- 09 10月, 2013 14 次提交
-
-
由 Rik van Riel 提交于
It is possible for a task in a numa group to call exec, and have the new (unrelated) executable inherit the numa group association from its former self. This has the potential to break numa grouping, and is trivial to fix. Signed-off-by: NRik van Riel <riel@redhat.com> Signed-off-by: NMel Gorman <mgorman@suse.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-51-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
This patch uses the fraction of faults on a particular node for both task and group, to figure out the best node to place a task. If the task and group statistics disagree on what the preferred node should be then a full rescan will select the node with the best combined weight. Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-50-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Rik van Riel 提交于
A newly spawned thread inside a process should stay on the same NUMA node as its parent. This prevents processes from being "torn" across multiple NUMA nodes every time they spawn a new thread. Signed-off-by: NRik van Riel <riel@redhat.com> Signed-off-by: NMel Gorman <mgorman@suse.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-49-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
And here's a little something to make sure not the whole world ends up in a single group. As while we don't migrate shared executable pages, we do scan/fault on them. And since everybody links to libc, everybody ends up in the same group. Suggested-by: NRik van Riel <riel@redhat.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Link: http://lkml.kernel.org/r/1381141781-10992-47-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
It is desirable to model from userspace how the scheduler groups tasks over time. This patch adds an ID to the numa_group and reports it via /proc/PID/status. Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-45-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
While parallel applications tend to align their data on the cache boundary, they tend not to align on the page or THP boundary. Consequently tasks that partition their data can still "false-share" pages presenting a problem for optimal NUMA placement. This patch uses NUMA hinting faults to chain tasks together into numa_groups. As well as storing the NID a task was running on when accessing a page a truncated representation of the faulting PID is stored. If subsequent faults are from different PIDs it is reasonable to assume that those two tasks share a page and are candidates for being grouped together. Note that this patch makes no scheduling decisions based on the grouping information. Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Link: http://lkml.kernel.org/r/1381141781-10992-44-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
Use the new stop_two_cpus() to implement migrate_swap(), a function that flips two tasks between their respective cpus. I'm fairly sure there's a less crude way than employing the stop_two_cpus() method, but everything I tried either got horribly fragile and/or complex. So keep it simple for now. The notable detail is how we 'migrate' tasks that aren't runnable anymore. We'll make it appear like we migrated them before they went to sleep. The sole difference is the previous cpu in the wakeup path, so we override this. Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NMel Gorman <mgorman@suse.de> Link: http://lkml.kernel.org/r/1381141781-10992-39-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
When a preferred node is selected for a tasks there is an attempt to migrate the task to a CPU there. This may fail in which case the task will only migrate if the active load balancer takes action. This may never happen if the conditions are not right. This patch will check at NUMA hinting fault time if another attempt should be made to migrate the task. It will only make an attempt once every five seconds. Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-34-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
Ideally it would be possible to distinguish between NUMA hinting faults that are private to a task and those that are shared. This patch prepares infrastructure for separately accounting shared and private faults by allocating the necessary buffers and passing in relevant information. For now, all faults are treated as private and detection will be introduced later. Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-26-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
This patch favours moving tasks towards NUMA node that recorded a higher number of NUMA faults during active load balancing. Ideally this is self-reinforcing as the longer the task runs on that node, the more faults it should incur causing task_numa_placement to keep the task running on that node. In reality a big weakness is that the nodes CPUs can be overloaded and it would be more efficient to queue tasks on an idle node and migrate to the new node. This would require additional smarts in the balancer so for now the balancer will simply prefer to place the task on the preferred node for a PTE scans which is controlled by the numa_balancing_settle_count sysctl. Once the settle_count number of scans has complete the schedule is free to place the task on an alternative node if the load is imbalanced. [srikar@linux.vnet.ibm.com: Fixed statistics] Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> [ Tunable and use higher faults instead of preferred. ] Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-23-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
