1. 21 2月, 2012 2 次提交
    • L
      i387: use 'restore_fpu_checking()' directly in task switching code · 80ab6f1e
      Linus Torvalds 提交于
      This inlines what is usually just a couple of instructions, but more
      importantly it also fixes the theoretical error case (can that FPU
      restore really ever fail? Maybe we should remove the checking).
      
      We can't start sending signals from within the scheduler, we're much too
      deep in the kernel and are holding the runqueue lock etc.  So don't
      bother even trying.
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      80ab6f1e
    • L
      i387: fix up some fpu_counter confusion · cea20ca3
      Linus Torvalds 提交于
      This makes sure we clear the FPU usage counter for newly created tasks,
      just so that we start off in a known state (for example, don't try to
      preload the FPU state on the first task switch etc).
      
      It also fixes a thinko in when we increment the fpu_counter at task
      switch time, introduced by commit 34ddc81a ("i387: re-introduce FPU
      state preloading at context switch time").  We should increment the
      *new* task fpu_counter, not the old task, and only if we decide to use
      that state (whether lazily or preloaded).
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      cea20ca3
  2. 19 2月, 2012 2 次提交
    • L
      i387: re-introduce FPU state preloading at context switch time · 34ddc81a
      Linus Torvalds 提交于
      After all the FPU state cleanups and finally finding the problem that
      caused all our FPU save/restore problems, this re-introduces the
      preloading of FPU state that was removed in commit b3b0870e ("i387:
      do not preload FPU state at task switch time").
      
      However, instead of simply reverting the removal, this reimplements
      preloading with several fixes, most notably
      
       - properly abstracted as a true FPU state switch, rather than as
         open-coded save and restore with various hacks.
      
         In particular, implementing it as a proper FPU state switch allows us
         to optimize the CR0.TS flag accesses: there is no reason to set the
         TS bit only to then almost immediately clear it again.  CR0 accesses
         are quite slow and expensive, don't flip the bit back and forth for
         no good reason.
      
       - Make sure that the same model works for both x86-32 and x86-64, so
         that there are no gratuitous differences between the two due to the
         way they save and restore segment state differently due to
         architectural differences that really don't matter to the FPU state.
      
       - Avoid exposing the "preload" state to the context switch routines,
         and in particular allow the concept of lazy state restore: if nothing
         else has used the FPU in the meantime, and the process is still on
         the same CPU, we can avoid restoring state from memory entirely, just
         re-expose the state that is still in the FPU unit.
      
         That optimized lazy restore isn't actually implemented here, but the
         infrastructure is set up for it.  Of course, older CPU's that use
         'fnsave' to save the state cannot take advantage of this, since the
         state saving also trashes the state.
      
      In other words, there is now an actual _design_ to the FPU state saving,
      rather than just random historical baggage.  Hopefully it's easier to
      follow as a result.
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      34ddc81a
    • L
      i387: move TS_USEDFPU flag from thread_info to task_struct · f94edacf
      Linus Torvalds 提交于
      This moves the bit that indicates whether a thread has ownership of the
      FPU from the TS_USEDFPU bit in thread_info->status to a word of its own
      (called 'has_fpu') in task_struct->thread.has_fpu.
      
      This fixes two independent bugs at the same time:
      
       - changing 'thread_info->status' from the scheduler causes nasty
         problems for the other users of that variable, since it is defined to
         be thread-synchronous (that's what the "TS_" part of the naming was
         supposed to indicate).
      
         So perfectly valid code could (and did) do
      
      	ti->status |= TS_RESTORE_SIGMASK;
      
         and the compiler was free to do that as separate load, or and store
         instructions.  Which can cause problems with preemption, since a task
         switch could happen in between, and change the TS_USEDFPU bit. The
         change to TS_USEDFPU would be overwritten by the final store.
      
         In practice, this seldom happened, though, because the 'status' field
         was seldom used more than once, so gcc would generally tend to
         generate code that used a read-modify-write instruction and thus
         happened to avoid this problem - RMW instructions are naturally low
         fat and preemption-safe.
      
       - On x86-32, the current_thread_info() pointer would, during interrupts
         and softirqs, point to a *copy* of the real thread_info, because
         x86-32 uses %esp to calculate the thread_info address, and thus the
         separate irq (and softirq) stacks would cause these kinds of odd
         thread_info copy aliases.
      
