1. 20 10月, 2008 1 次提交
    • L
      Unevictable LRU Infrastructure · 894bc310
      Lee Schermerhorn 提交于
      When the system contains lots of mlocked or otherwise unevictable pages,
      the pageout code (kswapd) can spend lots of time scanning over these
      pages.  Worse still, the presence of lots of unevictable pages can confuse
      kswapd into thinking that more aggressive pageout modes are required,
      resulting in all kinds of bad behaviour.
      
      Infrastructure to manage pages excluded from reclaim--i.e., hidden from
      vmscan.  Based on a patch by Larry Woodman of Red Hat.  Reworked to
      maintain "unevictable" pages on a separate per-zone LRU list, to "hide"
      them from vmscan.
      
      Kosaki Motohiro added the support for the memory controller unevictable
      lru list.
      
      Pages on the unevictable list have both PG_unevictable and PG_lru set.
      Thus, PG_unevictable is analogous to and mutually exclusive with
      PG_active--it specifies which LRU list the page is on.
      
      The unevictable infrastructure is enabled by a new mm Kconfig option
      [CONFIG_]UNEVICTABLE_LRU.
      
      A new function 'page_evictable(page, vma)' in vmscan.c tests whether or
      not a page may be evictable.  Subsequent patches will add the various
      !evictable tests.  We'll want to keep these tests light-weight for use in
      shrink_active_list() and, possibly, the fault path.
      
      To avoid races between tasks putting pages [back] onto an LRU list and
      tasks that might be moving the page from non-evictable to evictable state,
      the new function 'putback_lru_page()' -- inverse to 'isolate_lru_page()'
      -- tests the "evictability" of a page after placing it on the LRU, before
      dropping the reference.  If the page has become unevictable,
      putback_lru_page() will redo the 'putback', thus moving the page to the
      unevictable list.  This way, we avoid "stranding" evictable pages on the
      unevictable list.
      
      [akpm@linux-foundation.org: fix fallout from out-of-order merge]
      [riel@redhat.com: fix UNEVICTABLE_LRU and !PROC_PAGE_MONITOR build]
      [nishimura@mxp.nes.nec.co.jp: remove redundant mapping check]
      [kosaki.motohiro@jp.fujitsu.com: unevictable-lru-infrastructure: putback_lru_page()/unevictable page handling rework]
      [kosaki.motohiro@jp.fujitsu.com: kill unnecessary lock_page() in vmscan.c]
      [kosaki.motohiro@jp.fujitsu.com: revert migration change of unevictable lru infrastructure]
      [kosaki.motohiro@jp.fujitsu.com: revert to unevictable-lru-infrastructure-kconfig-fix.patch]
      [kosaki.motohiro@jp.fujitsu.com: restore patch failure of vmstat-unevictable-and-mlocked-pages-vm-events.patch]
      Signed-off-by: NLee Schermerhorn <lee.schermerhorn@hp.com>
      Signed-off-by: NRik van Riel <riel@redhat.com>
      Signed-off-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
      Debugged-by: NBenjamin Kidwell <benjkidwell@yahoo.com>
      Signed-off-by: NDaisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
      Signed-off-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      894bc310
  2. 17 10月, 2008 1 次提交
  3. 14 9月, 2008 1 次提交
  4. 12 8月, 2008 1 次提交
  5. 29 7月, 2008 1 次提交
    • A
      mmu-notifiers: core · cddb8a5c
      Andrea Arcangeli 提交于
      With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
       There are secondary MMUs (with secondary sptes and secondary tlbs) too.
      sptes in the kvm case are shadow pagetables, but when I say spte in
      mmu-notifier context, I mean "secondary pte".  In GRU case there's no
      actual secondary pte and there's only a secondary tlb because the GRU
      secondary MMU has no knowledge about sptes and every secondary tlb miss
      event in the MMU always generates a page fault that has to be resolved by
      the CPU (this is not the case of KVM where the a secondary tlb miss will
      walk sptes in hardware and it will refill the secondary tlb transparently
      to software if the corresponding spte is present).  The same way
      zap_page_range has to invalidate the pte before freeing the page, the spte
      (and secondary tlb) must also be invalidated before any page is freed and
      reused.
      
