- 23 9月, 2009 3 次提交
-
-
由 Tao Ma 提交于
When we truncate a file to a specific size which resides in a reflinked cluster, we need to CoW it since ocfs2_zero_range_for_truncate will zero the space after the size(just another type of write). So we add a "max_cpos" in ocfs2_refcount_cow so that it will stop when it hit the max cluster offset. Signed-off-by: NTao Ma <tao.ma@oracle.com>
-
由 Tao Ma 提交于
When we use mmap, we CoW the refcountd clusters in ocfs2_write_begin_nolock. While for normal file io(including directio), we do CoW in ocfs2_prepare_inode_for_write. Signed-off-by: NTao Ma <tao.ma@oracle.com>
-
由 Tao Ma 提交于
This patch try CoW support for a refcounted record. the whole process will be: 1. Calculate how many clusters we need to CoW and where we start. Extents that are not completely encompassed by the write will be broken on 1MB boundaries. 2. Do CoW for the clusters with the help of page cache. 3. Change the b-tree structure with the new allocated clusters. Signed-off-by: NTao Ma <tao.ma@oracle.com>
-
- 05 9月, 2009 3 次提交
-
-
由 Joel Becker 提交于
With this commit, extent tree operations are divorced from inodes and rely on ocfs2_caching_info. Phew! Signed-off-by: NJoel Becker <joel.becker@oracle.com>
-
由 Joel Becker 提交于
The next step in divorcing metadata I/O management from struct inode is to pass struct ocfs2_caching_info to the journal functions. Thus the journal locks a metadata cache with the cache io_lock function. It also can compare ci_last_trans and ci_created_trans directly. This is a large patch because of all the places we change ocfs2_journal_access..(handle, inode, ...) to ocfs2_journal_access..(handle, INODE_CACHE(inode), ...). Signed-off-by: NJoel Becker <joel.becker@oracle.com>
-
由 Sunil Mushran 提交于
Bug introduced by mainline commit e7432675 The bug causes ocfs2_write_begin_nolock() to oops when len=0. Signed-off-by: NSunil Mushran <sunil.mushran@oracle.com> Cc: stable@kernel.org Signed-off-by: NJoel Becker <joel.becker@oracle.com>
-
- 08 8月, 2009 1 次提交
-
-
由 Sunil Mushran 提交于
In a non-sparse extend, we correctly allocate (and zero) the clusters between the old_i_size and pos, but we don't zero the portions of the cluster we're writing to outside of pos<->len. It handles clustersize > pagesize and blocksize < pagesize. [Cleaned up by Joel Becker.] Signed-off-by: NSunil Mushran <sunil.mushran@oracle.com> Signed-off-by: NJoel Becker <joel.becker@oracle.com>
-
- 21 7月, 2009 2 次提交
-
-
由 Wengang Wang 提交于
ocfs2_get_block() does no allocation. Hole filling for writes should have happened farther up in the call chain. We detect this case and print an error, but we then continue with the function. We should be exiting immediately. Signed-off-by: NWengang Wang <wen.gang.wang@oracle.com> Signed-off-by: NJoel Becker <joel.becker@oracle.com>
-
由 Wengang Wang 提交于
A typo caused ocfs2_write_cluster() to return 0 in some error cases. Fix it. Signed-off-by: NWengang Wang <wen.gang.wang@oracle.com> Signed-off-by: NJoel Becker <joel.becker@oracle.com>
-
- 04 4月, 2009 1 次提交
-
-
由 Hisashi Hifumi 提交于
A page can have multiple buffers and even if a page is not uptodate, some buffers can be uptodate on pagesize != blocksize environment. This aops checks that all buffers which correspond to a part of a file that we want to read are uptodate. If so, we do not have to issue actual read IO to HDD even if a page is not uptodate because the portion we want to read are uptodate. "block_is_partially_uptodate" function is already used by ext2/3/4. With the following patch random read/write mixed workloads or random read after random write workloads can be optimized and we can get performance improvement. Signed-off-by: NHisashi Hifumi <hifumi.hisashi@oss.ntt.co.jp> Signed-off-by: NMark Fasheh <mfasheh@suse.com>
-
- 13 3月, 2009 1 次提交
-
-
由 Tiger Yang 提交于
Replace max_inline_data with max_inline_data_with_xattr to ensure it correct when xattr inlined. Signed-off-by: NTiger Yang <tiger.yang@oracle.com> Acked-by: NJoel Becker <joel.becker@oracle.com> Signed-off-by: NMark Fasheh <mfasheh@suse.com>
-
- 06 1月, 2009 4 次提交
-
-
由 Joel Becker 提交于