         This is normally not a problem, since interrupts aren't supposed to
         look at thread information anyway (what thread is running at
         interrupt time really isn't very well-defined), but it confused the
         heck out of irq_fpu_usable() and the code that tried to squirrel
         away the FPU state.
      
         (It also caused untold confusion for us poor kernel developers).
      
      It also turns out that using 'task_struct' is actually much more natural
      for most of the call sites that care about the FPU state, since they
      tend to work with the task struct for other reasons anyway (ie
      scheduling).  And the FPU data that we are going to save/restore is
      found there too.
      
      Thanks to Arjan Van De Ven <arjan@linux.intel.com> for pointing us to
      the %esp issue.
      
      Cc: Arjan van de Ven <arjan@linux.intel.com>
      Reported-and-tested-by: NRaphael Prevost <raphael@buro.asia>
      Acked-and-tested-by: NSuresh Siddha <suresh.b.siddha@intel.com>
      Tested-by: NPeter Anvin <hpa@zytor.com>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      f94edacf
  3. 17 2月, 2012 5 次提交
    • L
      i387: move AMD K7/K8 fpu fxsave/fxrstor workaround from save to restore · 4903062b
      Linus Torvalds 提交于
      The AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is
      pending.  In order to not leak FIP state from one process to another, we
      need to do a floating point load after the fxsave of the old process,
      and before the fxrstor of the new FPU state.  That resets the state to
      the (uninteresting) kernel load, rather than some potentially sensitive
      user information.
      
      We used to do this directly after the FPU state save, but that is
      actually very inconvenient, since it
      
       (a) corrupts what is potentially perfectly good FPU state that we might
           want to lazy avoid restoring later and
      
       (b) on x86-64 it resulted in a very annoying ordering constraint, where
           "__unlazy_fpu()" in the task switch needs to be delayed until after
           the DS segment has been reloaded just to get the new DS value.
      
      Coupling it to the fxrstor instead of the fxsave automatically avoids
      both of these issues, and also ensures that we only do it when actually
      necessary (the FP state after a save may never actually get used).  It's
      simply a much more natural place for the leaked state cleanup.
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      4903062b
    • L
      i387: do not preload FPU state at task switch time · b3b0870e
      Linus Torvalds 提交于
      Yes, taking the trap to re-load the FPU/MMX state is expensive, but so
      is spending several days looking for a bug in the state save/restore
      code.  And the preload code has some rather subtle interactions with
      both paravirtualization support and segment state restore, so it's not
      nearly as simple as it should be.
      
      Also, now that we no longer necessarily depend on a single bit (ie
      TS_USEDFPU) for keeping track of the state of the FPU, we migth be able
      to do better.  If we are really switching between two processes that
      keep touching the FP state, save/restore is inevitable, but in the case
      of having one process that does most of the FPU usage, we may actually
      be able to do much better than the preloading.
      
      In particular, we may be able to keep track of which CPU the process ran
      on last, and also per CPU keep track of which process' FP state that CPU
      has.  For modern CPU's that don't destroy the FPU contents on save time,
      that would allow us to do a lazy restore by just re-enabling the
      existing FPU state - with no restore cost at all!
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      b3b0870e
    • L
      i387: don't ever touch TS_USEDFPU directly, use helper functions · 6d59d7a9
      Linus Torvalds 提交于
      This creates three helper functions that do the TS_USEDFPU accesses, and
      makes everybody that used to do it by hand use those helpers instead.
      
      In addition, there's a couple of helper functions for the "change both
      CR0.TS and TS_USEDFPU at the same time" case, and the places that do
      that together have been changed to use those.  That means that we have
      fewer random places that open-code this situation.
      
      The intent is partly to clarify the code without actually changing any
      semantics yet (since we clearly still have some hard to reproduce bug in
      this area), but also to make it much easier to use another approach
      entirely to caching the CR0.TS bit for software accesses.
      
      Right now we use a bit in the thread-info 'status' variable (this patch
      does not change that), but we might want to make it a full field of its
      own or even make it a per-cpu variable.
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      6d59d7a9
    • L
      i387: move TS_USEDFPU clearing out of __save_init_fpu and into callers · b6c66418
      Linus Torvalds 提交于
      Touching TS_USEDFPU without touching CR0.TS is confusing, so don't do
      it.  By moving it into the callers, we always do the TS_USEDFPU next to
      the CR0.TS accesses in the source code, and it's much easier to see how
      the two go hand in hand.
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      b6c66418
    • L
      i387: fix x86-64 preemption-unsafe user stack save/restore · 15d8791c
      Linus Torvalds 提交于
      Commit 5b1cbac3 ("i387: make irq_fpu_usable() tests more robust")
      added a sanity check to the #NM handler to verify that we never cause
      the "Device Not Available" exception in kernel mode.
      
