- 02 11月, 2017 1 次提交
-
-
由 James Morse 提交于
To take RAS Exceptions as quickly as possible we need to keep SError unmasked as much as possible. We need to mask it during kernel_exit as taking an error from this code will overwrite the exception-registers. Adding a naked 'disable_daif' to kernel_exit causes a performance problem for micro-benchmarks that do no real work, (e.g. calling getpid() in a loop). This is because the ret_to_user loop has already masked IRQs so that the TIF_WORK_MASK thread flags can't change underneath it, adding disable_daif is an additional self-synchronising operation. In the future, the RAS APEI code may need to modify the TIF_WORK_MASK flags from an SError, in which case the ret_to_user loop must mask SError while it examines the flags. Disable all exceptions for return to EL1. For return to EL0 get the ret_to_user loop to leave all exceptions masked once it has done its work, this avoids an extra pstate-write. Signed-off-by: NJames Morse <james.morse@arm.com> Reviewed-by: NJulien Thierry <julien.thierry@arm.com> Reviewed-by: NCatalin Marinas <catalin.marinas@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 02 10月, 2017 1 次提交
-
-
由 Yury Norov 提交于
ILP32 series [1] introduces the dependency on <asm/is_compat.h> for TASK_SIZE macro. Which in turn requires <asm/thread_info.h>, and <asm/thread_info.h> include <asm/memory.h>, giving a circular dependency, because TASK_SIZE is currently located in <asm/memory.h>. In other architectures, TASK_SIZE is defined in <asm/processor.h>, and moving TASK_SIZE there fixes the problem. Discussion: https://patchwork.kernel.org/patch/9929107/ [1] https://github.com/norov/linux/tree/ilp32-next CC: Will Deacon <will.deacon@arm.com> CC: Laura Abbott <labbott@redhat.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: James Morse <james.morse@arm.com> Suggested-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NYury Norov <ynorov@caviumnetworks.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 16 8月, 2017 4 次提交
-
-
由 Mark Rutland 提交于
This patch adds stack overflow detection to arm64, usable when vmap'd stacks are in use. Overflow is detected in a small preamble executed for each exception entry, which checks whether there is enough space on the current stack for the general purpose registers to be saved. If there is not enough space, the overflow handler is invoked on a per-cpu overflow stack. This approach preserves the original exception information in ESR_EL1 (and where appropriate, FAR_EL1). Task and IRQ stacks are aligned to double their size, enabling overflow to be detected with a single bit test. For example, a 16K stack is aligned to 32K, ensuring that bit 14 of the SP must be zero. On an overflow (or underflow), this bit is flipped. Thus, overflow (of less than the size of the stack) can be detected by testing whether this bit is set. The overflow check is performed before any attempt is made to access the stack, avoiding recursive faults (and the loss of exception information these would entail). As logical operations cannot be performed on the SP directly, the SP is temporarily swapped with a general purpose register using arithmetic operations to enable the test to be performed. This gives us a useful error message on stack overflow, as can be trigger with the LKDTM overflow test: [ 305.388749] lkdtm: Performing direct entry OVERFLOW [ 305.395444] Insufficient stack space to handle exception! [ 305.395482] ESR: 0x96000047 -- DABT (current EL) [ 305.399890] FAR: 0xffff00000a5e7f30 [ 305.401315] Task stack: [0xffff00000a5e8000..0xffff00000a5ec000] [ 305.403815] IRQ stack: [0xffff000008000000..0xffff000008004000] [ 305.407035] Overflow stack: [0xffff80003efce4e0..0xffff80003efcf4e0] [ 305.409622] CPU: 0 PID: 1219 Comm: sh Not tainted 4.13.0-rc3-00021-g9636aea #5 [ 305.412785] Hardware name: linux,dummy-virt (DT) [ 305.415756] task: ffff80003d051c00 task.stack: ffff00000a5e8000 [ 305.419221] PC is at recursive_loop+0x10/0x48 [ 305.421637] LR is at recursive_loop+0x38/0x48 [ 305.423768] pc : [<ffff00000859f330>] lr : [<ffff00000859f358>] pstate: 40000145 [ 305.428020] sp : ffff00000a5e7f50 [ 305.430469] x29: ffff00000a5e8350 x28: ffff80003d051c00 [ 305.433191] x27: ffff000008981000 x26: ffff000008f80400 [ 305.439012] x25: ffff00000a5ebeb8 x24: ffff00000a5ebeb8 [ 305.440369] x23: ffff000008f80138 x22: 0000000000000009 [ 305.442241] x21: ffff80003ce65000 x20: ffff000008f80188 [ 305.444552] x19: 0000000000000013 x18: 0000000000000006 [ 305.446032] x17: 0000ffffa2601280 x16: ffff0000081fe0b8 [ 305.448252] x15: ffff000008ff546d x14: 000000000047a4c8 [ 305.450246] x13: ffff000008ff7872 x12: 0000000005f5e0ff [ 305.452953] x11: ffff000008ed2548 x10: 000000000005ee8d [ 305.454824] x9 : ffff000008545380 x8 : ffff00000a5e8770 [ 305.457105] x7 : 1313131313131313 x6 : 00000000000000e1 [ 305.459285] x5 : 0000000000000000 x4 : 0000000000000000 [ 305.461781] x3 : 0000000000000000 x2 : 0000000000000400 [ 305.465119] x1 : 0000000000000013 x0 : 0000000000000012 [ 305.467724] Kernel panic - not syncing: kernel stack overflow [ 305.470561] CPU: 0 PID: 1219 Comm: sh Not tainted 4.13.0-rc3-00021-g9636aea #5 [ 305.473325] Hardware name: linux,dummy-virt (DT) [ 305.475070] Call trace: [ 305.476116] [<ffff000008088ad8>] dump_backtrace+0x0/0x378 [ 305.478991] [<ffff000008088e64>] show_stack+0x14/0x20 [ 305.481237] [<ffff00000895a178>] dump_stack+0x98/0xb8 [ 305.483294] [<ffff0000080c3288>] panic+0x118/0x280 [ 305.485673] [<ffff0000080c2e9c>] nmi_panic+0x6c/0x70 [ 305.486216] [<ffff000008089710>] handle_bad_stack+0x118/0x128 [ 305.486612] Exception stack(0xffff80003efcf3a0 to 0xffff80003efcf4e0) [ 305.487334] f3a0: 