      Currently we take a page_count pin on every page mapped by sptes, but that
      means the pages can't be swapped whenever they're mapped by any spte
      because they're part of the guest working set.  Furthermore a spte unmap
      event can immediately lead to a page to be freed when the pin is released
      (so requiring the same complex and relatively slow tlb_gather smp safe
      logic we have in zap_page_range and that can be avoided completely if the
      spte unmap event doesn't require an unpin of the page previously mapped in
      the secondary MMU).
      
      The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
      when the VM is swapping or freeing or doing anything on the primary MMU so
      that the secondary MMU code can drop sptes before the pages are freed,
      avoiding all page pinning and allowing 100% reliable swapping of guest
      physical address space.  Furthermore it avoids the code that teardown the
      mappings of the secondary MMU, to implement a logic like tlb_gather in
      zap_page_range that would require many IPI to flush other cpu tlbs, for
      each fixed number of spte unmapped.
      
      To make an example: if what happens on the primary MMU is a protection
      downgrade (from writeable to wrprotect) the secondary MMU mappings will be
      invalidated, and the next secondary-mmu-page-fault will call
      get_user_pages and trigger a do_wp_page through get_user_pages if it
      called get_user_pages with write=1, and it'll re-establishing an updated
      spte or secondary-tlb-mapping on the copied page.  Or it will setup a
      readonly spte or readonly tlb mapping if it's a guest-read, if it calls
      get_user_pages with write=0.  This is just an example.
      
      This allows to map any page pointed by any pte (and in turn visible in the
      primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
      full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
      with kvm), or a remote DMA in software like XPMEM (hence needing of
      schedule in XPMEM code to send the invalidate to the remote node, while no
      need to schedule in kvm/gru as it's an immediate event like invalidating
      primary-mmu pte).
      
      At least for KVM without this patch it's impossible to swap guests
      reliably.  And having this feature and removing the page pin allows
      several other optimizations that simplify life considerably.
      
      Dependencies:
      
      1) mm_take_all_locks() to register the mmu notifier when the whole VM
         isn't doing anything with "mm".  This allows mmu notifier users to keep
         track if the VM is in the middle of the invalidate_range_begin/end
         critical section with an atomic counter incraese in range_begin and
         decreased in range_end.  No secondary MMU page fault is allowed to map
         any spte or secondary tlb reference, while the VM is in the middle of
         range_begin/end as any page returned by get_user_pages in that critical
         section could later immediately be freed without any further
         ->invalidate_page notification (invalidate_range_begin/end works on
         ranges and ->invalidate_page isn't called immediately before freeing
         the page).  To stop all page freeing and pagetable overwrites the
         mmap_sem must be taken in write mode and all other anon_vma/i_mmap
         locks must be taken too.
      
      2) It'd be a waste to add branches in the VM if nobody could possibly
         run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
         CONFIG_KVM=m/y.  In the current kernel kvm won't yet take advantage of
         mmu notifiers, but this already allows to compile a KVM external module
         against a kernel with mmu notifiers enabled and from the next pull from
         kvm.git we'll start using them.  And GRU/XPMEM will also be able to
         continue the development by enabling KVM=m in their config, until they
         submit all GRU/XPMEM GPLv2 code to the mainline kernel.  Then they can
         also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
         This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
         are all =n.
      
      The mmu_notifier_register call can fail because mm_take_all_locks may be
      interrupted by a signal and return -EINTR.  Because mmu_notifier_reigster
      is used when a driver startup, a failure can be gracefully handled.  Here
      an example of the change applied to kvm to register the mmu notifiers.
      Usually when a driver startups other allocations are required anyway and
      -ENOMEM failure paths exists already.
      
       struct  kvm *kvm_arch_create_vm(void)
       {
              struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
      +       int err;
      
              if (!kvm)
                      return ERR_PTR(-ENOMEM);
      
              INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
      
      +       kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
      +       err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
      +       if (err) {
      +               kfree(kvm);
      +               return ERR_PTR(err);
      +       }
      +
              return kvm;
       }
      
      mmu_notifier_unregister returns void and it's reliable.
      
