- 29 1月, 2014 40 次提交
-
-
Instead of looking for a file extent item, process it, release the path and do a btree search for the next file extent item, just process all file extent items in a leaf without intermediate btree searches. This way we save cpu and we're not blocking other tasks or affecting concurrency on the btree, because send's paths use the commit root and skip btree node/leaf locking. Signed-off-by: NFilipe David Borba Manana <fdmanana@gmail.com> Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Wang Shilong 提交于
We can only tolerate ENOENT here, for other errors, we should return directly. Signed-off-by: NWang Shilong <wangsl.fnst@cn.fujitsu.com> Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Wang Shilong 提交于
There is a race condition between resolving indirect ref and root deletion, and we should gurantee that root can not be destroyed to avoid accessing broken tree here. Here we fix it by holding @subvol_srcu, and we will release it as soon as we have held root node lock. Signed-off-by: NWang Shilong <wangsl.fnst@cn.fujitsu.com> Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Gui Hecheng 提交于
When we have two adjacent extents in relink_extent_backref, we try to merge them. When we use btrfs_search_slot to locate the slot for the current extent, we shouldn't set "ins_len = 1", because we will merge it into the previous extent rather than insert a new item. Otherwise, we may happen to create a new leaf in btrfs_search_slot and path->slot[0] will be 0. Then we try to fetch the previous item using "path->slots[0]--", and it will cause a warning as follows: [ 145.713385] WARNING: CPU: 3 PID: 1796 at fs/btrfs/extent_io.c:5043 map_private_extent_buffer+0xd4/0xe0 [ 145.713387] btrfs bad mapping eb start 53370886 len 4096, wanted 167772306 8 ... [ 145.713462] [<ffffffffa034b1f4>] map_private_extent_buffer+0xd4/0xe0 [ 145.713476] [<ffffffffa030097a>] ? btrfs_free_path+0x2a/0x40 [ 145.713485] [<ffffffffa0340864>] btrfs_get_token_64+0x64/0xf0 [ 145.713498] [<ffffffffa033472c>] relink_extent_backref+0x41c/0x820 [ 145.713508] [<ffffffffa0334d69>] btrfs_finish_ordered_io+0x239/0xa80 I encounter this warning when running defrag having mkfs.btrfs with option -M. At the same time there are read/writes & snapshots running at background. Signed-off-by: NGui Hecheng <guihc.fnst@cn.fujitsu.com> Reviewed-by: NLiu Bo <bo.li.liu@oracle.com> Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
The send operation processes inodes by their ascending number, and assumes that any rename/move operation can be successfully performed (sent to the caller) once all previous inodes (those with a smaller inode number than the one we're currently processing) were processed. This is not true when an incremental send had to process an hierarchical change between 2 snapshots where the parent-children relationship between directory inodes was reversed - that is, parents became children and children became parents. This situation made the path building code go into an infinite loop, which kept allocating more and more memory that eventually lead to a krealloc warning being displayed in dmesg: WARNING: CPU: 1 PID: 5705 at mm/page_alloc.c:2477 __alloc_pages_nodemask+0x365/0xad0() Modules linked in: btrfs raid6_pq xor pci_stub vboxpci(O) vboxnetadp(O) vboxnetflt(O) vboxdrv(O) snd_hda_codec_hdmi snd_hda_codec_realtek joydev radeon snd_hda_intel snd_hda_codec snd_hwdep snd_seq_midi snd_pcm psmouse i915 snd_rawmidi serio_raw snd_seq_midi_event lpc_ich snd_seq snd_timer ttm snd_seq_device rfcomm drm_kms_helper parport_pc bnep bluetooth drm ppdev snd soundcore i2c_algo_bit snd_page_alloc binfmt_misc video lp parport r8169 mii hid_generic usbhid hid CPU: 1 PID: 5705 Comm: btrfs Tainted: G O 3.13.0-rc7-fdm-btrfs-next-18+ #3 Hardware name: To Be Filled By O.E.M. To Be Filled By O.E.M./Z77 Pro4, BIOS P1.50 09/04/2012 [ 5381.660441] 00000000000009ad ffff8806f6f2f4e8 ffffffff81777434 0000000000000007 [ 5381.660447] 0000000000000000 ffff8806f6f2f528 ffffffff8104a9ec ffff8807038f36f0 [ 5381.660452] 0000000000000000 0000000000000206 ffff8807038f2490 ffff8807038f36f0 [ 5381.660457] Call Trace: [ 5381.660464] [<ffffffff81777434>] dump_stack+0x4e/0x68 [ 5381.660471] [<ffffffff8104a9ec>] warn_slowpath_common+0x8c/0xc0 [ 5381.660476] [<ffffffff8104aa3a>] warn_slowpath_null+0x1a/0x20 [ 5381.660480] [<ffffffff81144995>] __alloc_pages_nodemask+0x365/0xad0 [ 5381.660487] [<ffffffff8108313f>] ? local_clock+0x4f/0x60 [ 5381.660491] [<ffffffff811430e8>] ? free_one_page+0x98/0x440 [ 