0000000000000012 0000000000000013 0000000000000400 0000000000000000 [ 305.488025] f3c0: 0000000000000000 0000000000000000 00000000000000e1 1313131313131313 [ 305.488908] f3e0: ffff00000a5e8770 ffff000008545380 000000000005ee8d ffff000008ed2548 [ 305.489403] f400: 0000000005f5e0ff ffff000008ff7872 000000000047a4c8 ffff000008ff546d [ 305.489759] f420: ffff0000081fe0b8 0000ffffa2601280 0000000000000006 0000000000000013 [ 305.490256] f440: ffff000008f80188 ffff80003ce65000 0000000000000009 ffff000008f80138 [ 305.490683] f460: ffff00000a5ebeb8 ffff00000a5ebeb8 ffff000008f80400 ffff000008981000 [ 305.491051] f480: ffff80003d051c00 ffff00000a5e8350 ffff00000859f358 ffff00000a5e7f50 [ 305.491444] f4a0: ffff00000859f330 0000000040000145 0000000000000000 0000000000000000 [ 305.492008] f4c0: 0001000000000000 0000000000000000 ffff00000a5e8350 ffff00000859f330 [ 305.493063] [<ffff00000808205c>] __bad_stack+0x88/0x8c [ 305.493396] [<ffff00000859f330>] recursive_loop+0x10/0x48 [ 305.493731] [<ffff00000859f358>] recursive_loop+0x38/0x48 [ 305.494088] [<ffff00000859f358>] recursive_loop+0x38/0x48 [ 305.494425] [<ffff00000859f358>] recursive_loop+0x38/0x48 [ 305.494649] [<ffff00000859f358>] recursive_loop+0x38/0x48 [ 305.494898] [<ffff00000859f358>] recursive_loop+0x38/0x48 [ 305.495205] [<ffff00000859f358>] recursive_loop+0x38/0x48 [ 305.495453] [<ffff00000859f358>] recursive_loop+0x38/0x48 [ 305.495708] [<ffff00000859f358>] recursive_loop+0x38/0x48 [ 305.496000] [<ffff00000859f358>] recursive_loop+0x38/0x48 [ 305.496302] [<ffff00000859f358>] recursive_loop+0x38/0x48 [ 305.496644] [<ffff00000859f358>] recursive_loop+0x38/0x48 [ 305.496894] [<ffff00000859f358>] recursive_loop+0x38/0x48 [ 305.497138] [<ffff00000859f358>] recursive_loop+0x38/0x48 [ 305.497325] [<ffff00000859f3dc>] lkdtm_OVERFLOW+0x14/0x20 [ 305.497506] [<ffff00000859f314>] lkdtm_do_action+0x1c/0x28 [ 305.497786] [<ffff00000859f178>] direct_entry+0xe0/0x170 [ 305.498095] [<ffff000008345568>] full_proxy_write+0x60/0xa8 [ 305.498387] [<ffff0000081fb7f4>] __vfs_write+0x1c/0x128 [ 305.498679] [<ffff0000081fcc68>] vfs_write+0xa0/0x1b0 [ 305.498926] [<ffff0000081fe0fc>] SyS_write+0x44/0xa0 [ 305.499182] Exception stack(0xffff00000a5ebec0 to 0xffff00000a5ec000) [ 305.499429] bec0: 0000000000000001 000000001c4cf5e0 0000000000000009 000000001c4cf5e0 [ 305.499674] bee0: 574f4c465245564f 0000000000000000 0000000000000000 8000000080808080 [ 305.499904] bf00: 0000000000000040 0000000000000038 fefefeff1b4bc2ff 7f7f7f7f7f7fff7f [ 305.500189] bf20: 0101010101010101 0000000000000000 000000000047a4c8 0000000000000038 [ 305.500712] bf40: 0000000000000000 0000ffffa2601280 0000ffffc63f6068 00000000004b5000 [ 305.501241] bf60: 0000000000000001 000000001c4cf5e0 0000000000000009 000000001c4cf5e0 [ 305.501791] bf80: 0000000000000020 0000000000000000 00000000004b5000 000000001c4cc458 [ 305.502314] bfa0: 0000000000000000 0000ffffc63f7950 000000000040a3c4 0000ffffc63f70e0 [ 305.502762] bfc0: 0000ffffa2601268 0000000080000000 0000000000000001 0000000000000040 [ 305.503207] bfe0: 0000000000000000 0000000000000000 0000000000000000 0000000000000000 [ 305.503680] [<ffff000008082fb0>] el0_svc_naked+0x24/0x28 [ 305.504720] Kernel Offset: disabled [ 305.505189] CPU features: 0x002082 [ 305.505473] Memory Limit: none [ 305.506181] ---[ end Kernel panic - not syncing: kernel stack overflow This patch was co-authored by Ard Biesheuvel and Mark Rutland. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NMark Rutland <mark.rutland@arm.com> Reviewed-by: NWill Deacon <will.deacon@arm.com> Tested-by: NLaura Abbott <labbott@redhat.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: James Morse <james.morse@arm.com>
-
由 Mark Rutland 提交于
We allocate our IRQ stacks using a percpu array. This allows us to generate our IRQ stack pointers with adr_this_cpu, but bloats the kernel Image with the boot CPU's IRQ stack. Additionally, these are packed with other percpu variables, and aren't guaranteed to have guard pages. When we enable VMAP_STACK we'll want to vmap our IRQ stacks also, in order to provide guard pages and to permit more stringent alignment requirements. Doing so will require that we use a percpu pointer to each IRQ stack, rather than allocating a percpu IRQ stack in the kernel image. This patch updates our IRQ stack code to use a percpu pointer to the base of each IRQ stack. This will allow us to change the way the stack is allocated with minimal changes elsewhere. In some cases we may try to backtrace before the IRQ stack pointers are initialised, so on_irq_stack() is updated to account for this. In testing with cyclictest, there was no measureable difference between using adr_this_cpu (for irq_stack) and ldr_this_cpu (for irq_stack_ptr) in the IRQ entry path. Signed-off-by: NMark Rutland <mark.rutland@arm.com> Reviewed-by: NWill Deacon <will.deacon@arm.com> Tested-by: NLaura Abbott <labbott@redhat.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: James Morse <james.morse@arm.com>
-
由 Mark Rutland 提交于
In subsequent patches, we will detect stack overflow in our exception entry code, by verifying the SP after it has been decremented to make space for the exception regs. This verification code is small, and we can minimize its impact by placing it directly in the vectors. To avoid redundant modification of the SP, we also need to move the initial decrement of the SP into the vectors. As a preparatory step, this patch introduces kernel_ventry, which performs this decrement, and updates the entry code accordingly. Subsequent patches will fold SP verification into kernel_ventry. There should be no functional change as a result of this patch. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> [Mark: turn into prep patch, expand commit msg] Signed-off-by: NMark Rutland <mark.rutland@arm.com> Reviewed-by: NWill Deacon <will.deacon@arm.com> Tested-by: NLaura Abbott <labbott@redhat.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: James Morse <james.morse@arm.com>
