDD sector numbers, UBI maps logical eraseblocks to physical eraseblocks. More information may be found at http://www.linux-mtd.infradead.org/doc/ubi.html Partitioning/Re-partitioning An UBI volume occupies a certain number of erase blocks. This is limited by a configured maximum volume size, which could also be viewed as the partition size. Each individual UBI volume's size can be changed independently of the other UBI volumes, provided that the sum of all volume sizes doesn't exceed a certain limit. UBI supports dynamic volumes and static volumes. Static volumes are read-only and their contents are protected by CRC check sums. Bad eraseblocks handling UBI transparently handles bad eraseblocks. When a physical eraseblock becomes bad, it is substituted by a good physical eraseblock, and the user does not even notice this. Scrubbing On a NAND flash bit flips can occur on any write operation, sometimes also on read. If bit flips persist on the device, at first they can still be corrected by ECC, but once they accumulate, correction will become impossible. Thus it is best to actively scrub the affected eraseblock, by first copying it to a free eraseblock and then erasing the original. The UBI layer performs this type of scrubbing under the covers, transparently to the UBI volume users. Erase Counts UBI maintains an erase count header per eraseblock. This frees higher-level layers (like file systems) from doing this and allows for centralized erase count management instead. The erase counts are used by the wear-levelling algorithm in the UBI layer. The algorithm itself is exchangeable. Booting from NAND For booting directly from NAND flash the hardware must at least be capable of fetching and executing a small portion of the NAND flash. Some NAND flash controllers have this kind of support. They usually limit the window to a few kilobytes in erase block 0. This "initial program loader" (IPL) must then contain sufficient logic to load and execute the next boot phase. Due to bad eraseblocks, which may be randomly scattered over the flash device, it is problematic to store the "secondary program loader" (SPL) statically. Also, due to bit-flips it may become corrupted over time. UBI allows to solve this problem gracefully by storing the SPL in a small static UBI volume. UBI volumes vs. static partitions UBI volumes are still very similar to static MTD partitions: * both consist of eraseblocks (logical eraseblocks in case of UBI volumes, and physical eraseblocks in case of static partitions; * both support three basic operations - read, write, erase. But UBI volumes have the following advantages over traditional static MTD partitions: * there are no eraseblock wear-leveling constraints in case of UBI volumes, so the user should not care about this; * there are no bit-flips and bad eraseblocks in case of UBI volumes. So, UBI volumes may be considered as flash devices with relaxed restrictions. Where can it be found? Documentation, kernel code and applications can be found in the MTD gits. What are the applications for? The applications help to create binary flash images for two purposes: pfi files (partial flash images) for in-system update of UBI volumes, and plain binary images, with or without OOB data in case of NAND, for a manufacturing step. Furthermore some tools are/and will be created that allow flash content analysis after a system has crashed.. Who did UBI? The original ideas, where UBI is based on, were developed by Andreas Arnez, Frank Haverkamp and Thomas Gleixner. Josh W. Boyer and some others were involved too. The implementation of the kernel layer was done by Artem B. Bityutskiy. The user-space applications and tools were written by Oliver Lohmann with contributions from Frank Haverkamp, Andreas Arnez, and Artem. Joern Engel contributed a patch which modifies JFFS2 so that it can be run on a UBI volume. Thomas Gleixner did modifications to the NAND layer. Alexander Schmidt made some testing work as well as core functionality improvements. Signed-off-by: NArtem B. Bityutskiy <dedekind@linutronix.de> Signed-off-by: NFrank Haverkamp <haver@vnet.ibm.com>
-