5381.660495] [<ffffffff8108313f>] ? local_clock+0x4f/0x60 [ 5381.660502] [<ffffffff8113fae4>] ? __get_free_pages+0x14/0x50 [ 5381.660508] [<ffffffff81095fb8>] ? trace_hardirqs_off_caller+0x28/0xd0 [ 5381.660515] [<ffffffff81183caf>] alloc_pages_current+0x10f/0x1f0 [ 5381.660520] [<ffffffff8113fae4>] ? __get_free_pages+0x14/0x50 [ 5381.660524] [<ffffffff8113fae4>] __get_free_pages+0x14/0x50 [ 5381.660530] [<ffffffff8115dace>] kmalloc_order_trace+0x3e/0x100 [ 5381.660536] [<ffffffff81191ea0>] __kmalloc_track_caller+0x220/0x230 [ 5381.660560] [<ffffffffa0729fdb>] ? fs_path_ensure_buf.part.12+0x6b/0x200 [btrfs] [ 5381.660564] [<ffffffff8178085c>] ? retint_restore_args+0xe/0xe [ 5381.660569] [<ffffffff811580ef>] krealloc+0x6f/0xb0 [ 5381.660586] [<ffffffffa0729fdb>] fs_path_ensure_buf.part.12+0x6b/0x200 [btrfs] [ 5381.660601] [<ffffffffa072a208>] fs_path_prepare_for_add+0x98/0xb0 [btrfs] [ 5381.660615] [<ffffffffa072a2bc>] fs_path_add_path+0x2c/0x60 [btrfs] [ 5381.660628] [<ffffffffa072c55c>] get_cur_path+0x7c/0x1c0 [btrfs] Even without this loop, the incremental send couldn't succeed, because it would attempt to send a rename/move operation for the lower inode before the highest inode number was renamed/move. This issue is easy to trigger with the following steps: $ mkfs.btrfs -f /dev/sdb3 $ mount /dev/sdb3 /mnt/btrfs $ mkdir -p /mnt/btrfs/a/b/c/d $ mkdir /mnt/btrfs/a/b/c2 $ btrfs subvol snapshot -r /mnt/btrfs /mnt/btrfs/snap1 $ mv /mnt/btrfs/a/b/c/d /mnt/btrfs/a/b/c2/d2 $ mv /mnt/btrfs/a/b/c /mnt/btrfs/a/b/c2/d2/cc $ btrfs subvol snapshot -r /mnt/btrfs /mnt/btrfs/snap2 $ btrfs send -p /mnt/btrfs/snap1 /mnt/btrfs/snap2 > /tmp/incremental.send The structure of the filesystem when the first snapshot is taken is: . (ino 256) |-- a (ino 257) |-- b (ino 258) |-- c (ino 259) | |-- d (ino 260) | |-- c2 (ino 261) And its structure when the second snapshot is taken is: . (ino 256) |-- a (ino 257) |-- b (ino 258) |-- c2 (ino 261) |-- d2 (ino 260) |-- cc (ino 259) Before the move/rename operation is performed for the inode 259, the move/rename for inode 260 must be performed, since 259 is now a child of 260. A test case for xfstests, with a more complex scenario, will follow soon. Signed-off-by: NFilipe David Borba Manana <fdmanana@gmail.com> Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Anand Jain 提交于
reproducer: mkfs.btrfs -f /dev/sdb &&\ mount /dev/sdb /btrfs &&\ btrfs dev add -f /dev/sdc /btrfs &&\ umount /btrfs &&\ wipefs -a /dev/sdc &&\ mount -o degraded /dev/sdb /btrfs //above mount fails so try with RO mount -o degraded,ro /dev/sdb /btrfs ------ sysfs: cannot create duplicate filename '/fs/btrfs/3f48c79e-5ed0-4e87-b189-86e749e503f4' :: dump_stack+0x49/0x5e warn_slowpath_common+0x87/0xb0 warn_slowpath_fmt+0x41/0x50 strlcat+0x69/0x80 sysfs_warn_dup+0x87/0xa0 sysfs_add_one+0x40/0x50 create_dir+0x76/0xc0 sysfs_create_dir_ns+0x7a/0xc0 kobject_add_internal+0xad/0x220 kobject_add_varg+0x38/0x60 kobject_init_and_add+0x53/0x70 mutex_lock+0x11/0x40 __free_pages+0x25/0x30 free_pages+0x41/0x50 selinux_sb_copy_data+0x14e/0x1e0 mount_fs+0x3e/0x1a0 vfs_kern_mount+0x71/0x120 do_mount+0x3f7/0x980 SyS_mount+0x8b/0xe0 system_call_fastpath+0x16/0x1b ------ further 'modprobe -r btrfs' fails as well Signed-off-by: NAnand Jain <anand.jain@oracle.com> Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
The buffer size argument passed to snprintf must account for the trailing null byte added by snprintf, and it returns a value >= then sizeof(buffer) when the string can't fit in the buffer. Since our buffer has a size of 64 characters, and the maximum orphan name we can generate is 63 characters wide, we must pass 64 as the buffer size to snprintf, and not 63. Signed-off-by: NFilipe David Borba Manana <fdmanana@gmail.com> Reviewed-by: NDavid Sterba <dsterba@suse.cz> Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Justin Maggard 提交于
When defragging a very large file, the cluster variable can wrap its 32-bit signed int type and become negative, which eventually gets passed to btrfs_force_ra() as a very large unsigned long value. On 32-bit platforms, this eventually results in an Oops from the SLAB allocator. Change the cluster and max_cluster signed int variables to unsigned long to match the readahead functions. This also allows the min() comparison in btrfs_defrag_file() to work as intended. Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 David Sterba 提交于
Signed-off-by: NDavid Sterba <dsterba@suse.cz> Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 David Sterba 提交于