-
由 Ard Biesheuvel 提交于
For historical reasons, we leave the top 16 bytes of our task and IRQ stacks unused, a practice used to ensure that the SP can always be masked to find the base of the current stack (historically, where thread_info could be found). However, this is not necessary, as: * When an exception is taken from a task stack, we decrement the SP by S_FRAME_SIZE and stash the exception registers before we compare the SP against the task stack. In such cases, the SP must be at least S_FRAME_SIZE below the limit, and can be safely masked to determine whether the task stack is in use. * When transitioning to an IRQ stack, we'll place a dummy frame onto the IRQ stack before enabling asynchronous exceptions, or executing code we expect to trigger faults. Thus, if an exception is taken from the IRQ stack, the SP must be at least 16 bytes below the limit. * We no longer mask the SP to find the thread_info, which is now found via sp_el0. Note that historically, the offset was critical to ensure that cpu_switch_to() found the correct stack for new threads that hadn't yet executed ret_from_fork(). Given that, this initial offset serves no purpose, and can be removed. This brings us in-line with other architectures (e.g. x86) which do not rely on this masking. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> [Mark: rebase, kill THREAD_START_SP, commit msg additions] Signed-off-by: NMark Rutland <mark.rutland@arm.com> Reviewed-by: NWill Deacon <will.deacon@arm.com> Tested-by: NLaura Abbott <labbott@redhat.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: James Morse <james.morse@arm.com>
-
- 09 8月, 2017 1 次提交
-
-
由 Ard Biesheuvel 提交于
As it turns out, the unwind code is slightly broken, and probably has been for a while. The problem is in the dumping of the exception stack, which is intended to dump the contents of the pt_regs struct at each level in the call stack where an exception was taken and routed to a routine marked as __exception (which means its stack frame is right below the pt_regs struct on the stack). 'Right below the pt_regs struct' is ill defined, though: the unwind code assigns 'frame pointer + 0x10' to the .sp member of the stackframe struct at each level, and dump_backtrace() happily dereferences that as the pt_regs pointer when encountering an __exception routine. However, the actual size of the stack frame created by this routine (which could be one of many __exception routines we have in the kernel) is not known, and so frame.sp is pretty useless to figure out where struct pt_regs really is. So it seems the only way to ensure that we can find our struct pt_regs when walking the stack frames is to put it at a known fixed offset of the stack frame pointer that is passed to such __exception routines. The simplest way to do that is to put it inside pt_regs itself, which is the main change implemented by this patch. As a bonus, doing this allows us to get rid of a fair amount of cruft related to walking from one stack to the other, which is especially nice since we intend to introduce yet another stack for overflow handling once we add support for vmapped stacks. It also fixes an inconsistency where we only add a stack frame pointing to ELR_EL1 if we are executing from the IRQ stack but not when we are executing from the task stack. To consistly identify exceptions regs even in the presence of exceptions taken from entry code, we must check whether the next frame was created by entry text, rather than whether the current frame was crated by exception text. To avoid backtracing using PCs that fall in the idmap, or are controlled by userspace, we must explcitly zero the FP and LR in startup paths, and must ensure that the frame embedded in pt_regs is zeroed upon entry from EL0. To avoid these NULL entries showin in the backtrace, unwind_frame() is updated to avoid them. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> [Mark: compare current frame against .entry.text, avoid bogus PCs] Signed-off-by: NMark Rutland <mark.rutland@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Will Deacon <will.deacon@arm.com>
-
- 08 8月, 2017 2 次提交
-
-
由 Mark Rutland 提交于
Currently, cpu_switch_to and ret_from_fork both live in .entry.text, though neither form the critical path for an exception entry. In subsequent patches, we will require that code in .entry.text is part of the critical path for exception entry, for which we can assume certain properties (e.g. the presence of exception regs on the stack). Neither cpu_switch_to nor ret_from_fork will meet these requirements, so we must move them out of .entry.text. To ensure that neither are kprobed after being moved out of .entry.text, we must explicitly blacklist them, requiring a new NOKPROBE() asm helper. Signed-off-by: NMark Rutland <mark.rutland@arm.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Will Deacon <will.deacon@arm.com>
-
由 Mark Rutland 提交于