      The patch also adds a few needed but missing includes that would prevent
      kernel to compile after these changes on non-x86 archs (x86 didn't need
      them by luck).
      
      [akpm@linux-foundation.org: coding-style fixes]
      [akpm@linux-foundation.org: fix mm/filemap_xip.c build]
      [akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
      Signed-off-by: NAndrea Arcangeli <andrea@qumranet.com>
      Signed-off-by: NNick Piggin <npiggin@suse.de>
      Signed-off-by: NChristoph Lameter <cl@linux-foundation.org>
      Cc: Jack Steiner <steiner@sgi.com>
      Cc: Robin Holt <holt@sgi.com>
      Cc: Nick Piggin <npiggin@suse.de>
      Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
      Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
      Cc: Roland Dreier <rdreier@cisco.com>
      Cc: Steve Wise <swise@opengridcomputing.com>
      Cc: Avi Kivity <avi@qumranet.com>
      Cc: Hugh Dickins <hugh@veritas.com>
      Cc: Rusty Russell <rusty@rustcorp.com.au>
      Cc: Anthony Liguori <aliguori@us.ibm.com>
      Cc: Chris Wright <chrisw@redhat.com>
      Cc: Marcelo Tosatti <marcelo@kvack.org>
      Cc: Eric Dumazet <dada1@cosmosbay.com>
      Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
      Cc: Izik Eidus <izike@qumranet.com>
      Cc: Anthony Liguori <aliguori@us.ibm.com>
      Cc: Rik van Riel <riel@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      cddb8a5c
  6. 27 7月, 2008 1 次提交
    • N
      x86: lockless get_user_pages_fast() · 8174c430
      Nick Piggin 提交于
      Implement get_user_pages_fast without locking in the fastpath on x86.
      
      Do an optimistic lockless pagetable walk, without taking mmap_sem or any
      page table locks or even mmap_sem.  Page table existence is guaranteed by
      turning interrupts off (combined with the fact that we're always looking
      up the current mm, means we can do the lockless page table walk within the
      constraints of the TLB shootdown design).  Basically we can do this
      lockless pagetable walk in a similar manner to the way the CPU's pagetable
      walker does not have to take any locks to find present ptes.
      
      This patch (combined with the subsequent ones to convert direct IO to use
      it) was found to give about 10% performance improvement on a 2 socket 8
      core Intel Xeon system running an OLTP workload on DB2 v9.5
      
       "To test the effects of the patch, an OLTP workload was run on an IBM
        x3850 M2 server with 2 processors (quad-core Intel Xeon processors at
        2.93 GHz) using IBM DB2 v9.5 running Linux 2.6.24rc7 kernel.  Comparing
        runs with and without the patch resulted in an overall performance
        benefit of ~9.8%.  Correspondingly, oprofiles showed that samples from
        __up_read and __down_read routines that is seen during thread contention
        for system resources was reduced from 2.8% down to .05%.  Monitoring the
        /proc/vmstat output from the patched run showed that the counter for
        fast_gup contained a very high number while the fast_gup_slow value was
        zero."
      
      (fast_gup is the old name for get_user_pages_fast, fast_gup_slow is a
      counter we had for the number of times the slowpath was invoked).
      
      The main reason for the improvement is that DB2 has multiple threads each
      issuing direct-IO.  Direct-IO uses get_user_pages, and thus the threads
      contend the mmap_sem cacheline, and can also contend on page table locks.
      
      I would anticipate larger performance gains on larger systems, however I
      think DB2 uses an adaptive mix of threads and processes, so it could be
      that thread contention remains pretty constant as machine size increases.
      In which case, we stuck with "only" a 10% gain.
      
