- 22 3月, 2012 28 次提交
-
-
由 KAMEZAWA Hiroyuki 提交于
mem_cgroup_begin_update_page_stat() should be very fast because it's called very frequently. Now, it needs to look up page_cgroup and its memcg....this is slow. This patch adds a global variable to check "any memcg is moving or not". With this, the caller doesn't need to visit page_cgroup and memcg. Here is a test result. A test program makes page faults onto a file, MAP_SHARED and makes each page's page_mapcount(page) > 1, and free the range by madvise() and page fault again. This program causes 26214400 times of page fault onto a file(size was 1G.) and shows shows the cost of mem_cgroup_begin_update_page_stat(). Before this patch for mem_cgroup_begin_update_page_stat() [kamezawa@bluextal test]$ time ./mmap 1G real 0m21.765s user 0m5.999s sys 0m15.434s 27.46% mmap mmap [.] reader 21.15% mmap [kernel.kallsyms] [k] page_fault 9.17% mmap [kernel.kallsyms] [k] filemap_fault 2.96% mmap [kernel.kallsyms] [k] __do_fault 2.83% mmap [kernel.kallsyms] [k] __mem_cgroup_begin_update_page_stat After this patch [root@bluextal test]# time ./mmap 1G real 0m21.373s user 0m6.113s sys 0m15.016s In usual path, calls to __mem_cgroup_begin_update_page_stat() goes away. Note: we may be able to remove this optimization in future if we can get pointer to memcg directly from struct page. [akpm@linux-foundation.org: don't return a void] Signed-off-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: NGreg Thelen <gthelen@google.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Ying Han <yinghan@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 KAMEZAWA Hiroyuki 提交于
With the new lock scheme for updating memcg's page stat, we don't need a flag PCG_FILE_MAPPED which was duplicated information of page_mapped(). [hughd@google.com: cosmetic fix] [hughd@google.com: add comment to MEM_CGROUP_CHARGE_TYPE_MAPPED case in __mem_cgroup_uncharge_common()] Signed-off-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: NGreg Thelen <gthelen@google.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Ying Han <yinghan@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 KAMEZAWA Hiroyuki 提交于
Now, page-stat-per-memcg is recorded into per page_cgroup flag by duplicating page's status into the flag. The reason is that memcg has a feature to move a page from a group to another group and we have race between "move" and "page stat accounting", Under current logic, assume CPU-A and CPU-B. CPU-A does "move" and CPU-B does "page stat accounting". When CPU-A goes 1st, CPU-A CPU-B update "struct page" info. move_lock_mem_cgroup(memcg) see pc->flags copy page stat to new group overwrite pc->mem_cgroup. move_unlock_mem_cgroup(memcg) move_lock_mem_cgroup(mem) set pc->flags update page stat accounting move_unlock_mem_cgroup(mem) stat accounting is guarded by move_lock_mem_cgroup() and "move" logic (CPU-A) doesn't see changes in "struct page" information. But it's costly to have the same information both in 'struct page' and 'struct page_cgroup'. And, there is a potential problem. For example, assume we have PG_dirty accounting in memcg. PG_..is a flag for struct page. PCG_ is a flag for struct page_cgroup. (This is just an example. The same problem can be found in any kind of page stat accounting.) CPU-A CPU-B TestSet PG_dirty (delay) TestClear PG_dirty if (TestClear(PCG_dirty)) memcg->nr_dirty-- if (TestSet(PCG_dirty)) memcg->nr_dirty++ Here, memcg->nr_dirty = +1, this is wrong. This race was reported by Greg Thelen <gthelen@google.com>. Now, only FILE_MAPPED is supported but fortunately, it's serialized by page table lock and this is not real bug, _now_, If this potential problem is caused by having duplicated information in struct page and struct page_cgroup, we may be able to fix this by using original 'struct page' information. But we'll have a problem in "move account" Assume we use only PG_dirty. CPU-A CPU-B TestSet PG_dirty (delay) move_lock_mem_cgroup() if (PageDirty(page)) new_memcg->nr_dirty++ pc->mem_cgroup = new_memcg; move_unlock_mem_cgroup() move_lock_mem_cgroup() memcg = pc->mem_cgroup new_memcg->nr_dirty++ accounting information may be double-counted. This was original reason to have PCG_xxx flags but it seems PCG_xxx has another problem. I think we need a bigger lock as move_lock_mem_cgroup(page) TestSetPageDirty(page) update page stats (without any checks) move_unlock_mem_cgroup(page) This fixes both of problems and we don't have to duplicate page flag into page_cgroup. Please note: move_lock_mem_cgroup() is held only when there are possibility of "account move" under the system. So, in most path, status update will go without atomic locks. This patch introduces mem_cgroup_begin_update_page_stat() and mem_cgroup_end_update_page_stat() both should be called at modifying 'struct page' information if memcg takes care of it. as mem_cgroup_begin_update_page_stat() modify page information mem_cgroup_update_page_stat() => never check any 'struct page' info, just update counters. mem_cgroup_end_update_page_stat(). This patch is slow because we need to call begin_update_page_stat()/ end_update_page_stat() regardless of accounted will be changed or not. A following patch adds an easy optimization and reduces the cost. [akpm@linux-foundation.org: s/lock/locked/] [hughd@google.com: fix deadlock by avoiding stat lock when anon] Signed-off-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Greg Thelen <gthelen@google.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Ying Han <yinghan@google.com> Signed-off-by: NHugh Dickins <hughd@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 KAMEZAWA Hiroyuki 提交于