      However, that check actually pinpointed a (fundamental) race where we do
      cause that exception as part of the signal stack FPU state save/restore
      code.
      
      Because we use the floating point instructions themselves to save and
      restore state directly from user mode, we cannot do that atomically with
      testing the TS_USEDFPU bit: the user mode access itself may cause a page
      fault, which causes a task switch, which saves and restores the FP/MMX
      state from the kernel buffers.
      
      This kind of "recursive" FP state save is fine per se, but it means that
      when the signal stack save/restore gets restarted, it will now take the
      '#NM' exception we originally tried to avoid.  With preemption this can
      happen even without the page fault - but because of the user access, we
      cannot just disable preemption around the save/restore instruction.
      
      There are various ways to solve this, including using the
      "enable/disable_page_fault()" helpers to not allow page faults at all
      during the sequence, and fall back to copying things by hand without the
      use of the native FP state save/restore instructions.
      
      However, the simplest thing to do is to just allow the #NM from kernel
      space, but fix the race in setting and clearing CR0.TS that this all
      exposed: the TS bit changes and the TS_USEDFPU bit absolutely have to be
      atomic wrt scheduling, so while the actual state save/restore can be
      interrupted and restarted, the act of actually clearing/setting CR0.TS
      and the TS_USEDFPU bit together must not.
      
      Instead of just adding random "preempt_disable/enable()" calls to what
      is already excessively ugly code, this introduces some helper functions
      that mostly mirror the "kernel_fpu_begin/end()" functionality, just for
      the user state instead.
      
      Those helper functions should probably eventually replace the other
      ad-hoc CR0.TS and TS_USEDFPU tests too, but I'll need to think about it
      some more: the task switching functionality in particular needs to
      expose the difference between the 'prev' and 'next' threads, while the
      new helper functions intentionally were written to only work with
      'current'.
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      15d8791c
  4. 16 2月, 2012 1 次提交
    • L
      i387: fix sense of sanity check · c38e2345
      Linus Torvalds 提交于
      The check for save_init_fpu() (introduced in commit 5b1cbac3: "i387:
      make irq_fpu_usable() tests more robust") was the wrong way around, but
      I hadn't noticed, because my "tests" were bogus: the FPU exceptions are
      disabled by default, so even doing a divide by zero never actually
      triggers this code at all unless you do extra work to enable them.
      
      So if anybody did enable them, they'd get one spurious warning.
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      c38e2345
  5. 14 2月, 2012 2 次提交
    • L
      i387: make irq_fpu_usable() tests more robust · 5b1cbac3
      Linus Torvalds 提交于
      Some code - especially the crypto layer - wants to use the x86
      FP/MMX/AVX register set in what may be interrupt (typically softirq)
      context.
      
      That *can* be ok, but the tests for when it was ok were somewhat
      suspect.  We cannot touch the thread-specific status bits either, so
      we'd better check that we're not going to try to save FP state or
      anything like that.
      
      Now, it may be that the TS bit is always cleared *before* we set the
      USEDFPU bit (and only set when we had already cleared the USEDFP
      before), so the TS bit test may actually have been sufficient, but it
      certainly was not obviously so.
      
      So this explicitly verifies that we will not touch the TS_USEDFPU bit,
      and adds a few related sanity-checks.  Because it seems that somehow
      AES-NI is corrupting user FP state.  The cause is not clear, and this
      patch doesn't fix it, but while debugging it I really wanted the code to
      be more obviously correct and robust.
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      5b1cbac3
    • L
      i387: math_state_restore() isn't called from asm · be98c2cd
      Linus Torvalds 提交于
      It was marked asmlinkage for some really old and stale legacy reasons.
      Fix that and the equally stale comment.
      
