- 15 1月, 2016 11 次提交
-
-
由 Johannes Weiner 提交于
Let the networking stack know when a memcg is under reclaim pressure so that it can clamp its transmit windows accordingly. Whenever the reclaim efficiency of a cgroup's LRU lists drops low enough for a MEDIUM or HIGH vmpressure event to occur, assert a pressure state in the socket and tcp memory code that tells it to curb consumption growth from sockets associated with said control group. Traditionally, vmpressure reports for the entire subtree of a memcg under pressure, which drops useful information on the individual groups reclaimed. However, it's too late to change the userinterface, so add a second reporting mode that reports on the level of reclaim instead of at the level of pressure, and use that report for sockets. vmpressure events are naturally edge triggered, so for hysteresis assert socket pressure for a second to allow for subsequent vmpressure events to occur before letting the socket code return to normal. This will likely need finetuning for a wider variety of workloads, but for now stick to the vmpressure presets and keep hysteresis simple. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NDavid S. Miller <davem@davemloft.net> Reviewed-by: NVladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
Socket memory can be a significant share of overall memory consumed by common workloads. In order to provide reasonable resource isolation in the unified hierarchy, this type of memory needs to be included in the tracking/accounting of a cgroup under active memory resource control. Overhead is only incurred when a non-root control group is created AND the memory controller is instructed to track and account the memory footprint of that group. cgroup.memory=nosocket can be specified on the boot commandline to override any runtime configuration and forcibly exclude socket memory from active memory resource control. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NDavid S. Miller <davem@davemloft.net> Reviewed-by: NVladimir Davydov <vdavydov@virtuozzo.com> Acked-by: NMichal Hocko <mhocko@suse.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
The unified hierarchy memory controller will account socket memory. Move the infrastructure functions accordingly. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.com> Reviewed-by: NVladimir Davydov <vdavydov@virtuozzo.com> Acked-by: NDavid S. Miller <davem@davemloft.net> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
The unified hierarchy memory controller doesn't expose the memory+swap counter to userspace, but its accounting is hardcoded in all charge paths right now, including the per-cpu charge cache ("the stock"). To avoid adding yet more pointless memory+swap accounting with the socket memory support in unified hierarchy, disable the counter altogether when in unified hierarchy mode. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.com> Reviewed-by: NVladimir Davydov <vdavydov@virtuozzo.com> Acked-by: NDavid S. Miller <davem@davemloft.net> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
The unified hierarchy memory controller is going to use this jump label as well to control the networking callbacks. Move it to the memory controller code and give it a more generic name. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.com> Reviewed-by: NVladimir Davydov <vdavydov@virtuozzo.com> Acked-by: NDavid S. Miller <davem@davemloft.net> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
There won't be any separate counters for socket memory consumed by protocols other than TCP in the future. Remove the indirection and link sockets directly to their owning memory cgroup. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Reviewed-by: NVladimir Davydov <vdavydov@virtuozzo.com> Acked-by: NDavid S. Miller <davem@davemloft.net> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
There won't be a tcp control soft limit, so integrating the memcg code into the global skmem limiting scheme complicates things unnecessarily. Replace this with simple and clear charge and uncharge calls--hidden behind a jump label--to account skb memory. Note that this is not purely aesthetic: as a result of shoehorning the per-memcg code into the same memory accounting functions that handle the global level, the old code would compare the per-memcg consumption against the smaller of the per-memcg limit and the global limit. This allowed the total consumption of multiple sockets to exceed the global limit, as long as the individual sockets stayed within bounds. After this change, the code will always compare the per-memcg consumption to the per-memcg limit, and the global consumption to the global limit, and thus close this loophole. Without a soft limit, the per-memcg memory pressure state in sockets is generally questionable. However, we did it until now, so we continue to enter it when the hard limit is hit, and packets are dropped, to let other sockets in the cgroup know that they shouldn't grow their transmit windows, either. However, keep it simple in the new callback model and leave memory pressure lazily when the next packet is accepted (as opposed to doing it synchroneously when packets are processed). When packets are dropped, network performance will already be in the toilet, so that should be a reasonable trade-off. As described above, consumption is now checked on the per-memcg level and the global level separately. Likewise, memory pressure states are maintained on both the per-memcg level and the global level, and a socket is considered under pressure when either level asserts as much. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Reviewed-by: NVladimir Davydov <vdavydov@virtuozzo.com> Acked-by: NDavid S. Miller <davem@davemloft.net> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
Move the jump-label from sock_update_memcg() and sock_release_memcg() to the callsite, and so eliminate those function calls when socket accounting is not enabled. This also eliminates the need for dummy functions because the calls will be optimized away if the Kconfig options are not enabled. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NDavid S. Miller <davem@davemloft.net> Reviewed-by: NVladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
A later patch will need this symbol in files other than memcontrol.c, so export it now and replace mem_cgroup_root_css at the same time. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NDavid S. Miller <davem@davemloft.net> Reviewed-by: NVladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vladimir Davydov 提交于
There are two bits defined for cg_proto->flags - MEMCG_SOCK_ACTIVATED and MEMCG_SOCK_ACTIVE - both are set in tcp_update_limit, but the former is never cleared while the latter can be cleared by unsetting the limit. This allows to disable tcp socket accounting for new sockets after it was enabled by writing -1 to memory.kmem.tcp.limit_in_bytes while still guaranteeing that memcg_socket_limit_enabled static key will be decremented on memcg destruction. This functionality looks dubious, because it is not clear what a use case would be. By enabling tcp accounting a user accepts the price. If they then find the performance degradation unacceptable, they can always restart their workload with tcp accounting disabled. It does not seem there is any need to flip it while the workload is running. Besides, it contradicts to how kmem accounting API works: writing whatever to memory.kmem.limit_in_bytes enables kmem accounting for the cgroup in question, after which it cannot be disabled. Therefore one might expect that writing -1 to memory.kmem.tcp.limit_in_bytes just enables socket accounting w/o limiting it, which might be useful by itself, but it isn't true. Since this API peculiarity is not documented anywhere, I propose to drop it. This will allow to simplify the code by dropping cg_proto->flags. Signed-off-by: NVladimir Davydov <vdavydov@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vladimir Davydov 提交于
Currently, if we want to account all objects of a particular kmem cache, we have to pass __GFP_ACCOUNT to each kmem_cache_alloc call, which is inconvenient. This patch introduces SLAB_ACCOUNT flag which if passed to kmem_cache_create will force accounting for every allocation from this cache even if __GFP_ACCOUNT is not passed. This patch does not make any of the existing caches use this flag - it will be done later in the series. Note, a cache with SLAB_ACCOUNT cannot be merged with a cache w/o SLAB_ACCOUNT, because merged caches share the same kmem_cache struct and hence cannot have different sets of SLAB_* flags. Thus using this flag will probably reduce the number of merged slabs even if kmem accounting is not used (only compiled in). Signed-off-by: NVladimir Davydov <vdavydov@virtuozzo.com> Suggested-by: NTejun Heo <tj@kernel.org> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Greg Thelen <gthelen@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 30 12月, 2015 1 次提交
-
-
由 Vladimir Davydov 提交于
Memory cgroup reclaim can be interrupted with mem_cgroup_iter_break() once enough pages have been reclaimed, in which case, in contrast to a full round-trip over a cgroup sub-tree, the current position stored in mem_cgroup_reclaim_iter of the target cgroup does not get invalidated and so is left holding the reference to the last scanned cgroup. If the target cgroup does not get scanned again (we might have just reclaimed the last page or all processes might exit and free their memory voluntary), we will leak it, because there is nobody to put the reference held by the iterator. The problem is easy to reproduce by running the following command sequence in a loop: mkdir /sys/fs/cgroup/memory/test echo 100M > /sys/fs/cgroup/memory/test/memory.limit_in_bytes echo $$ > /sys/fs/cgroup/memory/test/cgroup.procs memhog 150M echo $$ > /sys/fs/cgroup/memory/cgroup.procs rmdir test The cgroups generated by it will never get freed. This patch fixes this issue by making mem_cgroup_iter avoid taking reference to the current position. In order not to hit use-after-free bug while running reclaim in parallel with cgroup deletion, we make use of ->css_released cgroup callback to clear references to the dying cgroup in all reclaim iterators that might refer to it. This callback is called right before scheduling rcu work which will free css, so if we access iter->position from rcu read section, we might be sure it won't go away under us. [hannes@cmpxchg.org: clean up css ref handling] Fixes: 5ac8fb31 ("mm: memcontrol: convert reclaim iterator to simple css refcounting") Signed-off-by: NVladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@kernel.org> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: <stable@vger.kernel.org> [3.19+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 28 12月, 2015 1 次提交
-
-
由 Ross Zwisler 提交于
Commit 1f7dd3e5 ("cgroup: fix handling of multi-destination migration from subtree_control enabling") introduced the following compiler warning: mm/memcontrol.c: In function ‘mem_cgroup_can_attach’: mm/memcontrol.c:4790:9: warning: ‘memcg’ may be used uninitialized in this function [-Wmaybe-uninitialized] mc.to = memcg; ^ Fix this by initializing 'memcg' to NULL. This was found using gcc (GCC) 4.9.2 20150212 (Red Hat 4.9.2-6). Signed-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: NTejun Heo <tj@kernel.org>
-
- 13 12月, 2015 2 次提交
-
-
由 Hugh Dickins 提交于
Whoops, I missed removing the kerneldoc comment of the lrucare arg removed from mem_cgroup_replace_page; but it's a good comment, keep it. Signed-off-by: NHugh Dickins <hughd@google.com> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vladimir Davydov 提交于
When the memory.high threshold is exceeded, try_charge() schedules a task_work to reclaim the excess. The reclaim target is set to the number of pages requested by try_charge(). This is wrong, because try_charge() usually charges more pages than requested (batch > nr_pages) in order to refill per cpu stocks. As a result, a process in a cgroup can easily exceed memory.high significantly when doing a lot of charges w/o returning to userspace (e.g. reading a file in big chunks). Fix this issue by assuring that when exceeding memory.high a process reclaims as many pages as were actually charged (i.e. batch). Signed-off-by: NVladimir Davydov <vdavydov@virtuozzo.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 03 12月, 2015 1 次提交
-
-
由 Tejun Heo 提交于
Consider the following v2 hierarchy. P0 (+memory) --- P1 (-memory) --- A \- B P0 has memory enabled in its subtree_control while P1 doesn't. If both A and B contain processes, they would belong to the memory css of P1. Now if memory is enabled on P1's subtree_control, memory csses should be created on both A and B and A's processes should be moved to the former and B's processes the latter. IOW, enabling controllers can cause atomic migrations into different csses. The core cgroup migration logic has been updated accordingly but the controller migration methods haven't and still assume that all tasks migrate to a single target css; furthermore, the methods were fed the css in which subtree_control was updated which is the parent of the target csses. pids controller depends on the migration methods to move charges and this made the controller attribute charges to the wrong csses often triggering the following warning by driving a counter negative. WARNING: CPU: 1 PID: 1 at kernel/cgroup_pids.c:97 pids_cancel.constprop.6+0x31/0x40() Modules linked in: CPU: 1 PID: 1 Comm: systemd Not tainted 4.4.0-rc1+ #29 ... ffffffff81f65382 ffff88007c043b90 ffffffff81551ffc 0000000000000000 ffff88007c043bc8 ffffffff810de202 ffff88007a752000 ffff88007a29ab00 ffff88007c043c80 ffff88007a1d8400 0000000000000001 ffff88007c043bd8 Call Trace: [<ffffffff81551ffc>] dump_stack+0x4e/0x82 [<ffffffff810de202>] warn_slowpath_common+0x82/0xc0 [<ffffffff810de2fa>] warn_slowpath_null+0x1a/0x20 [<ffffffff8118e031>] pids_cancel.constprop.6+0x31/0x40 [<ffffffff8118e0fd>] pids_can_attach+0x6d/0xf0 [<ffffffff81188a4c>] cgroup_taskset_migrate+0x6c/0x330 [<ffffffff81188e05>] cgroup_migrate+0xf5/0x190 [<ffffffff81189016>] cgroup_attach_task+0x176/0x200 [<ffffffff8118949d>] __cgroup_procs_write+0x2ad/0x460 [<ffffffff81189684>] cgroup_procs_write+0x14/0x20 [<ffffffff811854e5>] cgroup_file_write+0x35/0x1c0 [<ffffffff812e26f1>] kernfs_fop_write+0x141/0x190 [<ffffffff81265f88>] __vfs_write+0x28/0xe0 [<ffffffff812666fc>] vfs_write+0xac/0x1a0 [<ffffffff81267019>] SyS_write+0x49/0xb0 [<ffffffff81bcef32>] entry_SYSCALL_64_fastpath+0x12/0x76 This patch fixes the bug by removing @css parameter from the three