NUMA hinting fault counts and placement decisions are both recorded in the same array which distorts the samples in an unpredictable fashion. The values linearly accumulate during the scan and then decay creating a sawtooth-like pattern in the per-node counts. It also means that placement decisions are time sensitive. At best it means that it is very difficult to state that the buffer holds a decaying average of past faulting behaviour. At worst, it can confuse the load balancer if it sees one node with an artifically high count due to very recent faulting activity and may create a bouncing effect. This patch adds a second array. numa_faults stores the historical data which is used for placement decisions. numa_faults_buffer holds the fault activity during the current scan window. When the scan completes, numa_faults decays and the values from numa_faults_buffer are copied across. Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-22-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
This patch selects a preferred node for a task to run on based on the NUMA hinting faults. This information is later used to migrate tasks towards the node during balancing. Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-21-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
This patch tracks what nodes numa hinting faults were incurred on. This information is later used to schedule a task on the node storing the pages most frequently faulted by the task. Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-20-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mel Gorman 提交于
The NUMA PTE scan rate is controlled with a combination of the numa_balancing_scan_period_min, numa_balancing_scan_period_max and numa_balancing_scan_size. This scan rate is independent of the size of the task and as an aside it is further complicated by the fact that numa_balancing_scan_size controls how many pages are marked pte_numa and not how much virtual memory is scanned. In combination, it is almost impossible to meaningfully tune the min and max scan periods and reasoning about performance is complex when the time to complete a full scan is is partially a function of the tasks memory size. This patch alters the semantic of the min and max tunables to be about tuning the length time it takes to complete a scan of a tasks occupied virtual address space. Conceptually this is a lot easier to understand. There is a "sanity" check to ensure the scan rate is never extremely fast based on the amount of virtual memory that should be scanned in a second. The default of 2.5G seems arbitrary but it is to have the maximum scan rate after the patch roughly match the maximum scan rate before the patch was applied. On a similar note, numa_scan_period is in milliseconds and not jiffies. Properly placed pages slow the scanning rate but adding 10 jiffies to numa_scan_period means that the rate scanning slows depends on HZ which is confusing. Get rid of the jiffies_to_msec conversion and treat it as ms. Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1381141781-10992-18-git-send-email-mgorman@suse.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 28 9月, 2013 1 次提交
-
-
由 Peter Zijlstra 提交于
Yuanhan reported a serious throughput regression in his pigz benchmark. Using the ftrace patch I found that several idle paths need more TLC before we can switch the generic need_resched() over to preempt_need_resched. The preemption paths benefit most from preempt_need_resched and do indeed use it; all other need_resched() users don't really care that much so reverting need_resched() back to tif_need_resched() is the simple and safe solution. Reported-by: NYuanhan Liu <yuanhan.liu@linux.intel.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Huang Ying <ying.huang@intel.com> Cc: lkp@linux.intel.com Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/20130927153003.GF15690@laptop.programming.kicks-ass.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 25 9月, 2013 4 次提交
-
-
由 Peter Zijlstra 提交于
When using per-cpu preempt_count variables we need to save/restore the preempt_count on context switch (into per task storage; for instance the old thread_info::preempt_count variable) because of PREEMPT_ACTIVE. However, this means that on fork() the preempt_count value of the last context switch gets copied and if we had a PREEMPT_ACTIVE switch right before cloning a child task the child task will now too have PREEMPT_ACTIVE set and start its life with an extra PREEMPT_ACTIVE count. Therefore we need to make init_task_preempt_count() unconditional; this resets whatever preempt_count we inherited from our parent process. Doing so for !per-cpu implementations is harmless. For !PREEMPT_COUNT kernels we need to be careful not to start life with an increased preempt_count. Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/n/tip-4k0b7oy1rcdyzochwiixuwi9@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