The COMPRESS_LZOv2 incompat featue is currently not implemented, the bit is only reserved, no point to list it in sysfs. Signed-off-by: NDavid Sterba <dsterba@suse.cz> Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 David Sterba 提交于
The owner and capability checks in IOC_SUBVOL_SETFLAGS and SET_RECEIVED_SUBVOL should be called before any other checks are done. Also unify the error code to EPERM. Signed-off-by: NDavid Sterba <dsterba@suse.cz> Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 David Sterba 提交于
Currently, any user can snapshot any subvolume if the path is accessible and thus indirectly create and keep files he does not own under his direcotries. This is not possible with traditional directories. In security context, a user can snapshot root filesystem and pin any potentially buggy binaries, even if the updates are applied. All the snapshots are visible to the administrator, so it's possible to verify if there are suspicious snapshots. Another more practical problem is that any user can pin the space used by eg. root and cause ENOSPC. Original report: https://bugs.launchpad.net/ubuntu/+source/apparmor/+bug/484786 CC: stable@vger.kernel.org Signed-off-by: NDavid Sterba <dsterba@suse.cz> Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Miao Xie 提交于
We allocate the free space from the former block group, not the current one, so should use the former one to output the trace information. Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com> Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Miao Xie 提交于
used_block_group is just used for the space cluster which doesn't belong to the current block group, the other place needn't use it. Or the logic of code seems unclear. Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com> Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Miao Xie 提交于
Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com> Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Miao Xie 提交于
It is better that the position of the lock is close to the data which is protected by it, because they may be in the same cache line, we will load less cache lines when we access them. So we rearrange the members' position of btrfs_space_info structure to make the lock be closer to the its data. Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com> Reviewed-by: NDavid Sterba <dsterba@suse.cz> Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Wang Shilong 提交于
To search tree root without transaction protection, we should neither search commit root nor skip locking here, fix it. Signed-off-by: NWang Shilong <wangsl.fnst@cn.fujitsu.com> Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Miao Xie 提交于
The performance of fsync dropped down suddenly sometimes, the main reason of this problem was that we might only flush part dirty pages in a ordered extent, then got that ordered extent, wait for the csum calcucation. But if no task flushed the left part, we would wait until the flusher flushed them, sometimes we need wait for several seconds, it made the performance drop down suddenly. (On my box, it drop down from 56MB/s to 4-10MB/s) This patch improves the above problem by flushing left dirty pages aggressively. Test Environment: CPU: 2CPU * 2Cores Memory: 4GB Partition: 20GB(HDD) Test Command: # sysbench --num-threads=8 --test=fileio --file-num=1 \ > --file-total-size=8G --file-block-size=32768 \ > --file-io-mode=sync --file-fsync-freq=100 \ > --file-fsync-end=no --max-requests=10000 \ > --file-test-mode=rndwr run Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com> Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Wang Shilong 提交于
Steps to reproduce: # mkfs.btrfs -f /dev/sda8 # mount /dev/sda8 /mnt -o flushoncommit # dd if=/dev/zero of=/mnt/data bs=4k count=102400 & # mount /dev/sda8 /mnt -o remount, ro When remounting RW to RO, the logic is to firstly set flag to RO and then commit transaction, however with option flushoncommit enabled,we will do RO check within committing transaction, so we get a transaction abortion here. Actually,here check is wrong, we should check if FS_STATE_ERROR is set, fix it. Reported-by: NQu Wenruo <quwenruo@cn.fujitsu.com> Suggested-by: NMiao Xie <miaox@cn.fujitsu.com> Signed-off-by: NWang Shilong <wangsl.fnst@cn.fujitsu.com> Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
When we are looking for file extent items that intersect the cloning range, for each one that falls completely outside the range, don't release the path and do another full tree search - just move on to the next slot and copy the file extent item into our buffer only if the item intersects the cloning range. Signed-off-by: NFilipe David Borba Manana <fdmanana@gmail.com> Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Liu Bo 提交于