PCG_MOVE_LOCK is used for bit spinlock to avoid race between overwriting pc->mem_cgroup and page statistics accounting per memcg. This lock helps to avoid the race but the race is very rare because moving tasks between cgroup is not a usual job. So, it seems using 1bit per page is too costly. This patch changes this lock as per-memcg spinlock and removes PCG_MOVE_LOCK. If smaller lock is required, we'll be able to add some hashes but I'd like to start from this. Signed-off-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: NGreg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Ying Han <yinghan@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Konstantin Khlebnikov 提交于
This code was removed in 25edde03 ("vmscan: kill prev_priority completely") Signed-off-by: NKonstantin Khlebnikov <khlebnikov@openvz.org> Acked-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 KAMEZAWA Hiroyuki 提交于
We record 'the page is cache' with the PCG_CACHE bit in page_cgroup. Here, "CACHE" means anonymous user pages (and SwapCache). This doesn't include shmem. Considering callers, at charge/uncharge, the caller should know what the page is and we don't need to record it by using one bit per page. This patch removes PCG_CACHE bit and make callers of mem_cgroup_charge_statistics() to specify what the page is. About page migration: Mapping of the used page is not touched during migra tion (see page_remove_rmap) so we can rely on it and push the correct charge type down to __mem_cgroup_uncharge_common from end_migration for unused page. The force flag was misleading was abused for skipping the needless page_mapped() / PageCgroupMigration() check, as we know the unused page is no longer mapped and cleared the migration flag just a few lines up. But doing the checks is no biggie and it's not worth adding another flag just to skip them. [akpm@linux-foundation.org: checkpatch fixes] [hughd@google.com: fix PageAnon uncharging] Signed-off-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Hugh Dickins <hughd@google.com> Cc: Ying Han <yinghan@google.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Hugh Dickins 提交于
Commit c1e2ee2d ("memcg: replace ss->id_lock with a rwlock") has now been seen to cause the unfair behavior we should have expected from converting a spinlock to an rwlock: softlockup in cgroup_mkdir(), whose get_new_cssid() is waiting for the wlock, while there are 19 tasks using the rlock in css_get_next() to get on with their memcg workload (in an artificial test, admittedly). Yet lib/idr.c was made suitable for RCU way back: revert that commit, restoring ss->id_lock to a spinlock. Signed-off-by: NHugh Dickins <hughd@google.com> Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: NLi Zefan <lizf@cn.fujitsu.com> Cc: Eric Dumazet <eric.dumazet@gmail.com> Acked-by: NTejun Heo <tj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Hugh Dickins 提交于
Correct an #endif comment in memcontrol.h from MEM_CONT to MEM_RES_CTLR. Signed-off-by: NHugh Dickins <hughd@google.com> Reviewed-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: NKirill A. Shutemov <kirill@shutemov.name> Acked-by: NMichal Hocko <mhocko@suse.cz> Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Kautuk Consul 提交于
add_from_early_node_map() is unused. Signed-off-by: NKautuk Consul <consul.kautuk@gmail.com> Acked-by: NDavid Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Steven Truelove 提交于
When calling shmget() with SHM_HUGETLB, shmget aligns the request size to PAGE_SIZE, but this is not sufficient. Modify hugetlb_file_setup() to align requests to the huge page size, and to accept an address argument so that all alignment checks can be performed in hugetlb_file_setup(), rather than in its callers. Change newseg() and mmap_pgoff() to match the new prototype and eliminate a now redundant alignment check. [akpm@linux-foundation.org: fix build] Signed-off-by: NSteven Truelove <steven.truelove@utoronto.ca> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 David Rientjes 提交于
sync_mm_rss() can only be used for current to avoid race conditions in iterating and clearing its per-task counters. Remove the task argument for it and its helper function, __sync_task_rss_stat(), to avoid thinking it can be used safely for anything other than current. Signed-off-by: NDavid Rientjes <rientjes@google.com> Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 David Gibson 提交于
hugetlbfs_{get,put}_quota() are badly named. They don't interact with the general quota handling code, and they don't much resemble its behaviour. Rather than being about maintaining limits on on-disk block usage by particular users, they are instead about maintaining limits on in-memory page usage (including anonymous MAP_PRIVATE copied-on-write pages) associated with a particular hugetlbfs filesystem instance. Worse, they work by having callbacks to the hugetlbfs filesystem code from the low-level page handling code, in particular from free_huge_page(). This is a layering violation of itself, but more importantly, if the kernel does a get_user_pages() on hugepages (which can happen from KVM amongst others), then the free_huge_page() can be delayed until after the associated inode has already been freed. If an unmount occurs at the wrong time, even the hugetlbfs superblock where the "quota" limits are stored may have been freed. Andrew Barry proposed a patch to fix this by having hugepages, instead of storing a pointer to their address_space and reaching the superblock from there, had the