migration methods, ->can_attach, ->cancel_attach() and ->attach() and updating cgroup_taskset iteration helpers also return the destination css in addition to the task being migrated. All controllers are updated accordingly. * Controllers which don't care whether there are one or multiple target csses can be converted trivially. cpu, io, freezer, perf, netclassid and netprio fall in this category. * cpuset's current implementation assumes that there's single source and destination and thus doesn't support v2 hierarchy already. The only change made by this patchset is how that single destination css is obtained. * memory migration path already doesn't do anything on v2. How the single destination css is obtained is updated and the prep stage of mem_cgroup_can_attach() is reordered to accomodate the change. * pids is the only controller which was affected by this bug. It now correctly handles multi-destination migrations and no longer causes counter underflow from incorrect accounting. Signed-off-by: NTejun Heo <tj@kernel.org> Reported-and-tested-by: NDaniel Wagner <daniel.wagner@bmw-carit.de> Cc: Aleksa Sarai <cyphar@cyphar.com>
-
- 07 11月, 2015 3 次提交
-
-
由 Andrew Morton 提交于
gcc version 5.2.1 20151010 (Debian 5.2.1-22) $ size mm/memcontrol.o mm/memcontrol.o.before text data bss dec hex filename 35535 7908 64 43507 a9f3 mm/memcontrol.o 35762 7908 64 43734 aad6 mm/memcontrol.o.before Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
__GFP_WAIT was used to signal that the caller was in atomic context and could not sleep. Now it is possible to distinguish between true atomic context and callers that are not willing to sleep. The latter should clear __GFP_DIRECT_RECLAIM so kswapd will still wake. As clearing __GFP_WAIT behaves differently, there is a risk that people will clear the wrong flags. This patch renames __GFP_WAIT to __GFP_RECLAIM to clearly indicate what it does -- setting it allows all reclaim activity, clearing them prevents it. [akpm@linux-foundation.org: fix build] [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: NMel Gorman <mgorman@techsingularity.net> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Acked-by: NDavid Rientjes <rientjes@google.com> Cc: Vitaly Wool <vitalywool@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
mm, page_alloc: distinguish between being unable to sleep, unwilling to sleep and avoiding waking kswapd __GFP_WAIT has been used to identify atomic context in callers that hold spinlocks or are in interrupts. They are expected to be high priority and have access one of two watermarks lower than "min" which can be referred to as the "atomic reserve". __GFP_HIGH users get access to the first lower watermark and can be called the "high priority reserve". Over time, callers had a requirement to not block when fallback options were available. Some have abused __GFP_WAIT leading to a situation where an optimisitic allocation with a fallback option can access atomic reserves. This patch uses __GFP_ATOMIC to identify callers that are truely atomic, cannot sleep and have no alternative. High priority users continue to use __GFP_HIGH. __GFP_DIRECT_RECLAIM identifies callers that can sleep and are willing to enter direct reclaim. __GFP_KSWAPD_RECLAIM to identify callers that want to wake kswapd for background reclaim. __GFP_WAIT is redefined as a caller that is willing to enter direct reclaim and wake kswapd for background reclaim. This patch then converts a number of sites o __GFP_ATOMIC is used by callers that are high priority and have memory pools for those requests. GFP_ATOMIC uses this flag. o Callers that have a limited mempool to guarantee forward progress clear __GFP_DIRECT_RECLAIM but keep __GFP_KSWAPD_RECLAIM. bio allocations fall into this category where kswapd will still be woken but atomic reserves are not used as there is a one-entry mempool to guarantee progress. o Callers that are checking if they are non-blocking should use the helper gfpflags_allow_blocking() where possible. This is because checking for __GFP_WAIT as was done historically now can trigger false positives. Some exceptions like dm-crypt.c exist where the code intent is clearer if __GFP_DIRECT_RECLAIM is used instead of the helper due to flag manipulations. o Callers that built their own GFP flags instead of starting with GFP_KERNEL and friends now also need to specify __GFP_KSWAPD_RECLAIM. The first key hazard to watch out for is callers that removed __GFP_WAIT and was depending on access to atomic reserves for inconspicuous reasons. In some cases it may be appropriate for them to use __GFP_HIGH. The second key hazard is callers that assembled their own combination of GFP flags instead of starting with something like GFP_KERNEL. They may now wish to specify __GFP_KSWAPD_RECLAIM. It's almost certainly harmless if it's missed in most cases as other activity will wake kswapd. Signed-off-by: NMel Gorman <mgorman@techsingularity.net> Acked-by: NVlastimil Babka <vbabka@suse.cz> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Vitaly Wool <vitalywool@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 06 11月, 2015 11 次提交