The per-metadata-type ocfs2_journal_access_*() functions hook up jbd2 commit triggers and allow us to compute metadata ecc right before the buffers are written out. This commit provides ecc for inodes, extent blocks, group descriptors, and quota blocks. It is not safe to use extened attributes and metaecc at the same time yet. The ocfs2_extent_tree and ocfs2_path abstractions in alloc.c both hide the type of block at their root. Before, it didn't matter, but now the root block must use the appropriate ocfs2_journal_access_*() function. To keep this abstract, the structures now have a pointer to the matching journal_access function and a wrapper call to call it. A few places use naked ocfs2_write_block() calls instead of adding the blocks to the journal. We make sure to calculate their checksum and ecc before the write. Since we pass around the journal_access functions. Let's typedef them in ocfs2.h. Signed-off-by: NJoel Becker <joel.becker@oracle.com> Signed-off-by: NMark Fasheh <mfasheh@suse.com>
-
由 Jan Kara 提交于
Add quota calls for allocation and freeing of inodes and space, also update estimates on number of needed credits for a transaction. Move out inode allocation from ocfs2_mknod_locked() because vfs_dq_init() must be called outside of a transaction. Signed-off-by: NJan Kara <jack@suse.cz> Signed-off-by: NMark Fasheh <mfasheh@suse.com>
-
由 Mark Fasheh 提交于
JBD2 is fully backwards compatible with JBD and it's been tested enough with Ocfs2 that we can clean this code up now. Signed-off-by: NMark Fasheh <mfasheh@suse.com>
-
由 Joel Becker 提交于
The ocfs2 code currently reads inodes off disk with a simple ocfs2_read_block() call. Each place that does this has a different set of sanity checks it performs. Some check only the signature. A couple validate the block number (the block read vs di->i_blkno). A couple others check for VALID_FL. Only one place validates i_fs_generation. A couple check nothing. Even when an error is found, they don't all do the same thing. We wrap inode reading into ocfs2_read_inode_block(). This will validate all the above fields, going readonly if they are invalid (they never should be). ocfs2_read_inode_block_full() is provided for the places that want to pass read_block flags. Every caller is passing a struct inode with a valid ip_blkno, so we don't need a separate blkno argument either. We will remove the validation checks from the rest of the code in a later commit, as they are no longer necessary. Signed-off-by: NJoel Becker <joel.becker@oracle.com> Signed-off-by: NMark Fasheh <mfasheh@suse.com>
-
- 15 10月, 2008 2 次提交
-
-
由 Joel Becker 提交于
More than 30 callers of ocfs2_read_block() pass exactly OCFS2_BH_CACHED. Only six pass a different flag set. Rather than have every caller care, let's make ocfs2_read_block() take no flags and always do a cached read. The remaining six places can call ocfs2_read_blocks() directly. Signed-off-by: NJoel Becker <joel.becker@oracle.com> Signed-off-by: NMark Fasheh <mfasheh@suse.com>
-
由 Joel Becker 提交于
Now that synchronous readers are using ocfs2_read_blocks_sync(), all callers of ocfs2_read_blocks() are passing an inode. Use it unconditionally. Since it's there, we don't need to pass the ocfs2_super either. Signed-off-by: NJoel Becker <joel.becker@oracle.com> Signed-off-by: NMark Fasheh <mfasheh@suse.com>
-
- 14 10月, 2008 9 次提交
-
-
由 Mark Fasheh 提交于
This is pointless as brelse() already does the check. Signed-off-by: Mark Fasheh
-
由 Joel Becker 提交于
ocfs2 wants JBD2 for many reasons, not the least of which is that JBD is limiting our maximum filesystem size. It's a pretty trivial change. Most functions are just renamed. The only functional change is moving to Jan's inode-based ordered data mode. It's better, too. Because JBD2 reads and writes JBD journals, this is compatible with any existing filesystem. It can even interact with JBD-based ocfs2 as long as the journal is formated for JBD. We provide a compatibility option so that paranoid people can still use JBD for the time being. This will go away shortly. [ Moved call of ocfs2_begin_ordered_truncate() from ocfs2_delete_inode() to ocfs2_truncate_for_delete(). --Mark ] Signed-off-by: NJoel Becker <joel.becker@oracle.com> Signed-off-by: NMark Fasheh <mfasheh@suse.com>