hugepages store pointers directly to the superblock, bumping the reference count as appropriate to avoid it being freed. Andrew Morton rejected that version, however, on the grounds that it made the existing layering violation worse. This is a reworked version of Andrew's patch, which removes the extra, and some of the existing, layering violation. It works by introducing the concept of a hugepage "subpool" at the lower hugepage mm layer - that is a finite logical pool of hugepages to allocate from. hugetlbfs now creates a subpool for each filesystem instance with a page limit set, and a pointer to the subpool gets added to each allocated hugepage, instead of the address_space pointer used now. The subpool has its own lifetime and is only freed once all pages in it _and_ all other references to it (i.e. superblocks) are gone. subpools are optional - a NULL subpool pointer is taken by the code to mean that no subpool limits are in effect. Previous discussion of this bug found in: "Fix refcounting in hugetlbfs quota handling.". See: https://lkml.org/lkml/2011/8/11/28 or http://marc.info/?l=linux-mm&m=126928970510627&w=1 v2: Fixed a bug spotted by Hillf Danton, and removed the extra parameter to alloc_huge_page() - since it already takes the vma, it is not necessary. Signed-off-by: NAndrew Barry <abarry@cray.com> Signed-off-by: NDavid Gibson <david@gibson.dropbear.id.au> Cc: Hugh Dickins <hughd@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Paul Mackerras <paulus@samba.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 David Gibson 提交于
Make a couple of small cleanups to linux/include/hugetlb.h. The set_file_hugepages() function, which was not used anywhere is removed, and the hugetlbfs_config and hugetlbfs_inode_info structures with its HUGETLBFS_I helper function are moved into inode.c, the only place they were used. These structures are really linked to the hugetlbfs filesystem specifically not to hugepage mm handling in general, so they belong in the filesystem code not in a generally available header. It would be nice to move the hugetlbfs_sb_info (superblock) structure in there as well, but it's currently needed in a number of places via the hstate_vma() and hstate_inode(). Signed-off-by: NDavid Gibson <david@gibson.dropbear.id.au> Cc: Hugh Dickins <hughd@google.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Andrew Barry <abarry@cray.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Hillf Danton <dhillf@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
Commit c0ff7453 ("cpuset,mm: fix no node to alloc memory when changing cpuset's mems") wins a super prize for the largest number of memory barriers entered into fast paths for one commit. [get|put]_mems_allowed is incredibly heavy with pairs of full memory barriers inserted into a number of hot paths. This was detected while investigating at large page allocator slowdown introduced some time after 2.6.32. The largest portion of this overhead was shown by oprofile to be at an mfence introduced by this commit into the page allocator hot path. For extra style points, the commit introduced the use of yield() in an implementation of what looks like a spinning mutex. This patch replaces the full memory barriers on both read and write sides with a sequence counter with just read barriers on the fast path side. This is much cheaper on some architectures, including x86. The main bulk of the patch is the retry logic if the nodemask changes in a manner that can cause a false failure. While updating the nodemask, a check is made to see if a false failure is a risk. If it is, the sequence number gets bumped and parallel allocators will briefly stall while the nodemask update takes place. In a page fault test microbenchmark, oprofile samples from __alloc_pages_nodemask went from 4.53% of all samples to 1.15%. The actual results were 3.3.0-rc3 3.3.0-rc3 rc3-vanilla nobarrier-v2r1 Clients 1 UserTime 0.07 ( 0.00%) 0.08 (-14.19%) Clients 2 UserTime 0.07 ( 0.00%) 0.07 ( 2.72%) Clients 4 UserTime 0.08 ( 0.00%) 0.07 ( 3.29%) Clients 1 SysTime 0.70 ( 0.00%) 0.65 ( 6.65%) Clients 2 SysTime 0.85 ( 0.00%) 0.82 ( 3.65%) Clients 4 SysTime 1.41 ( 0.00%) 1.41 ( 0.32%) Clients 1 WallTime 0.77 ( 0.00%) 0.74 ( 4.19%) Clients 2 WallTime 0.47 ( 0.00%) 0.45 ( 3.73%) Clients 4 WallTime 0.38 ( 0.00%) 0.37 ( 1.58%) Clients 1 Flt/sec/cpu 497620.28 ( 0.00%) 520294.53 ( 4.56%) Clients 2 Flt/sec/cpu 414639.05 ( 0.00%) 429882.01 ( 3.68%) Clients 4 Flt/sec/cpu 257959.16 ( 0.00%) 258761.48 ( 0.31%) Clients 1 Flt/sec 495161.39 ( 0.00%) 517292.87 ( 4.47%) Clients 2 Flt/sec 820325.95 ( 0.00%) 850289.77 ( 3.65%) Clients 4 Flt/sec 1020068.93 ( 0.00%) 1022674.06 ( 0.26%) MMTests Statistics: duration Sys Time Running Test (seconds) 135.68 132.17 User+Sys Time Running Test (seconds) 164.2 160.13 Total Elapsed Time (seconds) 123.46 120.87 The overall improvement is small but the System CPU time is much improved and roughly in correlation to what oprofile reported (these performance figures are without profiling so skew is expected). The actual number of page faults is noticeably improved. For benchmarks like kernel builds, the overall benefit is marginal but the system CPU time is slightly reduced. To test the actual bug the commit fixed I opened two terminals. The first ran within a cpuset and continually ran a small program that faulted 100M of anonymous data. In a second window, the nodemask of the cpuset was continually randomised in a loop. Without the commit, the program would fail every so often (usually within 10 seconds) and obviously with the commit everything worked fine. With this patch applied, it also worked fine so the fix should be functionally equivalent. Signed-off-by: NMel Gorman <mgorman@suse.de> Cc: Miao Xie <miaox@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 David Rientjes 提交于