Rewrite the preempt_count macros in order to extract the 3 basic preempt_count value modifiers: __preempt_count_add() __preempt_count_sub() and the new: __preempt_count_dec_and_test() And since we're at it anyway, replace the unconventional $op_preempt_count names with the more conventional preempt_count_$op. Since these basic operators are equivalent to the previous _notrace() variants, do away with the _notrace() versions. Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/n/tip-ewbpdbupy9xpsjhg960zwbv8@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
In order to combine the preemption and need_resched test we need to fold the need_resched information into the preempt_count value. Since the NEED_RESCHED flag is set across CPUs this needs to be an atomic operation, however we very much want to avoid making preempt_count atomic, therefore we keep the existing TIF_NEED_RESCHED infrastructure in place but at 3 sites test it and fold its value into preempt_count; namely: - resched_task() when setting TIF_NEED_RESCHED on the current task - scheduler_ipi() when resched_task() sets TIF_NEED_RESCHED on a remote task it follows it up with a reschedule IPI and we can modify the cpu local preempt_count from there. - cpu_idle_loop() for when resched_task() found tsk_is_polling(). We use an inverted bitmask to indicate need_resched so that a 0 means both need_resched and !atomic. Also remove the barrier() in preempt_enable() between preempt_enable_no_resched() and preempt_check_resched() to avoid having to reload the preemption value and allow the compiler to use the flags of the previuos decrement. I couldn't come up with any sane reason for this barrier() to be there as preempt_enable_no_resched() already has a barrier() before doing the decrement. Suggested-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/n/tip-7a7m5qqbn5pmwnd4wko9u6da@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
Mike reported that commit 7d1a9417 ("x86: Use generic idle loop") regressed several workloads and caused excessive reschedule interrupts. The patch in question failed to notice that the x86 code had an inverted sense of the polling state versus the new generic code (x86: default polling, generic: default !polling). Fix the two prominent x86 mwait based idle drivers and introduce a few new generic polling helpers (fixing the wrong smp_mb__after_clear_bit usage). Also switch the idle routines to using tif_need_resched() which is an immediate TIF_NEED_RESCHED test as opposed to need_resched which will end up being slightly different. Reported-by: NMike Galbraith <bitbucket@online.de> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Cc: lenb@kernel.org Cc: tglx@linutronix.de Link: http://lkml.kernel.org/n/tip-nc03imb0etuefmzybzj7sprf@git.kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 20 9月, 2013 2 次提交
-
-
由 Jason Low 提交于
This patch builds on patch 2 and periodically decays that max value to do idle balancing per sched domain by approximately 1% per second. Also decay the rq's max_idle_balance_cost value. Signed-off-by: NJason Low <jason.low2@hp.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1379096813-3032-4-git-send-email-jason.low2@hp.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Jason Low 提交于
In this patch, we keep track of the max cost we spend doing idle load balancing for each sched domain. If the avg time the CPU remains idle is less then the time we have already spent on idle balancing + the max cost of idle balancing in the sched domain, then we don't continue to attempt the balance. We also keep a per rq variable, max_idle_balance_cost, which keeps track of the max time spent on newidle load balances throughout all its domains so that we can determine the avg_idle's max value. By using the max, we avoid overrunning the average. This further reduces the chance we attempt balancing when the CPU is not idle for longer than the cost to balance. Signed-off-by: NJason Low <jason.low2@hp.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1379096813-3032-3-git-send-email-jason.low2@hp.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 13 9月, 2013 2 次提交
-
-
由 Johannes Weiner 提交于
The memcg OOM handling is incredibly fragile and can deadlock. When a task fails to charge memory, it invokes the OOM killer and loops right there in the charge code until it succeeds. Comparably, any other task that enters the charge path at this point will go to a waitqueue right then and there and sleep until the OOM situation is resolved. The problem is that these tasks may hold filesystem locks and the mmap_sem; locks that the selected OOM victim may need to exit. For example, in one reported case, the task invoking the OOM killer was about to charge a page cache page during a write(), which holds the i_mutex. The OOM killer selected a task that was just entering truncate() and trying to acquire the i_mutex: OOM invoking task: mem_cgroup_handle_oom+0x241/0x3b0 mem_cgroup_cache_charge+0xbe/0xe0 add_to_page_cache_locked+0x4c/0x140 add_to_page_cache_lru+0x22/0x50 grab_cache_page_write_begin+0x8b/0xe0 ext3_write_begin+0x88/0x270 