-
由 Joel Becker 提交于
The original get/put_extent_tree() functions held a reference on et_root_bh. However, every single caller already has a safe reference, making the get/put cycle irrelevant. We change ocfs2_get_*_extent_tree() to ocfs2_init_*_extent_tree(). It no longer gets a reference on et_root_bh. ocfs2_put_extent_tree() is removed. Callers now have a simpler init+use pattern. Signed-off-by: NJoel Becker <joel.becker@oracle.com> Signed-off-by: NMark Fasheh <mfasheh@suse.com>
-
由 Joel Becker 提交于
We now have three different kinds of extent trees in ocfs2: inode data (dinode), extended attributes (xattr_tree), and extended attribute values (xattr_value). There is a nice abstraction for them, ocfs2_extent_tree, but it is hidden in alloc.c. All the calling functions have to pick amongst a varied API and pass in type bits and often extraneous pointers. A better way is to make ocfs2_extent_tree a first-class object. Everyone converts their object to an ocfs2_extent_tree() via the ocfs2_get_*_extent_tree() calls, then uses the ocfs2_extent_tree for all tree calls to alloc.c. This simplifies a lot of callers, making for readability. It also provides an easy way to add additional extent tree types, as they only need to be defined in alloc.c with a ocfs2_get_<new>_extent_tree() function. Signed-off-by: NJoel Becker <joel.becker@oracle.com> Signed-off-by: NMark Fasheh <mfasheh@suse.com>
-
由 Tao Ma 提交于
Add some thin wrappers around ocfs2_insert_extent() for each of the 3 different btree types, ocfs2_inode_insert_extent(), ocfs2_xattr_value_insert_extent() and ocfs2_xattr_tree_insert_extent(). The last is for the xattr index btree, which will be used in a followup patch. All the old callers in file.c etc will call ocfs2_dinode_insert_extent(), while the other two handle the xattr issue. And the init of extent tree are handled by these functions. When storing xattr value which is too large, we will allocate some clusters for it and here ocfs2_extent_list and ocfs2_extent_rec will also be used. In order to re-use the b-tree operation code, a new parameter named "private" is added into ocfs2_extent_tree and it is used to indicate the root of ocfs2_exent_list. The reason is that we can't deduce the root from the buffer_head now. It may be in an inode, an ocfs2_xattr_block or even worse, in any place in an ocfs2_xattr_bucket. Signed-off-by: NTao Ma <tao.ma@oracle.com> Signed-off-by: NMark Fasheh <mfasheh@suse.com>
-
由 Tao Ma 提交于
Factor out the non-inode specifics of ocfs2_do_extend_allocation() into a more generic function, ocfs2_do_cluster_allocation(). ocfs2_do_extend_allocation calls ocfs2_do_cluster_allocation() now, but the latter can be used for other btree types as well. Signed-off-by: NTao Ma <tao.ma@oracle.com> Signed-off-by: NMark Fasheh <mfasheh@suse.com>
-
由 Tao Ma 提交于
In the old extent tree operation, we take the hypothesis that we are using the ocfs2_extent_list in ocfs2_dinode as the tree root. As xattr will also use ocfs2_extent_list to store large value for a xattr entry, we refactor the tree operation so that xattr can use it directly. The refactoring includes 4 steps: 1. Abstract set/get of last_eb_blk and update_clusters since they may be stored in different location for dinode and xattr. 2. Add a new structure named ocfs2_extent_tree to indicate the extent tree the operation will work on. 3. Remove all the use of fe_bh and di, use root_bh and root_el in extent tree instead. So now all the fe_bh is replaced with et->root_bh, el with root_el accordingly. 4. Make ocfs2_lock_allocators generic. Now it is limited to be only used in file extend allocation. But the whole function is useful when we want to store large EAs. Note: This patch doesn't touch ocfs2_commit_truncate() since it is not used for anything other than truncate inode data btrees. Signed-off-by: NTao Ma <tao.ma@oracle.com> Signed-off-by: NMark Fasheh <mfasheh@suse.com>
-
由 Tao Ma 提交于