      The downside of using get_user_pages_fast is that if there is not a pte
      with the correct permissions for the access, we end up falling back to
      get_user_pages and so the get_user_pages_fast is a bit of extra work.
      However this should not be the common case in most performance critical
      code.
      
      [akpm@linux-foundation.org: coding-style fixes]
      [akpm@linux-foundation.org: build fix]
      [akpm@linux-foundation.org: Kconfig fix]
      [akpm@linux-foundation.org: Makefile fix/cleanup]
      [akpm@linux-foundation.org: warning fix]
      Signed-off-by: NNick Piggin <npiggin@suse.de>
      Cc: Dave Kleikamp <shaggy@austin.ibm.com>
      Cc: Andy Whitcroft <apw@shadowen.org>
      Cc: Ingo Molnar <mingo@elte.hu>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: Andi Kleen <andi@firstfloor.org>
      Cc: Dave Kleikamp <shaggy@austin.ibm.com>
      Cc: Badari Pulavarty <pbadari@us.ibm.com>
      Cc: Zach Brown <zach.brown@oracle.com>
      Cc: Jens Axboe <jens.axboe@oracle.com>
      Reviewed-by: NPeter Zijlstra <a.p.zijlstra@chello.nl>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      8174c430
  7. 25 7月, 2008 1 次提交
  8. 14 7月, 2008 1 次提交
  9. 02 7月, 2008 1 次提交
  10. 28 4月, 2008 1 次提交
    • C
      PAGEFLAGS_EXTENDED and separate page flags for Head and Tail · e20b8cca
      Christoph Lameter 提交于
      Having separate page flags for the head and the tail of a compound page allows
      the compiler to use bitops instead of operations on a word to check for a tail
      page.  That is f.e.  important for virt_to_head_page() which is used in
      various critical code paths (kfree for example):
      
      Code for PageTail(page)
      
      Before:
      
       mov    (%rdi),%rdx		page->flags
       mov    %rdx,%rax		3 bytes
       and    $0x12000,%eax		5 bytes
       cmp    $0x12000,%rax		6 bytes
       je     897 <kfree+0xa7>
      
      After:
      
       mov    (%rdi),%rax
       test   $0x40,%ah			(3 bytes)
       jne    887 <kfree+0x97>
      
      So we go from 14 bytes to 3 bytes and from 3 instructions to one.  From the
      use of 2 registers we go to none.
      
      We can only use page flags for this if we have page flags available.  This
      patch introduces CONFIG_PAGEFLAGS_EXTENDED that is set if pageflags are not
      scarce due to SPARSEMEM using page flags for its sectionid on 32 bit NUMA
      platforms.
      
      Additional page flag definitions can be added to the CONFIG_PAGEFLAGS_EXTENDED
      section in page-flags.h if the functionality depends on PAGEFLAGS_EXTENDED or
      if more page flag overlapping tricks are used for the !PAGEFLAGS_EXTENDED
      fallback (the upcoming virtual compound patch may hook in here and Rik's/Lee's
      additional page flags to solve the reclaim issues could also be added there
      [hint...  hint...  where are these patchsets?]).
      
      Avoiding the overlaying of Pg_reclaim also clears the way for possible use of
      compound pages for the pagecache or on the LRU.
      Signed-off-by: NChristoph Lameter <clameter@sgi.com>
      Cc: Nick Piggin <nickpiggin@yahoo.com.au>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      e20b8cca
  11. 28 1月, 2008 1 次提交
  12. 18 12月, 2007 1 次提交
  13. 20 10月, 2007 1 次提交
  14. 17 10月, 2007 3 次提交
    • J
      xen: lock pte pages while pinning/unpinning · 74260714
      Jeremy Fitzhardinge 提交于
      When a pagetable is created, it is made globally visible in the rmap
      prio tree before it is pinned via arch_dup_mmap(), and remains in the
      rmap tree while it is unpinned with arch_exit_mmap().
      