When transaction is aborted, we fail to commit transaction, instead we do cleanup work. After that when we umount btrfs, we get to free fs roots' log trees respectively, but that happens after we unpin extents, so those extents pinned by freeing log trees will remain in memory and lead to the leak. Signed-off-by: NLiu Bo <bo.li.liu@oracle.com> Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Qu Wenruo 提交于
Since remount will pending the new mount options to the original mount options, which will make btrfs_parse_options check the old options then new options, causing some stupid output like "enabling XXX" following by "disable XXX". This patch will add extra check before every btrfs_info to skip the output from old options checking. Signed-off-by: NQu Wenruo <quwenruo@cn.fujitsu.com> Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Qu Wenruo 提交于
Add noinode_cache mount option for btrfs. Since inode map cache involves all the btrfs_find_free_ino/return_ino things and if just trigger the mount_opt, an inode number get from inode map cache will not returned to inode map cache. To keep the find and return inode both in the same behavior, a new bit in mount_opt, CHANGE_INODE_CACHE, is introduced for this idea. CHANGE_INODE_CACHE is set/cleared in remounting, and the original INODE_MAP_CACHE is set/cleared according to CHANGE_INODE_CACHE after a success transaction. Since find/return inode is all done between btrfs_start_transaction and btrfs_commit_transaction, this will keep consistent behavior. Also noinode_cache mount option will not stop the caching_kthread. Cc: David Sterba <dsterba@suse.cz> Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com> Signed-off-by: NQu Wenruo <quwenruo@cn.fujitsu.com> Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Wang Shilong 提交于
There is a bug that using btrfs_previous_item() to search metadata extent item. This is because in btrfs_previous_item(), we need type match, however, since skinny metada was introduced by josef, we may mix this two types. So just use btrfs_previous_item() is not working right. To keep btrfs_previous_item() like normal tree search, i introduce another function btrfs_previous_extent_item(). Signed-off-by: NWang Shilong <wangsl.fnst@cn.fujitsu.com> Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Wang Shilong 提交于
Check if we support skinny metadata firstly and fix to use right type to search. Signed-off-by: NWang Shilong <wangsl.fnst@cn.fujitsu.com> Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
It is possible for the send feature to send clone operations that request a cloning range (offset + length) that is not aligned with the block size. This makes the btrfs receive command send issue a clone ioctl call that will fail, as the ioctl will return an -EINVAL error because of the unaligned range. Fix this by not sending clone operations for non block aligned ranges, and instead send regular write operation for these (less common) cases. The following xfstest reproduces this issue, which fails on the second btrfs receive command without this change: seq=`basename $0` seqres=$RESULT_DIR/$seq echo "QA output created by $seq" tmp=`mktemp -d` status=1 # failure is the default! trap "_cleanup; exit \$status" 0 1 2 3 15 _cleanup() { rm -fr $tmp } # get standard environment, filters and checks . ./common/rc . ./common/filter # real QA test starts here _supported_fs btrfs _supported_os Linux _require_scratch _need_to_be_root rm -f $seqres.full _scratch_mkfs >/dev/null 2>&1 _scratch_mount $XFS_IO_PROG -f -c "truncate 819200" $SCRATCH_MNT/foo | _filter_xfs_io $BTRFS_UTIL_PROG filesystem sync $SCRATCH_MNT | _filter_scratch $XFS_IO_PROG -c "falloc -k 819200 667648" $SCRATCH_MNT/foo | _filter_xfs_io $BTRFS_UTIL_PROG filesystem sync $SCRATCH_MNT | _filter_scratch $XFS_IO_PROG -f -c "pwrite 1482752 2978" $SCRATCH_MNT/foo | _filter_xfs_io $BTRFS_UTIL_PROG filesystem sync $SCRATCH_MNT | _filter_scratch $BTRFS_UTIL_PROG subvol snapshot -r $SCRATCH_MNT $SCRATCH_MNT/mysnap1 | \ _filter_scratch $XFS_IO_PROG -f -c "truncate 883305" $SCRATCH_MNT/foo | _filter_xfs_io $BTRFS_UTIL_PROG filesystem sync $SCRATCH_MNT | _filter_scratch $BTRFS_UTIL_PROG subvol snapshot -r $SCRATCH_MNT $SCRATCH_MNT/mysnap2 | \ _filter_scratch $BTRFS_UTIL_PROG send $SCRATCH_MNT/mysnap1 -f $tmp/1.snap 2>&1 | _filter_scratch $BTRFS_UTIL_PROG