      Noticed when debugging the irq_fpu_usable() bugs.
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      be98c2cd
  6. 01 2月, 2012 2 次提交
    • S
      KVM: x86: fix missing checks in syscall emulation · c2226fc9
      Stephan Bärwolf 提交于
      On hosts without this patch, 32bit guests will crash (and 64bit guests
      may behave in a wrong way) for example by simply executing following
      nasm-demo-application:
      
          [bits 32]
          global _start
          SECTION .text
          _start: syscall
      
      (I tested it with winxp and linux - both always crashed)
      
          Disassembly of section .text:
      
          00000000 <_start>:
             0:   0f 05                   syscall
      
      The reason seems a missing "invalid opcode"-trap (int6) for the
      syscall opcode "0f05", which is not available on Intel CPUs
      within non-longmodes, as also on some AMD CPUs within legacy-mode.
      (depending on CPU vendor, MSR_EFER and cpuid)
      
      Because previous mentioned OSs may not engage corresponding
      syscall target-registers (STAR, LSTAR, CSTAR), they remain
      NULL and (non trapping) syscalls are leading to multiple
      faults and finally crashs.
      
      Depending on the architecture (AMD or Intel) pretended by
      guests, various checks according to vendor's documentation
      are implemented to overcome the current issue and behave
      like the CPUs physical counterparts.
      
      [mtosatti: cleanup/beautify code]
      Signed-off-by: NStephan Baerwolf <stephan.baerwolf@tu-ilmenau.de>
      Signed-off-by: NMarcelo Tosatti <mtosatti@redhat.com>
      c2226fc9
    • S
      KVM: x86: extend "struct x86_emulate_ops" with "get_cpuid" · bdb42f5a
      Stephan Bärwolf 提交于
      In order to be able to proceed checks on CPU-specific properties
      within the emulator, function "get_cpuid" is introduced.
      With "get_cpuid" it is possible to virtually call the guests
      "cpuid"-opcode without changing the VM's context.
      
      [mtosatti: cleanup/beautify code]
      Signed-off-by: NStephan Baerwolf <stephan.baerwolf@tu-ilmenau.de>
      Signed-off-by: NMarcelo Tosatti <mtosatti@redhat.com>
      bdb42f5a
  7. 27 1月, 2012 1 次提交
  8. 26 1月, 2012 2 次提交
  9. 20 1月, 2012 1 次提交
  10. 17 1月, 2012 4 次提交
  11. 16 1月, 2012 1 次提交
  12. 13 1月, 2012 1 次提交
  13. 10 1月, 2012 1 次提交
  14. 08 1月, 2012 1 次提交
  15. 07 1月, 2012 4 次提交
    • K
      x86/PCI: Expand the x86_msi_ops to have a restore MSIs. · 76ccc297
      Konrad Rzeszutek Wilk 提交于
      The MSI restore function will become a function pointer in an
      x86_msi_ops struct. It defaults to the implementation in the
      io_apic.c and msi.c. We piggyback on the indirection mechanism
      introduced by "x86: Introduce x86_msi_ops".
      
      Cc: x86@kernel.org
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: "H. Peter Anvin" <hpa@zytor.com>
      Cc: linux-pci@vger.kernel.org
      Signed-off-by: NKonrad Rzeszutek Wilk <konrad.wilk@oracle.com>
      Signed-off-by: NJesse Barnes <jbarnes@virtuousgeek.org>
      76ccc297
    • B
      x86/PCI: amd: factor out MMCONFIG discovery · 24d25dbf
      Bjorn Helgaas 提交于
      This factors out the AMD native MMCONFIG discovery so we can use it
      outside amd_bus.c.
      
      amd_bus.c reads AMD MSRs so it can remove the MMCONFIG area from the
      PCI resources.  We may also need the MMCONFIG information to work
      around BIOS defects in the ACPI MCFG table.
      
      Cc: Borislav Petkov <borislav.petkov@amd.com>
      Cc: Yinghai Lu <yinghai@kernel.org>
      Cc: stable@kernel.org       # 2.6.34+
      Signed-off-by: NBjorn Helgaas <bhelgaas@google.com>
      Signed-off-by: NJesse Barnes <jbarnes@virtuousgeek.org>
      24d25dbf
    • B
      x86/PCI: convert to pci_create_root_bus() and pci_scan_root_bus() · 2cd6975a
      Bjorn Helgaas 提交于
      x86 has two kinds of PCI root bus scanning:
      
      (1) ACPI-based, using _CRS resources.  This used pci_create_bus(), not
          pci_scan_bus(), because ACPI hotplug needed to split the
          pci_bus_add_devices() into a separate host bridge .start() method.
      
          This patch parses the _CRS resources earlier, so we can build a list of
          resources and pass it to pci_create_root_bus().
      