The oom killer typically displays the allocation order at the time of oom as a part of its diangostic messages (for global, cpuset, and mempolicy ooms). The memory controller may also pass the charge order to the oom killer so it can emit the same information. This is useful in determining how large the memory allocation is that triggered the oom killer. Signed-off-by: NDavid Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Balbir Singh <bsingharora@gmail.com> Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Konstantin Khlebnikov 提交于
This cpu hotplug hook was accidentally removed in commit 00a62ce9 ("mm: fix Committed_AS underflow on large NR_CPUS environment") The visible effect of this accident: some pages are borrowed in per-cpu page-vectors. Truncate can deal with it, but these pages cannot be reused while this cpu is offline. So this is like a temporary memory leak. Signed-off-by: NKonstantin Khlebnikov <khlebnikov@openvz.org> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Eric B Munson <ebmunson@us.ibm.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Dean Nelson 提交于
Andrea Arcangeli pointed out to me that a check in __memory_failure() which was intended to prevent THP tail pages from being checked for the absence of the PG_lru flag (something that is always the case), was also preventing THP head pages from being checked. A THP head page could actually benefit from the call to shake_page() by ending up being put back to a LRU, provided it had been waiting in a pagevec array. Andrea suggested that the "!PageTransCompound(p)" in the if-statement should be replaced by a "!PageTransTail(p)", thus allowing THP head pages to be checked and possibly shaken. Signed-off-by: NDean Nelson <dnelson@redhat.com> Cc: Jin Dongming <jin.dongming@np.css.fujitsu.com> Reviewed-by: NAndrea Arcangeli <aarcange@redhat.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 David Rientjes 提交于
The oom killer chooses not to kill a thread if: - an eligible thread has already been oom killed and has yet to exit, and - an eligible thread is exiting but has yet to free all its memory and is not the thread attempting to currently allocate memory. SysRq+F manually invokes the global oom killer to kill a memory-hogging task. This is normally done as a last resort to free memory when no progress is being made or to test the oom killer itself. For both uses, we always want to kill a thread and never defer. This patch causes SysRq+F to always kill an eligible thread and can be used to force a kill even if another oom killed thread has failed to exit. Signed-off-by: NDavid Rientjes <rientjes@google.com> Acked-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: NPekka Enberg <penberg@kernel.org> Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Siddhesh Poyarekar 提交于
Stack for a new thread is mapped by userspace code and passed via sys_clone. This memory is currently seen as anonymous in /proc/<pid>/maps, which makes it difficult to ascertain which mappings are being used for thread stacks. This patch uses the individual task stack pointers to determine which vmas are actually thread stacks. For a multithreaded program like the following: #include <pthread.h> void *thread_main(void *foo) { while(1); } int main() { pthread_t t; pthread_create(&t, NULL, thread_main, NULL); pthread_join(t, NULL); } proc/PID/maps looks like the following: 00400000-00401000 r-xp 00000000 fd:0a 3671804 /home/siddhesh/a.out 00600000-00601000 rw-p 00000000 fd:0a 3671804 /home/siddhesh/a.out 019ef000-01a10000 rw-p 00000000 00:00 0 [heap] 7f8a44491000-7f8a44492000 ---p 00000000 00:00 0 7f8a44492000-7f8a44c92000 rw-p 00000000 00:00 0 7f8a44c92000-7f8a44e3d000 r-xp 00000000 fd:00 2097482 /lib64/libc-2.14.90.so 7f8a44e3d000-7f8a4503d000 ---p 001ab000 fd:00 2097482 /lib64/libc-2.14.90.so 7f8a4503d000-7f8a45041000 r--p 001ab000 fd:00 2097482 /lib64/libc-2.14.90.so 7f8a45041000-7f8a45043000 rw-p 001af000 fd:00 2097482 /lib64/libc-2.14.90.so 7f8a45043000-7f8a45048000 rw-p 00000000 00:00 0 7f8a45048000-7f8a4505f000 r-xp 00000000 fd:00 2099938 /lib64/libpthread-2.14.90.so 7f8a4505f000-7f8a4525e000 ---p 00017000 fd:00 2099938 /lib64/libpthread-2.14.90.so 7f8a4525e000-7f8a4525f000 r--p 00016000 fd:00 2099938 /lib64/libpthread-2.14.90.so 7f8a4525f000-7f8a45260000 rw-p 00017000 fd:00 2099938 /lib64/libpthread-2.14.90.so 7f8a45260000-7f8a45264000 rw-p 00000000 00:00 0 7f8a45264000-7f8a45286000 r-xp 00000000 fd:00 2097348 /lib64/ld-2.14.90.so 7f8a45457000-7f8a4545a000 rw-p 00000000 00:00 0 7f8a45484000-7f8a45485000 rw-p 00000000 00:00 0 7f8a45485000-7f8a45486000 r--p 00021000 fd:00 2097348 /lib64/ld-2.14.90.so 7f8a45486000-7f8a45487000 rw-p 00022000 fd:00 2097348 /lib64/ld-2.14.90.so 7f8a45487000-7f8a45488000 rw-p 00000000 00:00 0 7fff6273b000-7fff6275c000 rw-p 00000000 00:00 0 [stack] 7fff627ff000-7fff62800000 r-xp 00000000 00:00 0 [vdso] ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0 [vsyscall] Here, one could guess that 7f8a44492000-7f8a44c92000 is a stack since the earlier vma that has no permissions (7f8a44e3d000-7f8a4503d000) but that is not always a reliable way to find out which vma is a thread stack. Also, /proc/PID/maps and /proc/PID/task/TID/maps has the same content. With this patch in place, /proc/PID/task/TID/maps are treated as 'maps