In most cases, our exception entry assembly branches to C handlers with a BL instruction, but in cases where we do not expect to return, we use B instead. While this is correct today, it means that backtraces for fatal exceptions miss the entry assembly (as the LR is stale at the point we call C code), while non-fatal exceptions have the entry assembly in the LR. In subsequent patches, we will need the LR to be set in these cases in order to backtrace reliably. This patch updates these sites to use a BL, ensuring consistency, and preparing for backtrace rework. An ASM_BUG() is added after each of these new BLs, which both catches unexpected returns, and ensures that the LR value doesn't point to another function label. Signed-off-by: NMark Rutland <mark.rutland@arm.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Will Deacon <will.deacon@arm.com>
-
- 07 8月, 2017 2 次提交
-
-
由 Dave Martin 提交于
The -1 "no syscall" value is written in various ways, shared with the user ABI in some places, and generally obscure. This patch attempts to make things a little more consistent and readable by replacing all these uses with a single #define. A couple of symbolic helpers are provided to clarify the intent further. Because the in-syscall check in do_signal() is changed from >= 0 to != NO_SYSCALL by this patch, different behaviour may be observable if syscallno is set to values less than -1 by a tracer. However, this is not different from the behaviour that is already observable if a tracer sets syscallno to a value >= __NR_(compat_)syscalls. It appears that this can cause spurious syscall restarting, but that is not a new behaviour either, and does not appear harmful. Signed-off-by: NDave Martin <Dave.Martin@arm.com> Acked-by: NWill Deacon <will.deacon@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Dave Martin 提交于
The upper 32 bits of the syscallno field in thread_struct are handled inconsistently, being sometimes zero extended and sometimes sign-extended. In fact, only the lower 32 bits seem to have any real significance for the behaviour of the code: it's been OK to handle the upper bits inconsistently because they don't matter. Currently, the only place I can find where those bits are significant is in calling trace_sys_enter(), which may be unintentional: for example, if a compat tracer attempts to cancel a syscall by passing -1 to (COMPAT_)PTRACE_SET_SYSCALL at the syscall-enter-stop, it will be traced as syscall 4294967295 rather than -1 as might be expected (and as occurs for a native tracer doing the same thing). Elsewhere, reads of syscallno cast it to an int or truncate it. There's also a conspicuous amount of code and casting to bodge around the fact that although semantically an int, syscallno is stored as a u64. Let's not pretend any more. In order to preserve the stp x instruction that stores the syscall number in entry.S, this patch special-cases the layout of struct pt_regs for big endian so that the newly 32-bit syscallno field maps onto the low bits of the stored value. This is not beautiful, but benchmarking of the getpid syscall on Juno suggests indicates a minor slowdown if the stp is split into an stp x and stp w. Signed-off-by: NDave Martin <Dave.Martin@arm.com> Acked-by: NWill Deacon <will.deacon@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 10 5月, 2017 1 次提交
-
-
由 Kristina Martsenko 提交于
When handling a data abort from EL0, we currently zero the top byte of the faulting address, as we assume the address is a TTBR0 address, which may contain a non-zero address tag. However, the address may be a TTBR1 address, in which case we should not zero the top byte. This patch fixes that. The effect is that the full TTBR1 address is passed to the task's signal handler (or printed out in the kernel log). When handling a data abort from EL1, we leave the faulting address intact, as we assume it's either a TTBR1 address or a TTBR0 address with tag 0x00. This is true as far as I'm aware, we don't seem to access a tagged TTBR0 address anywhere in the kernel. Regardless, it's easy to forget about address tags, and code added in the future may not always remember to remove tags from addresses before accessing them. So add tag handling to the EL1 data abort handler as well. This also makes it consistent with the EL0 data abort handler. Fixes: d50240a5 ("arm64: mm: permit use of tagged pointers at EL0") Cc: <stable@vger.kernel.org> # 3.12.x- Reviewed-by: NDave Martin <Dave.Martin@arm.com> Acked-by: NWill Deacon <will.deacon@arm.com> Signed-off-by: NKristina Martsenko <kristina.martsenko@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 19 1月, 2017 1 次提交
-
-
由 Mark Rutland 提交于
Generally, taking an unexpected exception should be a fatal event, and bad_mode is intended to cater for this. However, it should be possible to contain unexpected synchronous exceptions from EL0 without bringing the kernel down, by sending a SIGILL to the task. We tried to apply this approach in commit 9955ac47 ("arm64: don't kill the kernel on a bad esr from el0"), by sending a signal for any bad_mode call resulting from an EL0 exception. However, this also applies to other unexpected exceptions, such as SError and FIQ. The entry paths for these exceptions branch to bad_mode without configuring the link register, and have no kernel_exit. Thus, if we take one of these exceptions from EL0, bad_mode will eventually return to the original user link register value. This patch fixes this by introducing a new bad_el0_sync handler to cater for the recoverable case, and restoring bad_mode to its original state, whereby it calls panic() and never returns. The recoverable case branches to bad_el0_sync with a bl, and returns to userspace via the usual ret_to_user mechanism. Signed-off-by: NMark Rutland <mark.rutland@arm.com> Fixes: 9955ac47 ("arm64: don't kill the kernel on a bad esr from el0") Reported-by: NMark Salter <msalter@redhat.com> Cc: Will Deacon <will.deacon@arm.com> Cc: stable@vger.kernel.org Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 27 12月, 2016 1 次提交
-
-
由 Al Viro 提交于