-
-
由 Michal Hocko 提交于
Commit 424cdc14 ("memcg: convert threshold to bytes") has fixed a regression introduced by 3e32cb2e ("mm: memcontrol: lockless page counters") where thresholds were silently converted to use page units rather than bytes when interpreting the user input. The fix is not complete, though, as properly pointed out by Ben Hutchings during stable backport review. The page count is converted to bytes but unsigned long is used to hold the value which would be obviously not sufficient for 32b systems with more than 4G thresholds. The same applies to usage as taken from mem_cgroup_usage which might overflow. Let's remove this bytes vs. pages internal tracking differences and handle thresholds in page units internally. Chage mem_cgroup_usage() to return the value in page units and revert 424cdc14 because this should be sufficient for the consistent handling. mem_cgroup_read_u64 as the only users of mem_cgroup_usage outside of the threshold handling code is converted to give the proper in bytes result. It is doing that already for page_counter output so this is more consistent as well. The value presented to the userspace is still in bytes units. Fixes: 424cdc14 ("memcg: convert threshold to bytes") Fixes: 3e32cb2e ("mm: memcontrol: lockless page counters") Signed-off-by: NMichal Hocko <mhocko@suse.com> Reported-by: NBen Hutchings <ben@decadent.org.uk> Reviewed-by: NVladimir Davydov <vdavydov@virtuozzo.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: <stable@vger.kernel.org> From: Michal Hocko <mhocko@kernel.org> Subject: memcg-fix-thresholds-for-32b-architectures-fix Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> From: Andrew Morton <akpm@linux-foundation.org> Subject: memcg-fix-thresholds-for-32b-architectures-fix-fix don't attempt to inline mem_cgroup_usage() The compiler ignores the inline anwyay. And __always_inlining it adds 600 bytes of goop to the .o file. Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
page_counter_try_charge() currently returns 0 on success and -ENOMEM on failure, which is surprising behavior given the function name. Make it follow the expected pattern of try_stuff() functions that return a boolean true to indicate success, or false for failure. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Vladimir Davydov <vdavydov@virtuozzo.com Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
memory.current on the root level doesn't add anything that wouldn't be more accurate and detailed using system statistics. It already doesn't include slabs, and it'll be a pain to keep in sync when further memory types are accounted in the memory controller. Remove it. Note that this applies to the new unified hierarchy interface only. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Hugh Dickins 提交于
After v4.3's commit 0610c25d ("memcg: fix dirty page migration") mem_cgroup_migrate() doesn't have much to offer in page migration: convert migrate_misplaced_transhuge_page() to set_page_memcg() instead. Then rename mem_cgroup_migrate() to mem_cgroup_replace_page(), since its remaining callers are replace_page_cache_page() and shmem_replace_page(): both of whom passed lrucare true, so just eliminate that argument. Signed-off-by: NHugh Dickins <hughd@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vladimir Davydov 提交于
Before the previous patch ("memcg: unify slab and other kmem pages charging"), __mem_cgroup_from_kmem had to handle two types of kmem - slab pages and pages allocated with alloc_kmem_pages - memcg in the page struct. Now we can unify it. Since after it, this function becomes tiny we can fold it into mem_cgroup_from_kmem. [hughd@google.com: move mem_cgroup_from_kmem into list_lru.c] Signed-off-by: NVladimir Davydov <vdavydov@virtuozzo.com> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vladimir Davydov 提交于
We have memcg_kmem_charge and memcg_kmem_uncharge methods for charging and uncharging kmem pages to memcg, but currently they are not used for charging slab pages (i.e. they are only used for charging pages allocated with alloc_kmem_pages). The only reason why the slab subsystem uses special helpers, memcg_charge_slab and memcg_uncharge_slab, is that it needs to charge to the memcg of kmem cache while memcg_charge_kmem charges to the memcg that the current task belongs to. To remove this diversity, this patch adds an extra argument to __memcg_kmem_charge that can be a pointer to a memcg or NULL. If it is not NULL, the function tries to charge to the memcg it points to, otherwise it charge to the current context. Next, it makes the slab subsystem use this function to charge slab pages. Since memcg_charge_kmem