send -p $SCRATCH_MNT/mysnap1 $SCRATCH_MNT/mysnap2 \ -f $tmp/2.snap 2>&1 | _filter_scratch md5sum $SCRATCH_MNT/foo | _filter_scratch md5sum $SCRATCH_MNT/mysnap1/foo | _filter_scratch md5sum $SCRATCH_MNT/mysnap2/foo | _filter_scratch _scratch_unmount _check_btrfs_filesystem $SCRATCH_DEV _scratch_mkfs >/dev/null 2>&1 _scratch_mount $BTRFS_UTIL_PROG receive $SCRATCH_MNT -f $tmp/1.snap md5sum $SCRATCH_MNT/mysnap1/foo | _filter_scratch $BTRFS_UTIL_PROG receive $SCRATCH_MNT -f $tmp/2.snap md5sum $SCRATCH_MNT/mysnap2/foo | _filter_scratch _scratch_unmount _check_btrfs_filesystem $SCRATCH_DEV status=0 exit The tests expected output is: QA output created by 025 FSSync 'SCRATCH_MNT' FSSync 'SCRATCH_MNT' wrote 2978/2978 bytes at offset 1482752 XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec) FSSync 'SCRATCH_MNT' Create a readonly snapshot of 'SCRATCH_MNT' in 'SCRATCH_MNT/mysnap1' FSSync 'SCRATCH_MNT' Create a readonly snapshot of 'SCRATCH_MNT' in 'SCRATCH_MNT/mysnap2' At subvol SCRATCH_MNT/mysnap1 At subvol SCRATCH_MNT/mysnap2 129b8eaee8d3c2bcad49bec596591cb3 SCRATCH_MNT/foo 42b6369eae2a8725c1aacc0440e597aa SCRATCH_MNT/mysnap1/foo 129b8eaee8d3c2bcad49bec596591cb3 SCRATCH_MNT/mysnap2/foo At subvol mysnap1 42b6369eae2a8725c1aacc0440e597aa SCRATCH_MNT/mysnap1/foo At snapshot mysnap2 129b8eaee8d3c2bcad49bec596591cb3 SCRATCH_MNT/mysnap2/foo Signed-off-by: NFilipe David Borba Manana <fdmanana@gmail.com> Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
After the change titled "Btrfs: add support for inode properties", if btrfs was built-in the kernel (i.e. not as a module), it would cause a kernel panic, as reported recently by Fengguang: [ 2.024722] BUG: unable to handle kernel NULL pointer dereference at (null) [ 2.027814] IP: [<ffffffff81501594>] crc32c+0xc/0x6b [ 2.028684] PGD 0 [ 2.028684] Oops: 0000 [#1] SMP [ 2.028684] Modules linked in: [ 2.028684] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 3.13.0-rc7-04795-ga7b57c2 #1 [ 2.028684] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 [ 2.028684] task: ffff88000edba100 ti: ffff88000edd6000 task.ti: ffff88000edd6000 [ 2.028684] RIP: 0010:[<ffffffff81501594>] [<ffffffff81501594>] crc32c+0xc/0x6b [ 2.028684] RSP: 0000:ffff88000edd7e58 EFLAGS: 00010246 [ 2.028684] RAX: 0000000000000000 RBX: ffffffff82295550 RCX: 0000000000000000 [ 2.028684] RDX: 0000000000000011 RSI: ffffffff81efe393 RDI: 00000000fffffffe [ 2.028684] RBP: ffff88000edd7e60 R08: 0000000000000003 R09: 0000000000015d20 [ 2.028684] R10: ffffffff81ef225e R11: ffffffff811b0222 R12: ffffffffffffffff [ 2.028684] R13: 0000000000000239 R14: 0000000000000000 R15: 0000000000000000 [ 2.028684] FS: 0000000000000000(0000) GS:ffff88000fa00000(0000) knlGS:0000000000000000 [ 2.028684] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [ 2.028684] CR2: 0000000000000000 CR3: 000000000220c000 CR4: 00000000000006f0 [ 2.028684] Stack: [ 2.028684] ffffffff82295550 ffff88000edd7e80 ffffffff8238af62 ffffffff8238ac05 [ 2.028684] 0000000000000000 ffff88000edd7e98 ffffffff8238ac0f ffffffff8238ac05 [ 2.028684] ffff88000edd7f08 ffffffff810002ba ffff88000edd7f00 ffffffff810e2404 [ 2.028684] Call Trace: [ 2.028684] [<ffffffff8238af62>] btrfs_props_init+0x4f/0x96 [ 2.028684] [<ffffffff8238ac05>] ? ftrace_define_fields_btrfs_space_reservation+0x145/0x145 [ 2.028684] [<ffffffff8238ac0f>] init_btrfs_fs+0xa/0xf0 [ 2.028684] [<ffffffff8238ac05>] ? ftrace_define_fields_btrfs_space_reservation+0x145/0x145 [ 2.028684] [<ffffffff810002ba>] do_one_initcall+0xa4/0x13a [ 2.028684] [<ffffffff810e2404>] ? parse_args+0x25f/0x33d [ 2.028684] [<ffffffff8234cf75>] kernel_init_freeable+0x1aa/0x230 [ 2.028684] [<ffffffff8234c785>] ? do_early_param+0x88/0x88 [ 2.028684] [<ffffffff819f61b5>] ? rest_init+0x89/0x89 [ 2.028684] [<ffffffff819f61c3>] kernel_init+0xe/0x109 The issue here is that the initialization function of btrfs (super.c:init_btrfs_fs) started using crc32c (from lib/libcrc32c.c). But when it needs to call crc32c (as part of the properties initialization routine), the libcrc32c is not yet initialized, so crc32c derreferenced a NULL pointer (lib/libcrc32c.c:tfm), causing the kernel panic on boot. The approach to fix this is to use crypto component directly to use its crc32c (which is basically what lib/libcrc32c.c is, a wrapper around crypto). This is what ext4 is doing as well, it uses crypto directly to get crc32c functionality. Verified this works both when btrfs is built-in and when it's loadable kernel module. Signed-off-by: NFilipe David Borba Manana <fdmanana@gmail.com> Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