Split asm-only parts of arm64 uaccess.h into a new header and use that from *.S. Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 25 12月, 2016 1 次提交
-
-
由 Linus Torvalds 提交于
This was entirely automated, using the script by Al: PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>' sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \ $(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h) to do the replacement at the end of the merge window. Requested-by: NAl Viro <viro@zeniv.linux.org.uk> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 22 11月, 2016 2 次提交
-
-
由 Catalin Marinas 提交于
When the TTBR0 PAN feature is enabled, the kernel entry points need to disable access to TTBR0_EL1. The PAN status of the interrupted context is stored as part of the saved pstate, reusing the PSR_PAN_BIT (22). Restoring access to TTBR0_EL1 is done on exception return if returning to user or returning to a context where PAN was disabled. Context switching via switch_mm() must defer the update of TTBR0_EL1 until a return to user or an explicit uaccess_enable() call. Special care needs to be taken for two cases where TTBR0_EL1 is set outside the normal kernel context switch operation: EFI run-time services (via efi_set_pgd) and CPU suspend (via cpu_(un)install_idmap). Code has been added to avoid deferred TTBR0_EL1 switching as in switch_mm() and restore the reserved TTBR0_EL1 when uninstalling the special TTBR0_EL1. User cache maintenance (user_cache_maint_handler and __flush_cache_user_range) needs the TTBR0_EL1 re-instated since the operations are performed by user virtual address. This patch also removes a stale comment on the switch_mm() function. Cc: Will Deacon <will.deacon@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Mark Rutland <mark.rutland@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Catalin Marinas 提交于
This patch adds the uaccess macros/functions to disable access to user space by setting TTBR0_EL1 to a reserved zeroed page. Since the value written to TTBR0_EL1 must be a physical address, for simplicity this patch introduces a reserved_ttbr0 page at a constant offset from swapper_pg_dir. The uaccess_disable code uses the ttbr1_el1 value adjusted by the reserved_ttbr0 offset. Enabling access to user is done by restoring TTBR0_EL1 with the value from the struct thread_info ttbr0 variable. Interrupts must be disabled during the uaccess_ttbr0_enable code to ensure the atomicity of the thread_info.ttbr0 read and TTBR0_EL1 write. This patch also moves the get_thread_info asm macro from entry.S to assembler.h for reuse in the uaccess_ttbr0_* macros. Cc: Will Deacon <will.deacon@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Mark Rutland <mark.rutland@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 12 11月, 2016 2 次提交
-
-
由 Mark Rutland 提交于
This patch moves arm64's struct thread_info from the task stack into task_struct. This protects thread_info from corruption in the case of stack overflows, and makes its address harder to determine if stack addresses are leaked, making a number of attacks more difficult. Precise detection and handling of overflow is left for subsequent patches. Largely, this involves changing code to store the task_struct in sp_el0, and acquire the thread_info from the task struct. Core code now implements current_thread_info(), and as noted in <linux/sched.h> this relies on offsetof(task_struct, thread_info) == 0, enforced by core code. This change means that the 'tsk' register used in entry.S now points to a task_struct, rather than a thread_info as it used to. To make this clear, the TI_* field offsets are renamed to TSK_TI_*, with asm-offsets appropriately updated to account for the structural change. Userspace clobbers sp_el0, and we can no longer restore this from the stack. Instead, the current task is cached in a per-cpu variable that we can safely access from early assembly as interrupts are disabled (and we are thus not preemptible). Both secondary entry and idle are updated to stash the sp and task pointer separately. Signed-off-by: NMark Rutland <mark.rutland@arm.com> Tested-by: NLaura Abbott <labbott@redhat.com> Cc: AKASHI Takahiro <takahiro.akashi@linaro.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: James Morse <james.morse@arm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Mark Rutland 提交于
Shortly we will want to load a percpu variable in the return from userspace path. We can save an instruction by folding the addition of the percpu offset into the load instruction, and this patch adds a new helper to do so. At the same time, we clean up this_cpu_ptr for consistency. As with {adr,ldr,str}_l, we change the template to take the destination register first, and name this dst. Secondly, we rename the macro to adr_this_cpu, following the scheme of adr_l, and matching the newly added ldr_this_cpu. Signed-off-by: NMark Rutland <mark.rutland@arm.com> Tested-by: NLaura Abbott <labbott@redhat.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: James Morse <james.morse@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 12 9月, 2016 1 次提交
-
-
由 Mark Rutland 提交于
Make use of the new alternative_if and alternative_else_nop_endif and get rid of our homebew NOP sleds, making the code simpler to read. Note that for cpu_do_switch_mm the ret has been moved out of the alternative sequence, and in the default case there will be three additional NOPs executed. Signed-off-by: NMark Rutland <mark.rutland@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 02 9月, 2016 1 次提交
-
-
由 Vladimir Murzin 提交于