and memcg_uncharge_kmem helpers are now used only in __memcg_kmem_charge and __memcg_kmem_uncharge, they are inlined. Since __memcg_kmem_charge stores a pointer to the memcg in the page struct, we don't need memcg_uncharge_slab anymore and can use free_kmem_pages. Besides, one can now detect which memcg a slab page belongs to by reading /proc/kpagecgroup. Note, this patch switches slab to charge-after-alloc design. Since this design is already used for all other memcg charges, it should not make any difference. [hannes@cmpxchg.org: better to have an outer function than a magic parameter for the memcg lookup] Signed-off-by: NVladimir Davydov <vdavydov@virtuozzo.com> Acked-by: NMichal Hocko <mhocko@suse.com> Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vladimir Davydov 提交于
Charging kmem pages proceeds in two steps. First, we try to charge the allocation size to the memcg the current task belongs to, then we allocate a page and "commit" the charge storing the pointer to the memcg in the page struct. Such a design looks overcomplicated, because there is not much sense in trying charging the allocation before actually allocating a page: we won't be able to consume much memory over the limit even if we charge after doing the actual allocation, besides we already charge user pages post factum, so being pedantic with kmem pages just looks pointless. So this patch simplifies the design by merging the "charge" and the "commit" steps into the same function, which takes the allocated page. Also, rename the charge and uncharge methods to memcg_kmem_charge and memcg_kmem_uncharge and make the charge method return error code instead of bool to conform to mem_cgroup_try_charge. Signed-off-by: NVladimir Davydov <vdavydov@virtuozzo.com> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jerome Marchand 提交于
Since commit 6539cc05 ("mm: memcontrol: fold mem_cgroup_do_charge()"), the order to pass to mem_cgroup_oom() is calculated by passing the number of pages to get_order() instead of the expected size in bytes. AFAICT, it only affects the value displayed in the oom warning message. This patch fix this. Michal said: : We haven't noticed that just because the OOM is enabled only for page : faults of order-0 (single page) and get_order work just fine. Thanks for : noticing this. If we ever start triggering OOM on different orders this : would be broken. Signed-off-by: NJerome Marchand <jmarchan@redhat.com> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Tejun Heo 提交于
try_charge() is the main charging logic of memcg. When it hits the limit but either can't fail the allocation due to __GFP_NOFAIL or the task is likely to free memory very soon, being OOM killed, has SIGKILL pending or exiting, it "bypasses" the charge to the root memcg and returns -EINTR. While this is one approach which can be taken for these situations, it has several issues. * It unnecessarily lies about the reality. The number itself doesn't go over the limit but the actual usage does. memcg is either forced to or actively chooses to go over the limit because that is the right behavior under the circumstances, which is completely fine, but, if at all avoidable, it shouldn't be misrepresenting what's happening by sneaking the charges into the root memcg. * Despite trying, we already do over-charge. kmemcg can't deal with switching over to the root memcg by the point try_charge() returns -EINTR, so it open-codes over-charing. * It complicates the callers. Each try_charge() user has to handle the weird -EINTR exception. memcg_charge_kmem() does the manual over-charging. mem_cgroup_do_precharge() performs unnecessary uncharging of root memcg, which BTW is inconsistent with what memcg_charge_kmem() does but not broken as [un]charging are noops on root memcg. mem_cgroup_try_charge() needs to switch the returned cgroup to the root one. The reality is that in memcg there are cases where we are forced and/or willing to go over the limit. Each such case needs to be scrutinized and justified but there definitely are situations where that is the right thing to do. We alredy do this but with a superficial and inconsistent disguise which leads to unnecessary complications. This patch updates try_charge() so that it over-charges and returns 0 when deemed necessary. -EINTR return is removed along with all special case handling in the callers. While at it, remove the local variable @ret, which was initialized to zero and never changed, along with done: label which just returned the always zero @ret. Signed-off-by: NTejun Heo <tj@kernel.org> Reviewed-by: NVladimir Davydov <vdavydov@parallels.com> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Tejun Heo 提交于