      This means that other CPUs may race with the pinning/unpinning
      process, and see a pte between when it gets marked RO and actually
      pinned, causing any pte updates to fail with write-protect faults.
      
      As a result, all pte pages must be properly locked, and only unlocked
      once the pinning/unpinning process has finished.
      
      In order to avoid taking spinlocks for the whole pagetable - which may
      overflow the PREEMPT_BITS portion of preempt counter - it locks and pins
      each pte page individually, and then finally pins the whole pagetable.
      Signed-off-by: NJeremy Fitzhardinge <jeremy@xensource.com>
      Cc: Rik van Riel <riel@redhat.com>
      Cc: Hugh Dickens <hugh@veritas.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Andrew Morton <akpm@linux-foundation.org>
      Cc: Andi Kleen <ak@suse.de>
      Cc: Keir Fraser <keir@xensource.com>
      Cc: Jan Beulich <jbeulich@novell.com>
      74260714
    • K
      memory unplug: page offline · 0c0e6195
      KAMEZAWA Hiroyuki 提交于
      Logic.
       - set all pages in  [start,end)  as isolated migration-type.
         by this, all free pages in the range will be not-for-use.
       - Migrate all LRU pages in the range.
       - Test all pages in the range's refcnt is zero or not.
      
      Todo:
       - allocate migration destination page from better area.
       - confirm page_count(page)== 0 && PageReserved(page) page is safe to be freed..
       (I don't like this kind of page but..
       - Find out pages which cannot be migrated.
       - more running tests.
       - Use reclaim for unplugging other memory type area.
      Signed-off-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Signed-off-by: NYasunori Goto <y-goto@jp.fujitsu.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      0c0e6195
    • A
      vmemmap: generify initialisation via helpers · 29c71111
      Andy Whitcroft 提交于
      Convert the common vmemmap population into initialisation helpers for use by
      architecture vmemmap populators.  All architecture implementing the
      SPARSEMEM_VMEMMAP variant supply an architecture specific vmemmap_populate()
      initialiser, which may make use of the helpers.
      
      This allows us to clean up and remove the initialisation Kconfig entries.
      With this patch there is a single SPARSEMEM_VMEMMAP_ENABLE Kconfig option to
      indicate use of that variant.
      Signed-off-by: NAndy Whitcroft <apw@shadowen.org>
      Acked-by: NChristoph Lameter <clameter@sgi.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      29c71111
  15. 07 10月, 2007 1 次提交
    • J
      xen: disable split pte locks for now · 67dd5a25
      Jeremy Fitzhardinge 提交于
      When pinning and unpinning pagetables, we must protect them against
      being used by other CPUs, lest they see the pagetable in an
      intermediate read-only-but-not-pinned state.
      
      When using split pte locks, doing this properly would require taking
      all the pte locks for the pagetable while pinning, but this may overflow
      the PREEMPT_BITS part of the preempt counter if the process has mapped
      more than about 512M of memory.
      
      However, failing to take the pte locks causes write-protect faults when
      the pageout code is trying to clear the Access bit on a pte which is part
      of a freshy created and still being pinned process after fork.
      
      This is a short-term fix until the problem is solved properly.
      Signed-off-by: NJeremy Fitzhardinge <jeremy@xensource.com>
      Acked-by: NRik van Riel <riel@redhat.com>
      Acked-by: NHugh Dickins <hugh@veritas.com>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Andrew Morton <akpm@linux-foundation.org>
      Cc: Andi Kleen <ak@suse.de>
      Cc: Keir Fraser <keir@xensource.com>
      Cc: Jan Beulich <jbeulich@novell.com>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      67dd5a25
  16. 30 7月, 2007 1 次提交
  17. 18 7月, 2007 1 次提交
  18. 17 7月, 2007 1 次提交
  19. 08 6月, 2007 1 次提交
  20. 14 5月, 2007 1 次提交
  21. 09 5月, 2007 1 次提交
  22. 08 5月, 2007 1 次提交
    • C
      Quicklists for page table pages · 6225e937
      Christoph Lameter 提交于
      On x86_64 this cuts allocation overhead for page table pages down to a
      fraction (kernel compile / editing load.  TSC based measurement of times spend
      in each function):
      