as the task would see it' and hence, only the vma that that task uses as stack is marked as [stack]. All other 'stack' vmas are marked as anonymous memory. /proc/PID/maps acts as a thread group level view, where all thread stack vmas are marked as [stack:TID] where TID is the process ID of the task that uses that vma as stack, while the process stack is marked as [stack]. So /proc/PID/maps will look like this: 00400000-00401000 r-xp 00000000 fd:0a 3671804 /home/siddhesh/a.out 00600000-00601000 rw-p 00000000 fd:0a 3671804 /home/siddhesh/a.out 019ef000-01a10000 rw-p 00000000 00:00 0 [heap] 7f8a44491000-7f8a44492000 ---p 00000000 00:00 0 7f8a44492000-7f8a44c92000 rw-p 00000000 00:00 0 [stack:1442] 7f8a44c92000-7f8a44e3d000 r-xp 00000000 fd:00 2097482 /lib64/libc-2.14.90.so 7f8a44e3d000-7f8a4503d000 ---p 001ab000 fd:00 2097482 /lib64/libc-2.14.90.so 7f8a4503d000-7f8a45041000 r--p 001ab000 fd:00 2097482 /lib64/libc-2.14.90.so 7f8a45041000-7f8a45043000 rw-p 001af000 fd:00 2097482 /lib64/libc-2.14.90.so 7f8a45043000-7f8a45048000 rw-p 00000000 00:00 0 7f8a45048000-7f8a4505f000 r-xp 00000000 fd:00 2099938 /lib64/libpthread-2.14.90.so 7f8a4505f000-7f8a4525e000 ---p 00017000 fd:00 2099938 /lib64/libpthread-2.14.90.so 7f8a4525e000-7f8a4525f000 r--p 00016000 fd:00 2099938 /lib64/libpthread-2.14.90.so 7f8a4525f000-7f8a45260000 rw-p 00017000 fd:00 2099938 /lib64/libpthread-2.14.90.so 7f8a45260000-7f8a45264000 rw-p 00000000 00:00 0 7f8a45264000-7f8a45286000 r-xp 00000000 fd:00 2097348 /lib64/ld-2.14.90.so 7f8a45457000-7f8a4545a000 rw-p 00000000 00:00 0 7f8a45484000-7f8a45485000 rw-p 00000000 00:00 0 7f8a45485000-7f8a45486000 r--p 00021000 fd:00 2097348 /lib64/ld-2.14.90.so 7f8a45486000-7f8a45487000 rw-p 00022000 fd:00 2097348 /lib64/ld-2.14.90.so 7f8a45487000-7f8a45488000 rw-p 00000000 00:00 0 7fff6273b000-7fff6275c000 rw-p 00000000 00:00 0 [stack] 7fff627ff000-7fff62800000 r-xp 00000000 00:00 0 [vdso] ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0 [vsyscall] Thus marking all vmas that are used as stacks by the threads in the thread group along with the process stack. The task level maps will however like this: 00400000-00401000 r-xp 00000000 fd:0a 3671804 /home/siddhesh/a.out 00600000-00601000 rw-p 00000000 fd:0a 3671804 /home/siddhesh/a.out 019ef000-01a10000 rw-p 00000000 00:00 0 [heap] 7f8a44491000-7f8a44492000 ---p 00000000 00:00 0 7f8a44492000-7f8a44c92000 rw-p 00000000 00:00 0 [stack] 7f8a44c92000-7f8a44e3d000 r-xp 00000000 fd:00 2097482 /lib64/libc-2.14.90.so 7f8a44e3d000-7f8a4503d000 ---p 001ab000 fd:00 2097482 /lib64/libc-2.14.90.so 7f8a4503d000-7f8a45041000 r--p 001ab000 fd:00 2097482 /lib64/libc-2.14.90.so 7f8a45041000-7f8a45043000 rw-p 001af000 fd:00 2097482 /lib64/libc-2.14.90.so 7f8a45043000-7f8a45048000 rw-p 00000000 00:00 0 7f8a45048000-7f8a4505f000 r-xp 00000000 fd:00 2099938 /lib64/libpthread-2.14.90.so 7f8a4505f000-7f8a4525e000 ---p 00017000 fd:00 2099938 /lib64/libpthread-2.14.90.so 7f8a4525e000-7f8a4525f000 r--p 00016000 fd:00 2099938 /lib64/libpthread-2.14.90.so 7f8a4525f000-7f8a45260000 rw-p 00017000 fd:00 2099938 /lib64/libpthread-2.14.90.so 7f8a45260000-7f8a45264000 rw-p 00000000 00:00 0 7f8a45264000-7f8a45286000 r-xp 00000000 fd:00 2097348 /lib64/ld-2.14.90.so 7f8a45457000-7f8a4545a000 rw-p 00000000 00:00 0 7f8a45484000-7f8a45485000 rw-p 00000000 00:00 0 7f8a45485000-7f8a45486000 r--p 00021000 fd:00 2097348 /lib64/ld-2.14.90.so 7f8a45486000-7f8a45487000 rw-p 00022000 fd:00 2097348 /lib64/ld-2.14.90.so 7f8a45487000-7f8a45488000 rw-p 00000000 00:00 0 7fff6273b000-7fff6275c000 rw-p 00000000 00:00 0 7fff627ff000-7fff62800000 r-xp 00000000 00:00 0 [vdso] ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0 [vsyscall] where only the vma that is being used as a stack by *that* task is marked as [stack]. Analogous changes have been made to /proc/PID/smaps, /proc/PID/numa_maps, /proc/PID/task/TID/smaps and /proc/PID/task/TID/numa_maps. Relevant snippets from smaps and numa_maps: [siddhesh@localhost ~ ]$ pgrep a.out 1441 [siddhesh@localhost ~ ]$ cat /proc/1441/smaps | grep "\[stack" 7f8a44492000-7f8a44c92000 rw-p 00000000 00:00 0 [stack:1442] 7fff6273b000-7fff6275c000 rw-p 00000000 00:00 0 [stack] [siddhesh@localhost ~ ]$ cat /proc/1441/task/1442/smaps | grep "\[stack" 7f8a44492000-7f8a44c92000 rw-p 00000000 00:00 0 [stack] [siddhesh@localhost ~ ]$ cat /proc/1441/task/1441/smaps | grep "\[stack" 7fff6273b000-7fff6275c000 rw-p 00000000 00:00 0 [stack] [siddhesh@localhost ~ ]$ cat /proc/1441/numa_maps | grep "stack" 7f8a44492000 default stack:1442 anon=2 dirty=2 N0=2 7fff6273a000 default stack anon=3 dirty=3 N0=3 [siddhesh@localhost ~ ]$ cat /proc/1441/task/1442/numa_maps | grep "stack" 7f8a44492000 default stack anon=2 dirty=2 N0=2 [siddhesh@localhost ~ ]$ cat /proc/1441/task/1441/numa_maps | grep "stack" 7fff6273a000 default stack anon=3 dirty=3 N0=3 [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix build] Signed-off-by: NSiddhesh Poyarekar <siddhesh.poyarekar@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Jamie Lokier <jamie@shareable.org> Cc: Mike Frysinger <vapier@gentoo.org> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Matt Mackall <mpm@selenic.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Xiao Guangrong 提交于
This declaration is not used anymore, remove it. Signed-off-by: NXiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Acked-by: NDavid Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Konstantin Khlebnikov 提交于