In the clone ioctl, when the source and target inodes are different, we can acquire their mutexes in 2 possible different orders. After we're done cloning, we were releasing the mutexes always in the same order - the most correct way of doing it is to release them by the reverse order they were acquired. Signed-off-by: NFilipe David Borba Manana <fdmanana@gmail.com> Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Wang Shilong 提交于
Here we are not going to free memory, no need to remove every node one by one, just init root node here is ok. Cc: Liu Bo <bo.li.liu@oracle.com> Signed-off-by: NWang Shilong <wangsl.fnst@cn.fujitsu.com> Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Liu Bo 提交于
We don't have to keep subvolume's block_rsv during transaction commit, and within transaction commit, we may also need the free space reclaimed from this block_rsv to process delayed refs. Signed-off-by: NLiu Bo <bo.li.liu@oracle.com> Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Miao Xie 提交于
When we ran the 274th case of xfstests with nodatacow mount option, We met the following warning message: WARNING: CPU: 1 PID: 14185 at fs/btrfs/extent-tree.c:3734 btrfs_free_reserved_data_space+0xa6/0xd0 It is caused by the race between the write back and nocow buffered write: Task1 Task2 __btrfs_buffered_write() skip data reservation reserve the metadata space copy the data dirty the pages unlock the pages write back the pages release the data space becasue there is no noreserve flag set the noreserve flag This patch fixes this problem by unlocking the pages after the noreserve flag is set. Reported-by: NTsutomu Itoh <t-itoh@jp.fujitsu.com> Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com> Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Josef Bacik 提交于
The backref walking code will search down to the key it is looking for and then proceed to walk _all_ of the extents on the file until it hits the end. This is suboptimal with large files, we only need to look for as many extents as we have references for that inode. I have a testcase that creates a randomly written 4 gig file and before this patch it took 6min 30sec to do the initial send, with this patch it takes 2min 30sec to do the intial send. Thanks, Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Josef Bacik 提交于
Could have sworn I fixed this before but apparently not. This makes us pass btrfs/022 with skinny metadata enabled. Thanks, Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Josef Bacik 提交于
I don't think this is an issue and I've not seen it in practice but extent_from_logical will fail to find a skinny extent because it uses btrfs_previous_item and gives it the normal extent item type. This is just not a place to use btrfs_previous_item since we care about either normal extents or skinny extents, so open code btrfs_previous_item to properly check. This would only affect metadata and the only place this is used for metadata is scrub and I'm pretty sure it's just for printing stuff out, not actually doing any work so hopefully it was never a problem other than a cosmetic one. Thanks, Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Josef Bacik 提交于
On one of our gluster clusters we noticed some pretty big lag spikes. This turned out to be because our transaction commit was taking like 3 minutes to complete. This is because we have like 30 gigs of metadata, so our global reserve would end up being the max which is like 512 mb. So our throttling code would allow a ridiculous amount of delayed refs to build up and then they'd all get run at transaction commit time, and for a cold mounted file system that could take up to 3 minutes to run. So fix the throttling to be based on both the size of the global reserve and how long it takes us to run delayed refs. This patch tracks the time it takes to run delayed refs and then only allows 1 seconds worth of outstanding delayed refs at a time. This way it will auto-tune itself from cold cache up to when everything is in memory and it no longer has to go to disk. This makes our transaction commits take much less time to run. Thanks, Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Josef Bacik 提交于