      no quicklist
      
      pte_alloc               1569048 4.3s(401ns/2.7us/179.7us)
      pmd_alloc                780988 2.1s(337ns/2.7us/86.1us)
      pud_alloc                780072 2.2s(424ns/2.8us/300.6us)
      pgd_alloc                260022 1s(920ns/4us/263.1us)
      
      quicklist:
      
      pte_alloc                452436 573.4ms(8ns/1.3us/121.1us)
      pmd_alloc                196204 174.5ms(7ns/889ns/46.1us)
      pud_alloc                195688 172.4ms(7ns/881ns/151.3us)
      pgd_alloc                 65228 9.8ms(8ns/150ns/6.1us)
      
      pgd allocations are the most complex and there we see the most dramatic
      improvement (may be we can cut down the amount of pgds cached somewhat?).  But
      even the pte allocations still see a doubling of performance.
      
      1. Proven code from the IA64 arch.
      
      	The method used here has been fine tuned for years and
      	is NUMA aware. It is based on the knowledge that accesses
      	to page table pages are sparse in nature. Taking a page
      	off the freelists instead of allocating a zeroed pages
      	allows a reduction of number of cachelines touched
      	in addition to getting rid of the slab overhead. So
      	performance improves. This is particularly useful if pgds
      	contain standard mappings. We can save on the teardown
      	and setup of such a page if we have some on the quicklists.
      	This includes avoiding lists operations that are otherwise
      	necessary on alloc and free to track pgds.
      
      2. Light weight alternative to use slab to manage page size pages
      
      	Slab overhead is significant and even page allocator use
      	is pretty heavy weight. The use of a per cpu quicklist
      	means that we touch only two cachelines for an allocation.
      	There is no need to access the page_struct (unless arch code
      	needs to fiddle around with it). So the fast past just
      	means bringing in one cacheline at the beginning of the
      	page. That same cacheline may then be used to store the
      	page table entry. Or a second cacheline may be used
      	if the page table entry is not in the first cacheline of
      	the page. The current code will zero the page which means
      	touching 32 cachelines (assuming 128 byte). We get down
      	from 32 to 2 cachelines in the fast path.
      
      3. x86_64 gets lightweight page table page management.
      
      	This will allow x86_64 arch code to faster repopulate pgds
      	and other page table entries. The list operations for pgds
      	are reduced in the same way as for i386 to the point where
      	a pgd is allocated from the page allocator and when it is
      	freed back to the page allocator. A pgd can pass through
      	the quicklists without having to be reinitialized.
      
      64 Consolidation of code from multiple arches
      
      	So far arches have their own implementation of quicklist
      	management. This patch moves that feature into the core allowing
      	an easier maintenance and consistent management of quicklists.
      
      Page table pages have the characteristics that they are typically zero or in a
      known state when they are freed.  This is usually the exactly same state as
      needed after allocation.  So it makes sense to build a list of freed page
      table pages and then consume the pages already in use first.  Those pages have
      already been initialized correctly (thus no need to zero them) and are likely
      already cached in such a way that the MMU can use them most effectively.  Page
      table pages are used in a sparse way so zeroing them on allocation is not too
      useful.
      
      Such an implementation already exits for ia64.  Howver, that implementation
      did not support constructors and destructors as needed by i386 / x86_64.  It
      also only supported a single quicklist.  The implementation here has
      constructor and destructor support as well as the ability for an arch to
      specify how many quicklists are needed.
      