Since commit 2a11c8ea ("kconfig: Introduce IS_ENABLED(), IS_BUILTIN() and IS_MODULE()") there is a generic grep-friendly method for checking config options in C expressions. Signed-off-by: NKonstantin Khlebnikov <khlebnikov@openvz.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Naoya Horiguchi 提交于
This flag shows that a given page is a subpage of a transparent hugepage. It helps us debug and test the kernel by showing physical address of thp. Signed-off-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reviewed-by: NWu Fengguang <fengguang.wu@intel.com> Reviewed-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Naoya Horiguchi 提交于
Currently when we check if we can handle thp as it is or we need to split it into regular sized pages, we hold page table lock prior to check whether a given pmd is mapping thp or not. Because of this, when it's not "huge pmd" we suffer from unnecessary lock/unlock overhead. To remove it, this patch introduces a optimized check function and replace several similar logics with it. [akpm@linux-foundation.org: checkpatch fixes] Signed-off-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: David Rientjes <rientjes@google.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Jiri Slaby <jslaby@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Rik van Riel 提交于
Currently a failed order-9 (transparent hugepage) compaction can lead to memory compaction being temporarily disabled for a memory zone. Even if we only need compaction for an order 2 allocation, eg. for jumbo frames networking. The fix is relatively straightforward: keep track of the highest order at which compaction is succeeding, and only defer compaction for orders at which compaction is failing. Signed-off-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Acked-by: NMel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Hillf Danton <dhillf@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Rik van Riel 提交于
With CONFIG_COMPACTION enabled, kswapd does not try to free contiguous free pages, even when it is woken for a higher order request. This could be bad for eg. jumbo frame network allocations, which are done from interrupt context and cannot compact memory themselves. Higher than before allocation failure rates in the network receive path have been observed in kernels with compaction enabled. Teach kswapd to defragment the memory zones in a node, but only if required and compaction is not deferred in a zone. [akpm@linux-foundation.org: reduce scope of zones_need_compaction] Signed-off-by: NRik van Riel <riel@redhat.com> Acked-by: NMel Gorman <mel@csn.ul.ie> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Hillf Danton <dhillf@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Rik van Riel 提交于
Ever since abandoning the virtual scan of processes, for scalability reasons, swap space has been a little more fragmented than before. This can lead to the situation where a large memory user is killed, swap space ends up full of "holes" and swapin readahead is totally ineffective. On my home system, after killing a leaky firefox it took over an hour to page just under 2GB of memory back in, slowing the virtual machines down to a crawl. This patch makes swapin readahead simply skip over holes, instead of stopping at them. This allows the system to swap things back in at rates of several MB/second, instead of a few hundred kB/second. The checks done in valid_swaphandles are already done in read_swap_cache_async as well, allowing us to remove a fair amount of code. [akpm@linux-foundation.org: fix it for page_cluster >= 32] Signed-off-by: NRik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMel Gorman <mgorman@suse.de> Cc: Adrian Drzewiecki <z@drze.net> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Konstantin Khlebnikov 提交于
Make get_mm_counter() always static inline, it is simple enough for that. And remove unused set_mm_counter() bloat-o-meter: add/remove: 0/1 grow/shrink: 4/12 up/down: 99/-341 (-242) function old new delta try_to_unmap_one 886 952 +66 sys_remap_file_pages 1214 1230 +16 dup_mm 1684 1700 +16 do_exit 2277 2278 +1 zap_page_range 208 205 -3 unmap_region 304 296 -8 static.oom_kill_process 554 546 -8 try_to_unmap_file 1716 1700 -16 getrusage 925 909 -16 flush_old_exec 1704 1688 -16 static.dump_header 416 390 -26 acct_update_integrals 218 187 -31 do_task_stat 2986 2954 -32 get_mm_counter 34 - -34 xacct_add_tsk 371 334 -37 task_statm 172 118 -54 task_mem 383 323 -60 try_to_unmap_one() grows because update_hiwater_rss() now completely inline. Signed-off-by: NKonstantin Khlebnikov <khlebnikov@openvz.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: NKirill A. Shutemov <kirill@shutemov.name> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andrea Arcangeli 提交于
In some cases it may happen that pmd_none_or_clear_bad() is called with the mmap_sem hold in read mode. In those cases the huge page faults can allocate hugepmds under pmd_none_or_clear_bad() and that can trigger a false positive from pmd_bad() that will not like to see a pmd materializing as trans huge. It's not khugepaged causing the problem, khugepaged holds the mmap_sem in write mode (and all those sites must hold the mmap_sem in read mode to prevent pagetables to go away from under them, during code review it seems vm86 mode on 32bit kernels requires that too unless it's restricted to 1 thread per process or UP builds). The race is only with the huge pagefaults that can convert a pmd_none() into a pmd_trans_huge(). Effectively all these pmd_none_or_clear_bad() sites running with mmap_sem in read mode are somewhat speculative with the page faults, and the result is always undefined