Currently we have two rb-trees, one for delayed ref heads and one for all of the delayed refs, including the delayed ref heads. When we process the delayed refs we have to hold onto the delayed ref lock for all of the selecting and merging and such, which results in quite a bit of lock contention. This was solved by having a waitqueue and only one flusher at a time, however this hurts if we get a lot of delayed refs queued up. So instead just have an rb tree for the delayed ref heads, and then attach the delayed ref updates to an rb tree that is per delayed ref head. Then we only need to take the delayed ref lock when adding new delayed refs and when selecting a delayed ref head to process, all the rest of the time we deal with a per delayed ref head lock which will be much less contentious. The locking rules for this get a little more complicated since we have to lock up to 3 things to properly process delayed refs, but I will address that problem later. For now this passes all of xfstests and my overnight stress tests. Thanks, Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Josef Bacik 提交于
Looking into some performance related issues with large amounts of metadata revealed that we can have some pretty huge swings in fsync() performance. If we have a lot of delayed refs backed up (as you will tend to do with lots of metadata) fsync() will wander off and try to run some of those delayed refs which can result in reading from disk and such. Since the actual act of fsync() doesn't create any delayed refs there is no need to make it throttle on delayed ref stuff, that will be handled by other people. With this patch we get much smoother fsync performance with large amounts of metadata. Thanks, Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
This change adds infrastructure to allow for generic properties for inodes. Properties are name/value pairs that can be associated with inodes for different purposes. They are stored as xattrs with the prefix "btrfs." Properties can be inherited - this means when a directory inode has inheritable properties set, these are added to new inodes created under that directory. Further, subvolumes can also have properties associated with them, and they can be inherited from their parent subvolume. Naturally, directory properties have priority over subvolume properties (in practice a subvolume property is just a regular property associated with the root inode, objectid 256, of the subvolume's fs tree). This change also adds one specific property implementation, named "compression", whose values can be "lzo" or "zlib" and it's an inheritable property. The corresponding changes to btrfs-progs were also implemented. A patch with xfstests for this feature will follow once there's agreement on this change/feature. Further, the script at the bottom of this commit message was used to do some benchmarks to measure any performance penalties of this feature. Basically the tests correspond to: Test 1 - create a filesystem and mount it with compress-force=lzo, then sequentially create N files of 64Kb each, measure how long it took to create the files, unmount the filesystem, mount the filesystem and perform an 'ls -lha' against the test directory holding the N files, and report the time the command took. Test 2 - create a filesystem and don't use any compression option when mounting it - instead set the compression property of the subvolume's root to 'lzo'. Then create N files of 64Kb, and report the time it took. The unmount the filesystem, mount it again and perform an 'ls -lha' like in the former test. This means every single file ends up with a property (xattr) associated to it. Test 3 - same as test 2, but uses 4 properties - 3 are duplicates of the compression property, have no real effect other than adding more work when inheriting properties and taking more btree leaf space. Test 4 - same as test 3 but with 10 properties per file. Results (in seconds, and averages of 5 runs each), for different N numbers of files follow. * Without properties (test 1) file creation time ls -lha time 10 000 files 3.49 0.76 100 000 files 47.19 8.37 1 000 000 files 518.51 107.06 * With 1 property (compression property set to lzo - test 2) file creation time ls -lha time 10 000 files 3.63 0.93 100 000 files 48.56 9.74 1 000 000 files 537.72 125.11 * With 4 properties (test 3) file creation time ls -lha time 10 000 files 3.94 1.20 100 000 files 52.14 11.48 1 000 000 files 572.70 142.13 * With 10 properties (test 4) file creation time ls -lha time 10 000 files 4.61 1.35 100 000 files 58.86 13.83 1 000 000 files 656.01 177.61 The increased latencies with properties are essencialy because of: *) When creating an inode, we now synchronously write 1 more item (an xattr item) for each property inherited from the parent dir (or subvolume). This could be done