          Note that as before, we parse the _CRS even if we aren't going to use
          it so we can print it for debugging purposes.
      
      (2) All other, which used either default resources (ioport_resource and
          iomem_resource) or information read from the hardware via amd_bus.c or
          similar.  This used pci_scan_bus().
      
          This patch converts x86_pci_root_bus_res_quirks() (previously called
          from pcibios_fixup_bus()) to x86_pci_root_bus_resources(), which builds
          a list of resources before we call pci_scan_root_bus().
      
          We also use x86_pci_root_bus_resources() if we have ACPI but are
          ignoring _CRS.
      
      CC: Yinghai Lu <yinghai.lu@oracle.com>
      Signed-off-by: NBjorn Helgaas <bhelgaas@google.com>
      Signed-off-by: NJesse Barnes <jbarnes@virtuousgeek.org>
      2cd6975a
    • M
      PCI: Pull PCI 'latency timer' setup up into the core · 96c55900
      Myron Stowe 提交于
      The 'latency timer' of PCI devices, both Type 0 and Type 1,
      is setup in architecture-specific code [see: 'pcibios_set_master()'].
      There are two approaches being taken by all the architectures - check
      if the 'latency timer' is currently set between 16 and 255 and if not
      bring it within bounds, or, do nothing (and then there is the
      gratuitously different PA-RISC implementation).
      
      There is nothing architecture-specific about PCI's 'latency timer' so
      this patch pulls its setup functionality up into the PCI core by
      creating a generic 'pcibios_set_master()' function using the '__weak'
      attribute which can be used by all architectures as a default which,
      if necessary, can then be over-ridden by architecture-specific code.
      
      No functional change.
      Signed-off-by: NMyron Stowe <myron.stowe@redhat.com>
      Signed-off-by: NJesse Barnes <jbarnes@virtuousgeek.org>
      96c55900
  16. 04 1月, 2012 2 次提交
    • E
      x86: Fix atomic64_xxx_cx8() functions · ceb7b40b
      Eric Dumazet 提交于
      It appears about all functions in arch/x86/lib/atomic64_cx8_32.S
      are wrong in case cmpxchg8b must be restarted, because
      LOCK_PREFIX macro defines a label "1" clashing with other local
      labels :
      
      1:
      	some_instructions
      	LOCK_PREFIX
      	cmpxchg8b (%ebp)
      	jne 1b  / jumps to beginning of LOCK_PREFIX !
      
      A possible fix is to use a magic label "672" in LOCK_PREFIX asm
      definition, similar to the "671" one we defined in
      LOCK_PREFIX_HERE.
      Signed-off-by: NEric Dumazet <eric.dumazet@gmail.com>
      Acked-by: NJan Beulich <JBeulich@suse.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Andrew Morton <akpm@linux-foundation.org>
      Link: http://lkml.kernel.org/r/1325608540.2320.103.camel@edumazet-HP-Compaq-6005-Pro-SFF-PCSigned-off-by: NIngo Molnar <mingo@elte.hu>
      ceb7b40b
    • J
      x86: Fix and improve cmpxchg_double{,_local}() · cdcd6298
      Jan Beulich 提交于
      Just like the per-CPU ones they had several
      problems/shortcomings:
      
      Only the first memory operand was mentioned in the asm()
      operands, and the 2x64-bit version didn't have a memory clobber
      while the 2x32-bit one did. The former allowed the compiler to
      not recognize the need to re-load the data in case it had it
      cached in some register, while the latter was overly
      destructive.
      
      The types of the local copies of the old and new values were
      incorrect (the types of the pointed-to variables should be used
      here, to make sure the respective old/new variable types are
      compatible).
      
      The __dummy/__junk variables were pointless, given that local
      copies of the inputs already existed (and can hence be used for
      discarded outputs).
      
      The 32-bit variant of cmpxchg_double_local() referenced
      cmpxchg16b_local().
      
      At once also:
      
       - change the return value type to what it really is: 'bool'
       - unify 32- and 64-bit variants
       - abstract out the common part of the 'normal' and 'local' variants
      Signed-off-by: NJan Beulich <jbeulich@suse.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Andrew Morton <akpm@linux-foundation.org>
      Link: http://lkml.kernel.org/r/4F01F12A020000780006A19B@nat28.tlf.novell.comSigned-off-by: NIngo Molnar <mingo@elte.hu>
      cdcd6298
  17. 27 12月, 2011 8 次提交