ocfs2_extend_meta_needed(), ocfs2_calc_extend_credits() and ocfs2_reserve_new_metadata() are all useful for extent tree operations. But they are all limited to an inode btree because they use a struct ocfs2_dinode parameter. Change their parameter to struct ocfs2_extent_list (the part of an ocfs2_dinode they actually use) so that the xattr btree code can use these functions. Signed-off-by: NTao Ma <tao.ma@oracle.com> Signed-off-by: NMark Fasheh <mfasheh@suse.com>
-
由 Tao Ma 提交于
ocfs2_num_free_extents() is used to find the number of free extent records in an inode btree. Hence, it takes an "ocfs2_dinode" parameter. We want to use this for extended attribute trees in the future, so genericize the interface the take a buffer head. A future patch will allow that buffer_head to contain any structure rooting an ocfs2 btree. Signed-off-by: NTao Ma <tao.ma@oracle.com> Signed-off-by: NMark Fasheh <mfasheh@suse.com>
-
- 10 9月, 2008 1 次提交
-
-
由 Tao Ma 提交于
ocfs2 will become read-only if we try to read the bytes which pass the end of i_size. This can be easily reproduced by following steps: 1. mkfs a ocfs2 volume with bs=4k cs=4k and nosparse. 2. create a small file(say less than 100 bytes) and we will create the file which is allocated 1 cluster. 3. read 8196 bytes from the kernel using O_DIRECT which exceeds the limit. 4. The ocfs2 volume becomes read-only and dmesg shows: OCFS2: ERROR (device sda13): ocfs2_direct_IO_get_blocks: Inode 66010 has a hole at block 1 File system is now read-only due to the potential of on-disk corruption. Please run fsck.ocfs2 once the file system is unmounted. So suppress the ERROR message. Signed-off-by: NTao Ma <tao.ma@oracle.com> Signed-off-by: NMark Fasheh <mfasheh@suse.com>
-
- 01 8月, 2008 1 次提交
-
-
由 Sunil Mushran 提交于
This patch fixes an oops that is reproduced when one races writes to a mmap-ed region with another process truncating the file. Signed-off-by: NSunil Mushran <sunil.mushran@oracle.com> Signed-off-by: NMark Fasheh <mfasheh@suse.com>
-
- 17 7月, 2008 1 次提交
-
-
由 Coly Li 提交于
This patch fixes a mmap_truncate bug which was found by ocfs2 test suite. In an ocfs2 cluster more than 1 node, run program mmap_truncate, which races mmap writes and truncates from multiple processes. While the test is running, a stat from another node forces writeout, causing an oops in ocfs2_get_block() because it sees a buffer to write which isn't allocated. This patch fixed the bug by clear dirty and uptodate bits in buffer, leave the buffer unmapped and return. Fix is suggested by Mark Fasheh, and I code up the patch. Signed-off-by: NColy Li <coyli@suse.de> Signed-off-by: NMark Fasheh <mfasheh@suse.com>
-
- 18 4月, 2008 1 次提交
-
-
由 Julia Lawall 提交于
The function ocfs2_start_trans always returns either a valid pointer or a value made with ERR_PTR, so its result should be tested with IS_ERR, not with a test for 0. Signed-off-by: NJulia Lawall <julia@diku.dk> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NMark Fasheh <mfasheh@suse.com>
-
- 04 3月, 2008 1 次提交
-
-
由 Julia Lawall 提交于
In commit e6bafba5, a bug was fixed that involved converting !x & y to !(x & y). The code below shows the same pattern, and thus should perhaps be fixed in the same way. This is not tested and clearly changes the semantics, so it is only something to consider. Signed-off-by: NJulia Lawall <julia@diku.dk> Signed-off-by: NMark Fasheh <mark.fasheh@oracle.com>
-
- 06 2月, 2008 1 次提交
-
-
由 Christoph Lameter 提交于
Simplify page cache zeroing of segments of pages through 3 functions zero_user_segments(page, start1, end1, start2, end2) Zeros two segments of the page. It takes the position where to start and end the zeroing which avoids length calculations and makes code clearer. zero_user_segment(page, start, end) Same for a single segment. zero_user(page, start, length) Length variant for the case where we know the length. We remove the zero_user_page macro. Issues: 1. Its a macro. Inline functions are preferable. 