Commit e19a6ee2 ("arm64: kernel: Save and restore UAO and addr_limit on exception entry") states that exception handler inherits the original PSTATE.UAO value, so UAO needes to be reset explicitly. However, ARM 8.2 Extension documentation says: PSTATE.UAO is copied to SPSR_ELx.UAO and is then set to 0 on an exception taken from AArch64 to AArch64 so hardware already does the right thing. Signed-off-by: NVladimir Murzin <vladimir.murzin@arm.com> Acked-by: NJames Morse <james.morse@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 22 8月, 2016 1 次提交
-
-
由 Chris Metcalf 提交于
Currently ret_fast_syscall, work_pending, and ret_to_user form an ad-hoc state machine that can be difficult to reason about due to duplicated code and a large number of branch targets. This patch factors the common logic out into the existing do_notify_resume function, converting the code to C in the process, making the code more legible. This patch tries to closely mirror the existing behaviour while using the usual C control flow primitives. As local_irq_{disable,enable} may be instrumented, we balance exception entry (where we will almost most likely enable IRQs) with a call to trace_hardirqs_on just before the return to userspace. Signed-off-by: NChris Metcalf <cmetcalf@mellanox.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 13 8月, 2016 1 次提交
-
-
由 Laura Abbott 提交于
Executing from a non-executable area gives an ugly message: lkdtm: Performing direct entry EXEC_RODATA lkdtm: attempting ok execution at ffff0000084c0e08 lkdtm: attempting bad execution at ffff000008880700 Bad mode in Synchronous Abort handler detected on CPU2, code 0x8400000e -- IABT (current EL) CPU: 2 PID: 998 Comm: sh Not tainted 4.7.0-rc2+ #13 Hardware name: linux,dummy-virt (DT) task: ffff800077e35780 ti: ffff800077970000 task.ti: ffff800077970000 PC is at lkdtm_rodata_do_nothing+0x0/0x8 LR is at execute_location+0x74/0x88 The 'IABT (current EL)' indicates the error but it's a bit cryptic without knowledge of the ARM ARM. There is also no indication of the specific address which triggered the fault. The increase in kernel page permissions makes hitting this case more likely as well. Handling the case in the vectors gives a much more familiar looking error message: lkdtm: Performing direct entry EXEC_RODATA lkdtm: attempting ok execution at ffff0000084c0840 lkdtm: attempting bad execution at ffff000008880680 Unable to handle kernel paging request at virtual address ffff000008880680 pgd = ffff8000089b2000 [ffff000008880680] *pgd=00000000489b4003, *pud=0000000048904003, *pmd=0000000000000000 Internal error: Oops: 8400000e [#1] PREEMPT SMP Modules linked in: CPU: 1 PID: 997 Comm: sh Not tainted 4.7.0-rc1+ #24 Hardware name: linux,dummy-virt (DT) task: ffff800077f9f080 ti: ffff800008a1c000 task.ti: ffff800008a1c000 PC is at lkdtm_rodata_do_nothing+0x0/0x8 LR is at execute_location+0x74/0x88 Acked-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NLaura Abbott <labbott@redhat.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 19 7月, 2016 1 次提交
-
-
由 Pratyush Anand 提交于
Entry symbols are not kprobe safe. So blacklist them for kprobing. Signed-off-by: NPratyush Anand <panand@redhat.com> Signed-off-by: NDavid A. Long <dave.long@linaro.org> Acked-by: NMasami Hiramatsu <mhiramat@kernel.org> [catalin.marinas@arm.com: Do not include syscall wrappers in .entry.text] Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 07 7月, 2016 1 次提交
-
-
由 James Morse 提交于
If we take an exception while at EL1, the exception handler inherits the original context's addr_limit and PSTATE.UAO values. To be consistent always reset addr_limit and PSTATE.UAO on (re-)entry to EL1. This prevents accidental re-use of the original context's addr_limit. Based on a similar patch for arm from Russell King. Cc: <stable@vger.kernel.org> # 4.6- Acked-by: NWill Deacon <will.deacon@arm.com> Reviewed-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NJames Morse <james.morse@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 01 7月, 2016 1 次提交
-
-
由 Andre Przywara 提交于
The ARM errata 819472, 826319, 827319 and 824069 for affected Cortex-A53 cores demand to promote "dc cvau" instructions to "dc civac". Since we allow userspace to also emit those instructions, we should make sure that "dc cvau" gets promoted there too. So lets grasp the nettle here and actually trap every userland cache maintenance instruction once we detect at least one affected core in the system. We then emulate the instruction by executing it on behalf of userland, promoting "dc cvau" to "dc civac" on the way and injecting access fault back into userspace. Signed-off-by: NAndre Przywara <andre.przywara@arm.com> [catalin.marinas@arm.com: s/set_segfault/arm64_notify_segfault/] Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 22 6月, 2016 1 次提交
-
-
由 Mark Rutland 提交于
Currently we treat ESR_EL1 bit 24 as software-defined for distinguishing instruction aborts from data aborts, but this bit is architecturally RES0 for instruction aborts, and could be allocated for an arbitrary purpose in future. Additionally, we hard-code the value in entry.S without the mnemonic, making the code difficult to understand. Instead, remove ESR_LNX_EXEC, and distinguish aborts based on the esr, which we already pass to the sole use of ESR_LNX_EXEC. A new helper, is_el0_instruction_abort() is added to make the logic clear. Any instruction aborts taken from EL1 will already have been handled by bad_mode, so we need not handle that case in the helper. For consistency, the existing permission_fault helper is renamed to is_permission_fault, and the return type is changed to bool. There should be no functional changes as the return value was a boolean expression, and the result is only used in another boolean expression. Signed-off-by: NMark Rutland <mark.rutland@arm.com> Cc: Dave P Martin <dave.martin@arm.com> Cc: Huang Shijie <shijie.huang@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 21 3月, 2016 1 次提交