Currently, try_charge() tries to reclaim memory synchronously when the high limit is breached; however, if the allocation doesn't have __GFP_WAIT, synchronous reclaim is skipped. If a process performs only speculative allocations, it can blow way past the high limit. This is actually easily reproducible by simply doing "find /". slab/slub allocator tries speculative allocations first, so as long as there's memory which can be consumed without blocking, it can keep allocating memory regardless of the high limit. This patch makes try_charge() always punt the over-high reclaim to the return-to-userland path. If try_charge() detects that high limit is breached, it adds the overage to current->memcg_nr_pages_over_high and schedules execution of mem_cgroup_handle_over_high() which performs synchronous reclaim from the return-to-userland path. As long as kernel doesn't have a run-away allocation spree, this should provide enough protection while making kmemcg behave more consistently. It also has the following benefits. - All over-high reclaims can use GFP_KERNEL regardless of the specific gfp mask in use, e.g. GFP_NOFS, when the limit was breached. - It copes with prio inversion. Previously, a low-prio task with small memory.high might perform over-high reclaim with a bunch of locks held. If a higher prio task needed any of these locks, it would have to wait until the low prio task finished reclaim and released the locks. By handing over-high reclaim to the task exit path this issue can be avoided. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NMichal Hocko <mhocko@kernel.org> Reviewed-by: NVladimir Davydov <vdavydov@parallels.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Tejun Heo 提交于
task_struct->memcg_oom is a sub-struct containing fields which are used for async memcg oom handling. Most task_struct fields aren't packaged this way and it can lead to unnecessary alignment paddings. This patch flattens it. * task.memcg_oom.memcg -> task.memcg_in_oom * task.memcg_oom.gfp_mask -> task.memcg_oom_gfp_mask * task.memcg_oom.order -> task.memcg_oom_order * task.memcg_oom.may_oom -> task.memcg_may_oom In addition, task.memcg_may_oom is relocated to where other bitfields are which reduces the size of task_struct. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NMichal Hocko <mhocko@suse.com> Reviewed-by: NVladimir Davydov <vdavydov@parallels.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 17 10月, 2015 1 次提交
-
-
由 Shaohua Li 提交于
page_counter_memparse() returns pages for the threshold, while mem_cgroup_usage() returns bytes for memory usage. Convert the threshold to bytes. Fixes: 3e32cb2e ("memcg: rename cgroup_event to mem_cgroup_event"). Signed-off-by: NShaohua Li <shli@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 16 10月, 2015 1 次提交
-
-
由 Tejun Heo 提交于
Currently, cgroup_has_tasks() tests whether the target cgroup has any css_set linked to it. This works because a css_set's refcnt converges with the number of tasks linked to it and thus there's no css_set linked to a cgroup if it doesn't have any live tasks. To help tracking resource usage of zombie tasks, putting the ref of css_set will be separated from disassociating the task from the css_set which means that a cgroup may have css_sets linked to it even when it doesn't have any live tasks. This patch replaces cgroup_has_tasks() with cgroup_is_populated() which tests cgroup->nr_populated instead which locally counts the number of populated css_sets. Unlike cgroup_has_tasks(), cgroup_is_populated() is recursive - if any of the descendants is populated, the cgroup is populated too. While this changes the meaning of the test, all the existing users are okay with the change. While at it, replace the open-coded ->populated_cnt test in cgroup_events_show() with cgroup_is_populated(). Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Li Zefan <lizefan@huawei.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org>
-
- 13 10月, 2015 1 次提交
-
-
由 Tejun Heo 提交于
For memcg domains, the amount of available memory was calculated as min(the amount currently in use + headroom according to memcg, total clean memory) This isn't quite correct as what should be capped by the amount of clean memory is the headroom, not the sum of memory in use and headroom. For example, if a memcg domain has a significant amount of dirty memory, the above can lead to a value which is lower than the current amount in use which doesn't make much sense. In most circumstances, the above leads to a number which is somewhat but not drastically lower. As the amount of memory which can be readily allocated to the memcg domain is capped by the amount of system-wide clean memory which is not already assigned to the memcg itself, the number we want is the amount currently in use + min(headroom according to memcg, clean memory elsewhere in the system) This patch updates mem_cgroup_wb_stats() to return the number of filepages and headroom instead of the calculated available pages. mdtc_cap_avail() is renamed to mdtc_calc_avail() and performs the above calculation from file, headroom, dirty and globally clean pages. v2: Dummy mem_cgroup_wb_stats() implementation wasn't updated leading to build failure when !CGROUP_WRITEBACK. Fixed. Signed-off-by: NTejun Heo <tj@kernel.org> Fixes: c2aa723a ("writeback: implement memcg writeback domain based throttling") Signed-off-by: NJens Axboe <axboe@fb.com>