when they run simultaneously. This is probably why it wasn't common to run into this. For example if the madvise(MADV_DONTNEED) runs zap_page_range() shortly before the page fault, the hugepage will not be zapped, if the page fault runs first it will be zapped. Altering pmd_bad() not to error out if it finds hugepmds won't be enough to fix this, because zap_pmd_range would then proceed to call zap_pte_range (which would be incorrect if the pmd become a pmd_trans_huge()). The simplest way to fix this is to read the pmd in the local stack (regardless of what we read, no need of actual CPU barriers, only compiler barrier needed), and be sure it is not changing under the code that computes its value. Even if the real pmd is changing under the value we hold on the stack, we don't care. If we actually end up in zap_pte_range it means the pmd was not none already and it was not huge, and it can't become huge from under us (khugepaged locking explained above). All we need is to enforce that there is no way anymore that in a code path like below, pmd_trans_huge can be false, but pmd_none_or_clear_bad can run into a hugepmd. The overhead of a barrier() is just a compiler tweak and should not be measurable (I only added it for THP builds). I don't exclude different compiler versions may have prevented the race too by caching the value of *pmd on the stack (that hasn't been verified, but it wouldn't be impossible considering pmd_none_or_clear_bad, pmd_bad, pmd_trans_huge, pmd_none are all inlines and there's no external function called in between pmd_trans_huge and pmd_none_or_clear_bad). if (pmd_trans_huge(*pmd)) { if (next-addr != HPAGE_PMD_SIZE) { VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem)); split_huge_page_pmd(vma->vm_mm, pmd); } else if (zap_huge_pmd(tlb, vma, pmd, addr)) continue; /* fall through */ } if (pmd_none_or_clear_bad(pmd)) Because this race condition could be exercised without special privileges this was reported in CVE-2012-1179. The race was identified and fully explained by Ulrich who debugged it. I'm quoting his accurate explanation below, for reference. ====== start quote ======= mapcount 0 page_mapcount 1 kernel BUG at mm/huge_memory.c:1384! At some point prior to the panic, a "bad pmd ..." message similar to the following is logged on the console: mm/memory.c:145: bad pmd ffff8800376e1f98(80000000314000e7). The "bad pmd ..." message is logged by pmd_clear_bad() before it clears the page's PMD table entry. 143 void pmd_clear_bad(pmd_t *pmd) 144 { -> 145 pmd_ERROR(*pmd); 146 pmd_clear(pmd); 147 } After the PMD table entry has been cleared, there is an inconsistency between the actual number of PMD table entries that are mapping the page and the page's map count (_mapcount field in struct page). When the page is subsequently reclaimed, __split_huge_page() detects this inconsistency. 1381 if (mapcount != page_mapcount(page)) 1382 printk(KERN_ERR "mapcount %d page_mapcount %d\n", 1383 mapcount, page_mapcount(page)); -> 1384 BUG_ON(mapcount != page_mapcount(page)); The root cause of the problem is a race of two threads in a multithreaded process. Thread B incurs a page fault on a virtual address that has never been accessed (PMD entry is zero) while Thread A is executing an madvise() system call on a virtual address within the same 2 MB (huge page) range. virtual address space .---------------------. | | | | .-|---------------------| | | | | | |<-- B(fault) | | | 2 MB | |/////////////////////|-. huge < |/////////////////////| > A(range) page | |/////////////////////|-' | | | | | | '-|---------------------| | | | | '---------------------' - Thread A is executing an madvise(..., MADV_DONTNEED) system call on the virtual address range "A(range)" shown in the picture. sys_madvise // Acquire the semaphore in shared mode. down_read(¤t->mm->mmap_sem) ... madvise_vma switch (behavior) case MADV_DONTNEED: madvise_dontneed zap_page_range unmap_vmas unmap_page_range zap_pud_range zap_pmd_range // // Assume that this huge page has never been accessed. // I.e. content of the PMD entry is zero (not mapped). // if (pmd_trans_huge(*pmd)) { // We don't get here due to the above assumption. } // // Assume that Thread B incurred a page fault and .---------> // sneaks in here as shown below. | // | if (pmd_none_or_clear_bad(pmd)) | { | if (unlikely(pmd_bad(*pmd))) | pmd_clear_bad | { | pmd_ERROR | // Log "bad pmd ..." message here. | pmd_clear | // Clear the page's PMD entry. | // Thread B incremented the map count | // in page_add_new_anon_rmap(), but | // now the page is no longer mapped | // by a PMD entry (-> inconsistency). | } | } | v - Thread B is handling a page fault on virtual address "B(fault)" shown in the picture. ... do_page_fault __do_page_fault // Acquire the semaphore in shared mode. down_read_trylock(&mm->mmap_sem) ... handle_mm_fault if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) // We get here due to the above assumption (PMD entry is zero). do_huge_pmd_anonymous_page alloc_hugepage_vma // Allocate a new transparent huge page here. ... __do_huge_pmd_anonymous_page ... spin_lock(&mm->page_table_lock) ... page_add_new_anon_rmap // Here we increment the page's map count (starts at -1). atomic_set(&page->_mapcount, 0) set_pmd_at // Here we set the page's PMD entry which will be cleared // when Thread A calls pmd_clear_bad(). ... spin_unlock(&mm->page_table_lock) The mmap_sem does not prevent the race because both threads are acquiring it in shared mode (down_read). Thread B holds the page_table_lock while the page's map count and PMD table entry are updated. However, Thread A does not synchronize on that lock. ====== end quote ======= [akpm@linux-foundation.org: checkpatch fixes] Reported-by: NUlrich Obergfell <uobergfe@redhat.com> Signed-off-by: NAndrea Arcangeli <aarcange@redhat.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Jones <davej@redhat.com> Acked-by: NLarry Woodman <lwoodman@redhat.com> Acked-by: NRik van Riel <riel@redhat.com> Cc: <stable@vger.kernel.org> [2.6.38+] Cc: Mark Salter <msalter@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 20 3月, 2012 11 次提交