-
-
由 Ard Biesheuvel 提交于
The implementation of macro inv_entry refers to its 'el' argument without the required leading backslash, which results in an undefined symbol 'el' to be passed into the kernel_entry macro rather than the index of the exception level as intended. This undefined symbol strangely enough does not result in build failures, although it is visible in vmlinux: $ nm -n vmlinux |head U el 0000000000000000 A _kernel_flags_le_hi32 0000000000000000 A _kernel_offset_le_hi32 0000000000000000 A _kernel_size_le_hi32 000000000000000a A _kernel_flags_le_lo32 ..... However, it does result in incorrect code being generated for invalid exceptions taken from EL0, since the argument check in kernel_entry assumes EL1 if its argument does not equal '0'. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 06 1月, 2016 1 次提交
-
-
由 Mark Rutland 提交于
In work_pending, we may skip work if the stacked SPSR value represents anything other than an EL0 context. We then immediately invoke the kernel_exit 0 macro as part of ret_to_user, assuming a return to EL0. This is somewhat confusing. We use work_pending as part of the ret_to_user/ret_fast_syscall state machine. We only use ret_fast_syscall in the return from an SVC issued from EL0. We use ret_to_user for return from EL0 exception handlers and also for return from ret_from_fork in the case the task was not a kernel thread (i.e. it is a user task). Thus in all cases the stacked SPSR value must represent an EL0 context, and the check is redundant. This patch removes it, along with the now unused no_work_pending label. Cc: Chris Metcalf <cmetcalf@ezchip.com> Acked-by: NCatalin Marinas <catalin.marinas@arm.com> Signed-off-by: NMark Rutland <mark.rutland@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 22 12月, 2015 1 次提交
-
-
由 James Morse 提交于
sysrq_handle_reboot() re-enables interrupts while on the irq stack. The irq_stack implementation wrongly assumed this would only ever happen via the softirq path, allowing it to update irq_count late, in do_softirq_own_stack(). This means if an irq occurs in sysrq_handle_reboot(), during emergency_restart() the stack will be corrupted, as irq_count wasn't updated. Lose the optimisation, and instead of moving the adding/subtracting of irq_count into irq_stack_entry/irq_stack_exit, remove it, and compare sp_el0 (struct thread_info) with sp & ~(THREAD_SIZE - 1). This tells us if we are on a task stack, if so, we can safely switch to the irq stack. Finally, remove do_softirq_own_stack(), we don't need it anymore. Reported-by: NWill Deacon <will.deacon@arm.com> Signed-off-by: NJames Morse <james.morse@arm.com> [will: use get_thread_info macro] Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 16 12月, 2015 1 次提交
-
-
由 James Morse 提交于
The code for switching to irq_stack stores three pieces of information on the stack, fp+lr, as a fake stack frame (that lets us walk back onto the interrupted tasks stack frame), and the address of the struct pt_regs that contains the register values from kernel entry. (which dump_backtrace() will print in any stack trace). To reduce this, we store fp, and the pointer to the struct pt_regs. unwind_frame() can recognise this as the irq_stack dummy frame, (as it only appears at the top of the irq_stack), and use the struct pt_regs values to find the missing interrupted link-register. Suggested-by: NWill Deacon <will.deacon@arm.com> Signed-off-by: NJames Morse <james.morse@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 10 12月, 2015 2 次提交
-
-
由 James Morse 提交于
On entry from el0, we save all the registers on the kernel stack, and restore them before returning. x29 remains unchanged when we call out to C code, which will store x29 as the frame-pointer on the stack. Instead, write 0 into x29 after entry from el0, to avoid any risk of tracing into user space. Signed-off-by: NJames Morse <james.morse@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 James Morse 提交于
irq_stack is a per_cpu variable, that needs to be access from entry.S. Use an assembler macro instead of the unreadable details. Signed-off-by: NJames Morse <james.morse@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 09 12月, 2015 1 次提交
-
-
由 Will Deacon 提交于
Running with CONFIG_DEBUG_SPINLOCK=y can trigger a BUG with the new IRQ stack code: BUG: spinlock lockup suspected on CPU#1 This is due to the IRQ_STACK_TO_TASK_STACK macro incorrectly retrieving the task stack pointer stashed at the top of the IRQ stack. Sayeth James: | Yup, this is what is happening. Its an off-by-one due to broken | thinking about how the stack works. My broken thinking was: | | > top ------------ | > | dummy_lr | <- irq_stack_ptr | > ------------ | > | x29 | | > ------------ | > | x19 | <- irq_stack_ptr - 0x10 | > ------------ | > | xzr | | > ------------ | | But the stack-pointer is decreased before use. So it actually looks | like this: | | > ------------ | > | | <- irq_stack_ptr | > top ------------ | > | dummy_lr | | > ------------ | > | x29 | <- irq_stack_ptr - 0x10 | > ------------ | > | x19 | | > ------------ | > | xzr | <- irq_stack_ptr - 0x20 | > ------------ | | The value being used as the original stack is x29, which in all the | tests is sp but without the current frames data, hence there are no | missing frames in the output. | | Jungseok Lee picked it up with a 32bit user space because aarch32 | can't use x29, so it remains 0 forever. The fix he posted is correct. This patch fixes the macro and adds some of this wisdom to a comment, so that the layout of the IRQ stack is well understood. Cc: James Morse <james.morse@arm.com> Reported-by: NJungseok Lee <jungseoklee85@gmail.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 08 12月, 2015 2 次提交