-
- 02 10月, 2015 2 次提交
-
-
由 Greg Thelen 提交于
Commit 733a572e ("memcg: make mem_cgroup_read_{stat|event}() iterate possible cpus instead of online") removed the last use of the per memcg pcp_counter_lock but forgot to remove the variable. Kill the vestigial variable. Signed-off-by: NGreg Thelen <gthelen@google.com> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Greg Thelen 提交于
mem_cgroup_read_stat() returns a page count by summing per cpu page counters. The summing is racy wrt. updates, so a transient negative sum is possible. Callers don't want negative values: - mem_cgroup_wb_stats() doesn't want negative nr_dirty or nr_writeback. This could confuse dirty throttling. - oom reports and memory.stat shouldn't show confusing negative usage. - tree_usage() already avoids negatives. Avoid returning negative page counts from mem_cgroup_read_stat() and convert it to unsigned. [akpm@linux-foundation.org: fix old typo while we're in there] Signed-off-by: NGreg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: <stable@vger.kernel.org> [4.2+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 23 9月, 2015 1 次提交
-
-
由 Tejun Heo 提交于
It wasn't explicitly documented but, when a process is being migrated, cpuset and memcg depend on cgroup_taskset_first() returning the threadgroup leader; however, this approach is somewhat ghetto and would no longer work for the planned multi-process migration. This patch introduces explicit cgroup_taskset_for_each_leader() which iterates over only the threadgroup leaders and replaces cgroup_taskset_first() usages for accessing the leader with it. This prepares both memcg and cpuset for multi-process migration. This patch also updates the documentation for cgroup_taskset_for_each() to clarify the iteration rules and removes comments mentioning task ordering in tasksets. v2: A previous patch which added threadgroup leader test was dropped. Patch updated accordingly. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NZefan Li <lizefan@huawei.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org>
-
- 22 9月, 2015 1 次提交
-
-
由 Tejun Heo 提交于
cgroup core only recently grew generic notification support. Wire up "memory.events" so that it triggers a file modified event whenever its content changes. v2: Refreshed on top of mem_cgroup relocation. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NMichal Hocko <mhocko@kernel.org> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Li Zefan <lizefan@huawei.com>
-
- 19 9月, 2015 1 次提交
-
-
由 Tejun Heo 提交于
cftype->mode allows controllers to give arbitrary permissions to interface knobs. Except for "cgroup.event_control", the existing uses are spurious. * Some explicitly specify S_IRUGO | S_IWUSR even though that's the default. * "cpuset.memory_pressure" specifies S_IRUGO while also setting a write callback which returns -EACCES. All it needs to do is simply not setting a write callback. "cgroup.event_control" uses cftype->mode to make the file world-writable. It's a misdesigned interface and we don't want controllers to be tweaking interface file permissions in general. This patch removes cftype->mode and all its spurious uses and implements CFTYPE_WORLD_WRITABLE for "cgroup.event_control" which is marked as compatibility-only. Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Li Zefan <lizefan@huawei.com> Cc: Johannes Weiner <hannes@cmpxchg.org>
-
- 18 9月, 2015 1 次提交
-
-
由 Tejun Heo 提交于
cgroup_on_dfl() tests whether the cgroup's root is the default hierarchy; however, an individual controller is only interested in whether the controller is attached to the default hierarchy and never tests a cgroup which doesn't belong to the hierarchy that the controller is attached to. This patch replaces cgroup_on_dfl() tests in controllers with faster static_key based cgroup_subsys_on_dfl(). This leaves cgroup core as the only user of cgroup_on_dfl() and the function is moved from the header file to cgroup.c. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NZefan Li <lizefan@huawei.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org>
-
- 11 9月, 2015 1 次提交
-
-
由 Vladimir Davydov 提交于
It is only used in mem_cgroup_try_charge, so fold it in and zap it. Signed-off-by: NVladimir Davydov <vdavydov@parallels.com> Reviewed-by: NAndres Lagar-Cavilla <andreslc@google.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Greg Thelen <gthelen@google.com> Cc: Michel Lespinasse <walken@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Pavel Emelyanov <xemul@parallels.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-