-
-
由 Cong Wang 提交于
[swarren@nvidia.com: highmem: Fix ARM build break due to __kmap_atomic rename] Signed-off-by: NStephen Warren <swarren@nvidia.com> Signed-off-by: NCong Wang <amwang@redhat.com>
-
由 Cong Wang 提交于
Acked-by: NBenjamin LaHaise <bcrl@kvack.org> Signed-off-by: NCong Wang <amwang@redhat.com>
-
由 Cong Wang 提交于
Signed-off-by: NCong Wang <amwang@redhat.com>
-
由 Cong Wang 提交于
Signed-off-by: NCong Wang <amwang@redhat.com>
-
由 Cong Wang 提交于
For backward compatibility, we still keep the deprecated form, and will warn the users if they still use the deprecated one, like this: drivers/block/drbd/drbd_bitmap.c: In function ‘bm_page_io_async’: drivers/block/drbd/drbd_bitmap.c:973:3: warning: ‘kmap_atomic_deprecated’ is deprecated (declared at /home/wangcong/linux-2.6/include/linux/highmem.h:124) drivers/block/drbd/drbd_bitmap.c:977:3: warning: ‘kunmap_atomic_deprecated’ is deprecated (declared at /home/wangcong/linux-2.6/include/linux/highmem.h:144) Thanks to Nick Bowler for the cpp trick! Cc: Cesar Eduardo Barros <cesarb@cesarb.net> Cc: Nick Bowler <nbowler@elliptictech.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NCong Wang <amwang@redhat.com>
-
由 Al Viro 提交于
Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk> Signed-off-by: NJiri Kosina <jkosina@suse.cz>
-
由 Mugunthan V N 提交于
This patch adds support for TI's CPSW driver. The three port switch gigabit ethernet subsystem provides ethernet packet communication and can be configured as an ethernet switch. Supports 10/100/1000 Mbps. Signed-off-by: NCyril Chemparathy <cyril@ti.com> Signed-off-by: NSriramakrishnan A G <srk@ti.com> Signed-off-by: NMugunthan V N <mugunthanvnm@ti.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Yi Zou 提交于
As suggested by Ben, this adds the clarification on the usage of CHECKSUM_UNNECESSARY on the outgoing patch. Also add the usage description of NETIF_F_FCOE_CRC and CHECKSUM_UNNECESSARY for the kernel FCoE protocol driver. This is a follow-up to the following: http://patchwork.ozlabs.org/patch/147315/Signed-off-by: NYi Zou <yi.zou@intel.com> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Cc: www.Open-FCoE.org <devel@open-fcoe.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Yi Zou 提交于
This is related to fixing the bug of dropping FCoE frames when disabling tx ip checksum by 'ethtool -K ethx tx off'. The FCoE protocol stack driver would use CHECKSUM_UNNECESSARY on tx path instead of CHECKSUM_PARTIAL (as indicated in the 2/2 of this series). To do so, netif_needs_gso() has to be changed here to not do gso for both CHECKSUM_PARTIAL and CHECKSUM_UNNECESSARY. Ref. to original discussion thread: http://patchwork.ozlabs.org/patch/146567/Signed-off-by: NYi Zou <yi.zou@intel.com> Tested-by: NRoss Brattain <ross.b.brattain@intel.com> Signed-off-by: NJeff Kirsher <jeffrey.t.kirsher@intel.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Joe Perches 提交于
Just use ETH_ALEN. Signed-off-by: NJoe Perches <joe@perches.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Eric Dumazet 提交于
With increasing receive window sizes, but speed of light not improved that much, out of order queue can contain a huge number of skbs, waiting to be moved to receive_queue when missing packets can fill the holes. Some devices happen to use fat skbs (truesize of 4096 + sizeof(struct sk_buff)) to store regular (MTU <= 1500) frames. This makes highly probable sk_rmem_alloc hits sk_rcvbuf limit, which can be 4Mbytes in many cases. When limit is hit, tcp stack calls tcp_collapse_ofo_queue(), a true latency killer and cpu cache blower. Doing the coalescing attempt each time we add a frame in ofo queue permits to keep memory use tight and in many cases avoid the tcp_collapse() thing later. Tested on various wireless setups (b43, ath9k, ...) known to use big skb truesize, this patch removed the "packets collapsed in receive queue due to low socket buffer" I had before. This also reduced average memory used by tcp sockets. With help from Neal Cardwell. Signed-off-by: NEric Dumazet <eric.dumazet@gmail.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: H.K. Jerry Chu <hkchu@google.com> Cc: Tom Herbert <therbert@google.com> Cc: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 18 3月, 2012 1 次提交
-
-
由 MyungJoo Ham 提交于
The semantics of "target frequency" given to devfreq driver from devfreq framework has always been interpretted as "at least" or GLB (greatest lower bound). However, the framework might want the device driver to limit its max frequency (LUB: least upper bound), especially if it is given by thermal framework (it's too hot). Thus, the target fuction should have another parameter to express whether the framework wants GLB or LUB. And, the additional parameter, "u32 flags", does it. With the update, devfreq_recommended_opp() is also updated. Signed-off-by: NMyungJoo Ham <myungjoo.ham@samsung.com> Signed-off-by: NKyungmin Park <kyungmin.park@samsung.com> Reviewed-by: NMike Turquette <mturquette@ti.com> Signed-off-by: NRafael J. Wysocki <rjw@sisk.pl>
-