-
-
由 James Morse 提交于
entry.S is modified to switch to the per_cpu irq_stack during el{0,1}_irq. irq_count is used to detect recursive interrupts on the irq_stack, it is updated late by do_softirq_own_stack(), when called on the irq_stack, before __do_softirq() re-enables interrupts to process softirqs. do_softirq_own_stack() is added by this patch, but does not yet switch stack. This patch adds the dummy stack frame and data needed by the previous stack tracing patches. Reviewed-by: NCatalin Marinas <catalin.marinas@arm.com> Signed-off-by: NJames Morse <james.morse@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
由 Jungseok Lee 提交于
There is need for figuring out how to manage struct thread_info data when IRQ stack is introduced. struct thread_info information should be copied to IRQ stack under the current thread_info calculation logic whenever context switching is invoked. This is too expensive to keep supporting the approach. Instead, this patch pays attention to sp_el0 which is an unused scratch register in EL1 context. sp_el0 utilization not only simplifies the management, but also prevents text section size from being increased largely due to static allocated IRQ stack as removing masking operation using THREAD_SIZE in many places. Reviewed-by: NCatalin Marinas <catalin.marinas@arm.com> Signed-off-by: NJungseok Lee <jungseoklee85@gmail.com> Signed-off-by: NJames Morse <james.morse@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 05 12月, 2015 1 次提交
-
-
由 Catalin Marinas 提交于
When a kernel is built with CONFIG_TRACE_IRQFLAGS the following warning is produced when entering userspace for the first time: WARNING: at /work/Linux/linux-2.6-aarch64/kernel/locking/lockdep.c:3519 Modules linked in: CPU: 1 PID: 1 Comm: systemd Not tainted 4.4.0-rc3+ #639 Hardware name: Juno (DT) task: ffffffc9768a0000 ti: ffffffc9768a8000 task.ti: ffffffc9768a8000 PC is at check_flags.part.22+0x19c/0x1a8 LR is at check_flags.part.22+0x19c/0x1a8 pc : [<ffffffc0000fba6c>] lr : [<ffffffc0000fba6c>] pstate: 600001c5 sp : ffffffc9768abe10 x29: ffffffc9768abe10 x28: ffffffc9768a8000 x27: 0000000000000000 x26: 0000000000000001 x25: 00000000000000a6 x24: ffffffc00064be6c x23: ffffffc0009f249e x22: ffffffc9768a0000 x21: ffffffc97fea5480 x20: 00000000000001c0 x19: ffffffc00169a000 x18: 0000005558cc7b58 x17: 0000007fb78e3180 x16: 0000005558d2e238 x15: ffffffffffffffff x14: 0ffffffffffffffd x13: 0000000000000008 x12: 0101010101010101 x11: 7f7f7f7f7f7f7f7f x10: fefefefefefeff63 x9 : 7f7f7f7f7f7f7f7f x8 : 6e655f7371726964 x7 : 0000000000000001 x6 : ffffffc0001079c4 x5 : 0000000000000000 x4 : 0000000000000001 x3 : ffffffc001698438 x2 : 0000000000000000 x1 : ffffffc9768a0000 x0 : 000000000000002e Call trace: [<ffffffc0000fba6c>] check_flags.part.22+0x19c/0x1a8 [<ffffffc0000fc440>] lock_is_held+0x80/0x98 [<ffffffc00064bafc>] __schedule+0x404/0x730 [<ffffffc00064be6c>] schedule+0x44/0xb8 [<ffffffc000085bb0>] ret_to_user+0x0/0x24 possible reason: unannotated irqs-off. irq event stamp: 502169 hardirqs last enabled at (502169): [<ffffffc000085a98>] el0_irq_naked+0x1c/0x24 hardirqs last disabled at (502167): [<ffffffc0000bb3bc>] __do_softirq+0x17c/0x298 softirqs last enabled at (502168): [<ffffffc0000bb43c>] __do_softirq+0x1fc/0x298 softirqs last disabled at (502143): [<ffffffc0000bb830>] irq_exit+0xa0/0xf0 This happens because we disable interrupts in ret_to_user before calling schedule() in work_resched. This patch adds the necessary trace_hardirqs_off annotation. Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com> Reported-by: NMark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 16 10月, 2015 1 次提交
-
-
由 Mark Salyzyn 提交于
ARMv7 does not have a PC alignment exception. ARMv8 AArch32 user space however can produce a PC alignment exception. Add handler so that we do not dump an unexpected stack trace in the logs. Signed-off-by: NMark Salyzyn <salyzyn@android.com> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
- 21 8月, 2015 1 次提交
-
-
由 Will Deacon 提交于
We have a micro-optimisation on the fast syscall return path where we take care to keep x0 live with the return value from the syscall so that we can avoid restoring it from the stack. The benefit of doing this is fairly suspect, since we will be restoring x1 from the stack anyway (which lives adjacent in the pt_regs structure) and the only additional cost is saving x0 back to pt_regs after the syscall handler, which could be seen as a poor man's prefetch. More importantly, this causes issues with the context tracking code. The ct_user_enter macro ends up branching into C code, which is free to use x0 as a scratch register and consequently leads to us returning junk back to userspace as the syscall return value. Rather than special case the context-tracking code, this patch removes the questionable optimisation entirely. Cc: <stable@vger.kernel.org> Cc: Larry Bassel <larry.bassel@linaro.org> Cc: Kevin Hilman <khilman@linaro.org> Reviewed-by: NCatalin Marinas <catalin.marinas@arm.com> Reported-by: NHanjun Guo <hanjun.guo@linaro.org> Tested-by: NHanjun Guo <hanjun.guo@linaro.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-
- 27 7月, 2015 1 次提交
-
-
由 Daniel Thompson 提交于
Convert the dynamic patching for ARM64_WORKAROUND_845719 over to the newly added alternative assembler macros. Signed-off-by: NDaniel Thompson <daniel.thompson@linaro.org> Signed-off-by: NWill Deacon <will.deacon@arm.com>
-