      Quicklists are defined by an arch defining CONFIG_QUICKLIST.  If more than one
      quicklist is necessary then we can define NR_QUICK for additional lists.  F.e.
       i386 needs two and thus has
      
      config NR_QUICK
      	int
      	default 2
      
      If an arch has requested quicklist support then pages can be allocated
      from the quicklist (or from the page allocator if the quicklist is
      empty) via:
      
      quicklist_alloc(<quicklist-nr>, <gfpflags>, <constructor>)
      
      Page table pages can be freed using:
      
      quicklist_free(<quicklist-nr>, <destructor>, <page>)
      
      Pages must have a definite state after allocation and before
      they are freed. If no constructor is specified then pages
      will be zeroed on allocation and must be zeroed before they are
      freed.
      
      If a constructor is used then the constructor will establish
      a definite page state. F.e. the i386 and x86_64 pgd constructors
      establish certain mappings.
      
      Constructors and destructors can also be used to track the pages.
      i386 and x86_64 use a list of pgds in order to be able to dynamically
      update standard mappings.
      Signed-off-by: NChristoph Lameter <clameter@sgi.com>
      Cc: "David S. Miller" <davem@davemloft.net>
      Cc: Andi Kleen <ak@suse.de>
      Cc: "Luck, Tony" <tony.luck@intel.com>
      Cc: William Lee Irwin III <wli@holomorphy.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      6225e937
  23. 12 2月, 2007 3 次提交
    • C
      [PATCH] Set CONFIG_ZONE_DMA for arches with GENERIC_ISA_DMA · 5ac6da66
      Christoph Lameter 提交于
      As Andi pointed out: CONFIG_GENERIC_ISA_DMA only disables the ISA DMA
      channel management.  Other functionality may still expect GFP_DMA to
      provide memory below 16M.  So we need to make sure that CONFIG_ZONE_DMA is
      set independent of CONFIG_GENERIC_ISA_DMA.  Undo the modifications to
      mm/Kconfig where we made ZONE_DMA dependent on GENERIC_ISA_DMA and set
      theses explicitly in each arches Kconfig.
      
      Reviews must occur for each arch in order to determine if ZONE_DMA can be
      switched off.  It can only be switched off if we know that all devices
      supported by a platform are capable of performing DMA transfers to all of
      memory (Some arches already support this: uml, avr32, sh sh64, parisc and
      IA64/Altix).
      
      In order to switch ZONE_DMA off conditionally, one would have to establish
      a scheme by which one can assure that no drivers are enabled that are only
      capable of doing I/O to a part of memory, or one needs to provide an
      alternate means of performing an allocation from a specific range of memory
      (like provided by alloc_pages_range()) and insure that all drivers use that
      call.  In that case the arches alloc_dma_coherent() may need to be modified
      to call alloc_pages_range() instead of relying on GFP_DMA.
      Signed-off-by: NChristoph Lameter <clameter@sgi.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      5ac6da66
    • C
      [PATCH] optional ZONE_DMA: optional ZONE_DMA in the VM · 4b51d669
      Christoph Lameter 提交于
      Make ZONE_DMA optional in core code.
      
      - ifdef all code for ZONE_DMA and related definitions following the example
        for ZONE_DMA32 and ZONE_HIGHMEM.
      
      - Without ZONE_DMA, ZONE_HIGHMEM and ZONE_DMA32 we get to a ZONES_SHIFT of
        0.
      
      - Modify the VM statistics to work correctly without a DMA zone.
      
      - Modify slab to not create DMA slabs if there is no ZONE_DMA.
      
      [akpm@osdl.org: cleanup]
      [jdike@addtoit.com: build fix]
      [apw@shadowen.org: Simplify calculation of the number of bits we need for ZONES_SHIFT]
      Signed-off-by: NChristoph Lameter <clameter@sgi.com>
      Cc: Andi Kleen <ak@suse.de>
      Cc: "Luck, Tony" <tony.luck@intel.com>
      Cc: Kyle McMartin <kyle@mcmartin.ca>
      Cc: Matthew Wilcox <willy@debian.org>
      Cc: James Bottomley <James.Bottomley@steeleye.com>
      Cc: Paul Mundt <lethal@linux-sh.org>
      Signed-off-by: NAndy Whitcroft <apw@shadowen.org>
      Signed-off-by: NJeff Dike <jdike@addtoit.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      4b51d669
    • C
      [PATCH] optional ZONE_DMA: introduce CONFIG_ZONE_DMA · 66701b14
      Christoph Lameter 提交于
      This patch simply defines CONFIG_ZONE_DMA for all arches.  We later do special
      things with CONFIG_ZONE_DMA after the VM and an arch are prepared to work
      without ZONE_DMA.
      