2. The KM_USER0 macro is only defined for HIGHMEM. Having to treat this special case everywhere makes the code needlessly complex. The parameter for zeroing is always KM_USER0 except in one single case that we open code. Avoiding KM_USER0 makes a lot of code not having to be dealing with the special casing for HIGHMEM anymore. Dealing with kmap is only necessary for HIGHMEM configurations. In those configurations we use KM_USER0 like we do for a series of other functions defined in highmem.h. Since KM_USER0 is depends on HIGHMEM the existing zero_user_page function could not be a macro. zero_user_* functions introduced here can be be inline because that constant is not used when these functions are called. Also extract the flushing of the caches to be outside of the kmap. [akpm@linux-foundation.org: fix nfs and ntfs build] [akpm@linux-foundation.org: fix ntfs build some more] Signed-off-by: NChristoph Lameter <clameter@sgi.com> Cc: Steven French <sfrench@us.ibm.com> Cc: Michael Halcrow <mhalcrow@us.ibm.com> Cc: <linux-ext4@vger.kernel.org> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Cc: "J. Bruce Fields" <bfields@fieldses.org> Cc: Anton Altaparmakov <aia21@cantab.net> Cc: Mark Fasheh <mark.fasheh@oracle.com> Cc: David Chinner <dgc@sgi.com> Cc: Michael Halcrow <mhalcrow@us.ibm.com> Cc: Steven French <sfrench@us.ibm.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 26 1月, 2008 4 次提交
-
-
由 Jan Kara 提交于
In ocfs2_read_inline_data() we should store file size in loff_t. Although the file size should fit in 32 bits we cannot be sure in case filesystem is corrupted. Signed-off-by: NJan Kara <jack@suse.cz> Signed-off-by: NMark Fasheh <mark.fasheh@oracle.com>
-
由 Mark Fasheh 提交于
Add ->readpages support to Ocfs2. This is rather trivial - all it required is a small update to ocfs2_get_block (for mapping full extents via b_size) and an ocfs2_readpages() function which partially mirrors ocfs2_readpage(). Signed-off-by: NMark Fasheh <mark.fasheh@oracle.com>
-
由 Mark Fasheh 提交于
Call this the "inode_lock" now, since it covers both data and meta data. This patch makes no functional changes. Signed-off-by: NMark Fasheh <mark.fasheh@oracle.com>
-
由 Mark Fasheh 提交于
The meta lock now covers both meta data and data, so this just removes the now-redundant data lock. Combining locks saves us a round of lock mastery per inode and one less lock to ping between nodes during read/write. We don't lose much - since meta locks were always held before a data lock (and at the same level) ordered writeout mode (the default) ensured that flushing for the meta data lock also pushed out data anyways. Signed-off-by: NMark Fasheh <mark.fasheh@oracle.com>
-
- 28 11月, 2007 1 次提交
-
-
由 Mark Fasheh 提交于
This was causing us to prematurely push out inline data by one byte. Signed-off-by: NMark Fasheh <mark.fasheh@oracle.com>
-
- 07 11月, 2007 1 次提交
-
-
由 Mark Fasheh 提交于
On file systems which don't support sparse files, Ocfs2_map_page_blocks() was reading blocks on appending writes. This caused write performance to suffer dramatically. Fix this by detecting an appending write on a nonsparse fs and skipping the read. Signed-off-by: NMark Fasheh <mark.fasheh@oracle.com>
-
- 17 10月, 2007 1 次提交
-
-
由 Nick Piggin 提交于
Plug ocfs2 into the ->write_begin and ->write_end aops. A bunch of custom code is now gone - the iovec iteration stuff during write and the ocfs2 splice write actor. Signed-off-by: NMark Fasheh <mark.fasheh@oracle.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 13 10月, 2007 1 次提交
-
-
由 Mark Fasheh 提交于
This fixes up write, truncate, mmap, and RESVSP/UNRESVP to understand inline inode data. For the most part, the changes to the core write code can be relied on to do the heavy lifting. Any code calling ocfs2_write_begin (including shared writeable mmap) can count on it doing the right thing with respect to growing inline data to an extent tree. Size reducing truncates, including UNRESVP can simply zero that portion of the inode block being removed. Size increasing truncatesm, including RESVP have to be a little bit smarter and grow the inode to an extent tree if necessary. Signed-off-by: NMark Fasheh <mark.fasheh@oracle.com> Reviewed-by: NJoel Becker <joel.becker@oracle.com>
-