in an asynchronous way such as we do for dir intex items (delayed-inode.c), which could help reduce the file creation latency; *) With properties, we now have larger fs trees. For this particular test each xattr item uses 75 bytes of leaf space in the fs tree. This could be less by using a new item for xattr items, instead of the current btrfs_dir_item, since we could cut the 'location' and 'type' fields (saving 18 bytes) and maybe 'transid' too (saving a total of 26 bytes per xattr item) from the btrfs_dir_item type. Also tried batching the xattr insertions (ignoring proper hash collision handling, since it didn't exist) when creating files that inherit properties from their parent inode/subvolume, but the end results were (surprisingly) essentially the same. Test script: $ cat test.pl #!/usr/bin/perl -w use strict; use Time::HiRes qw(time); use constant NUM_FILES => 10_000; use constant FILE_SIZES => (64 * 1024); use constant DEV => '/dev/sdb4'; use constant MNT_POINT => '/home/fdmanana/btrfs-tests/dev'; use constant TEST_DIR => (MNT_POINT . '/testdir'); system("mkfs.btrfs", "-l", "16384", "-f", DEV) == 0 or die "mkfs.btrfs failed!"; # following line for testing without properties #system("mount", "-o", "compress-force=lzo", DEV, MNT_POINT) == 0 or die "mount failed!"; # following 2 lines for testing with properties system("mount", DEV, MNT_POINT) == 0 or die "mount failed!"; system("btrfs", "prop", "set", MNT_POINT, "compression", "lzo") == 0 or die "set prop failed!"; system("mkdir", TEST_DIR) == 0 or die "mkdir failed!"; my ($t1, $t2); $t1 = time(); for (my $i = 1; $i <= NUM_FILES; $i++) { my $p = TEST_DIR . '/file_' . $i; open(my $f, '>', $p) or die "Error opening file!"; $f->autoflush(1); for (my $j = 0; $j < FILE_SIZES; $j += 4096) { print $f ('A' x 4096) or die "Error writing to file!"; } close($f); } $t2 = time(); print "Time to create " . NUM_FILES . ": " . ($t2 - $t1) . " seconds.\n"; system("umount", DEV) == 0 or die "umount failed!"; system("mount", DEV, MNT_POINT) == 0 or die "mount failed!"; $t1 = time(); system("bash -c 'ls -lha " . TEST_DIR . " > /dev/null'") == 0 or die "ls failed!"; $t2 = time(); print "Time to ls -lha all files: " . ($t2 - $t1) . " seconds.\n"; system("umount", DEV) == 0 or die "umount failed!"; Signed-off-by: NFilipe David Borba Manana <fdmanana@gmail.com> Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
When writing to a file we drop existing file extent items that cover the write range and then add a new file extent item that represents that write range. Before this change we were doing a tree lookup to remove the file extent items, and then after we did another tree lookup to insert the new file extent item. Most of the time all the file extent items we need to drop are located within a single leaf - this is the leaf where our new file extent item ends up at. Therefore, in this common case just combine these 2 operations into a single one. By avoiding the second btree navigation for insertion of the new file extent item, we reduce btree node/leaf lock acquisitions/releases, btree block/leaf COW operations, CPU time on btree node/leaf key binary searches, etc. Besides for file writes, this is an operation that happens for file fsync's as well. However log btrees are much less likely to big as big as regular fs btrees, therefore the impact of this change is smaller. The following benchmark was performed against an SSD drive and a HDD drive, both for random and sequential writes: sysbench --test=fileio --file-num=4096 --file-total-size=8G \ --file-test-mode=[rndwr|seqwr] --num-threads=512 \ --file-block-size=8192 \ --max-requests=1000000 \ --file-fsync-freq=0 --file-io-mode=sync [prepare|run] All results below are averages of 10 runs of the respective test. ** SSD sequential writes Before this change: 225.88 Mb/sec After this change: 277.26 Mb/sec ** SSD random writes Before this change: 49.91 Mb/sec After this change: 56.39 Mb/sec ** HDD sequential writes Before this change: 68.53 Mb/sec After this change: 69.87 Mb/sec ** HDD random writes Before this change: 13.04 Mb/sec After this change: 14.39 Mb/sec Signed-off-by: NFilipe David Borba Manana <fdmanana@gmail.com> Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-
由 Wang Shilong 提交于
We may return early in btrfs_drop_snapshot(), we shouldn't call btrfs_std_err() for this case, fix it. Cc: stable@vger.kernel.org Signed-off-by: NWang Shilong <wangsl.fnst@cn.fujitsu.com> Signed-off-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NChris Mason <clm@fb.com>
-