      CONFIG_ZONE_DMA can be defined in two ways depending on how an architecture
      handles ISA DMA.
      
      First if CONFIG_GENERIC_ISA_DMA is set by the arch then we know that the arch
      needs ZONE_DMA because ISA DMA devices are supported.  We can catch this in
      mm/Kconfig and do not need to modify arch code.
      
      Second, arches may use ZONE_DMA in an unknown way.  We set CONFIG_ZONE_DMA for
      all arches that do not set CONFIG_GENERIC_ISA_DMA in order to insure backwards
      compatibility.  The arches may later undefine ZONE_DMA if their arch code has
      been verified to not depend on ZONE_DMA.
      Signed-off-by: NChristoph Lameter <clameter@sgi.com>
      Cc: Andi Kleen <ak@suse.de>
      Cc: "Luck, Tony" <tony.luck@intel.com>
      Cc: Kyle McMartin <kyle@mcmartin.ca>
      Cc: Matthew Wilcox <willy@debian.org>
      Cc: James Bottomley <James.Bottomley@steeleye.com>
      Cc: Paul Mundt <lethal@linux-sh.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      66701b14
  24. 04 10月, 2006 2 次提交
  25. 01 10月, 2006 1 次提交
  26. 30 6月, 2006 1 次提交
  27. 28 6月, 2006 2 次提交
  28. 23 6月, 2006 1 次提交
  29. 26 3月, 2006 1 次提交
  30. 22 3月, 2006 1 次提交
    • C
      [PATCH] page migration reorg · b20a3503
      Christoph Lameter 提交于
      Centralize the page migration functions in anticipation of additional
      tinkering.  Creates a new file mm/migrate.c
      
      1. Extract buffer_migrate_page() from fs/buffer.c
      
      2. Extract central migration code from vmscan.c
      
      3. Extract some components from mempolicy.c
      
      4. Export pageout() and remove_from_swap() from vmscan.c
      
      5. Make it possible to configure NUMA systems without page migration
         and non-NUMA systems with page migration.
      
      I had to so some #ifdeffing in mempolicy.c that may need a cleanup.
      Signed-off-by: NChristoph Lameter <clameter@sgi.com>
      Signed-off-by: NAndrew Morton <akpm@osdl.org>
      Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
      b20a3503
  31. 09 1月, 2006 1 次提交
  32. 07 1月, 2006 1 次提交
  33. 24 11月, 2005 1 次提交
    • H
      [PATCH] mm: update split ptlock Kconfig · 7b6ac9df
      Hugh Dickins 提交于
      Closer attention to the arithmetic shows that neither ppc64 nor sparc really
      uses one page for multiple page tables: how on earth could they, while
      pte_alloc_one returns just a struct page pointer, with no offset?
      
      Well, arm26 manages it by returning a pte_t pointer cast to a struct page
      pointer, harumph, then compensating in its pmd_populate.  But arm26 is never
      SMP, so it's not a problem for split ptlock either.
      
      And the PA-RISC situation has been recently improved: CONFIG_PA20 works
      without the 16-byte alignment which inflated its spinlock_t.  But the current
      union of spinlock_t with private does make the 7xxx struct page significantly
      larger, even without debug, so disable its split ptlock.
      Signed-off-by: NHugh Dickins <hugh@veritas.com>
      Signed-off-by: NAndrew Morton <akpm@osdl.org>
      Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
      7b6ac9df
  34. 07 11月, 2005 1 次提交