generic_file_buffered_write+0x116/0x290 __generic_file_aio_write+0x27c/0x480 generic_file_aio_write+0x76/0xf0 # takes ->i_mutex do_sync_write+0xea/0x130 vfs_write+0xf3/0x1f0 sys_write+0x51/0x90 system_call_fastpath+0x18/0x1d OOM kill victim: do_truncate+0x58/0xa0 # takes i_mutex do_last+0x250/0xa30 path_openat+0xd7/0x440 do_filp_open+0x49/0xa0 do_sys_open+0x106/0x240 sys_open+0x20/0x30 system_call_fastpath+0x18/0x1d The OOM handling task will retry the charge indefinitely while the OOM killed task is not releasing any resources. A similar scenario can happen when the kernel OOM killer for a memcg is disabled and a userspace task is in charge of resolving OOM situations. In this case, ALL tasks that enter the OOM path will be made to sleep on the OOM waitqueue and wait for userspace to free resources or increase the group's limit. But a userspace OOM handler is prone to deadlock itself on the locks held by the waiting tasks. For example one of the sleeping tasks may be stuck in a brk() call with the mmap_sem held for writing but the userspace handler, in order to pick an optimal victim, may need to read files from /proc/<pid>, which tries to acquire the same mmap_sem for reading and deadlocks. This patch changes the way tasks behave after detecting a memcg OOM and makes sure nobody loops or sleeps with locks held: 1. When OOMing in a user fault, invoke the OOM killer and restart the fault instead of looping on the charge attempt. This way, the OOM victim can not get stuck on locks the looping task may hold. 2. When OOMing in a user fault but somebody else is handling it (either the kernel OOM killer or a userspace handler), don't go to sleep in the charge context. Instead, remember the OOMing memcg in the task struct and then fully unwind the page fault stack with -ENOMEM. pagefault_out_of_memory() will then call back into the memcg code to check if the -ENOMEM came from the memcg, and then either put the task to sleep on the memcg's OOM waitqueue or just restart the fault. The OOM victim can no longer get stuck on any lock a sleeping task may hold. Debugged by Michal Hocko. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Reported-by: NazurIt <azurit@pobox.sk> Acked-by: NMichal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
System calls and kernel faults (uaccess, gup) can handle an out of memory situation gracefully and just return -ENOMEM. Enable the memcg OOM killer only for user faults, where it's really the only option available. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: azurIt <azurit@pobox.sk> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 12 9月, 2013 1 次提交
-
-
由 Oleg Nesterov 提交于
task_struct->pid/tgid should go away. 1. Change same_thread_group() to use task->signal for comparison. 2. Change has_group_leader_pid(task) to compare task_pid(task) with signal->leader_pid. Signed-off-by: NOleg Nesterov <oleg@redhat.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Sergey Dyasly <dserrg@gmail.com> Reviewed-by: N"Eric W. Biederman" <ebiederm@xmission.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 23 8月, 2013 1 次提交
-
-
由 Linus Torvalds 提交于
This reverts commit df54d6fa. The commit isn't necessarily wrong, but because it recalculates the random mmap_base every time, it seems to confuse user memory allocators that expect contiguous mmap allocations even when the mmap address isn't specified. In particular, the MATLAB Java runtime seems to be unhappy. See https://bugzilla.kernel.org/show_bug.cgi?id=60774 So we'll want to apply the random offset only once, and Radu has a patch for that. Revert this older commit in order to apply the other one. Reported-by: NJeff Shorey <shoreyjeff@gmail.com> Cc: Radu Caragea <sinaelgl@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 14 8月, 2013 1 次提交
-
-
由 Radu Caragea 提交于
When the stack is set to unlimited, the bottomup direction is used for mmap-ings but the mmap_base is not used and thus effectively renders ASLR for mmapings along with PIE useless. Cc: Michel Lespinasse <walken@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Reviewed-by: NRik van Riel <riel@redhat.com> Acked-by: NIngo Molnar <mingo@kernel.org> Cc: Adrian Sendroiu <molecula2788@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 30 7月, 2013 1 次提交
-
-
由 Colin Cross 提交于
Calling freeze_processes sets a global flag that will cause any process that calls try_to_freeze to enter the refrigerator. It skips sending a signal to the current task, but if the current task ever hits try_to_freeze, all threads will be frozen and the system will deadlock. Set a new flag, PF_SUSPEND_TASK, on the task that calls freeze_processes. The flag notifies the freezer that the thread is involved in suspend and should not be frozen. Also add a WARN_ON in thaw_processes if the caller does not have the PF_SUSPEND_TASK flag set to catch if a different task calls thaw_processes than the one that called freeze_processes, leaving a task with PF_SUSPEND_TASK permanently set on it. Threads that spawn off a task with PF_SUSPEND_TASK set (which swsusp does) will also have PF_SUSPEND_TASK set, preventing them from freezing while they are helping with suspend, but they need to be dead by the time suspend is triggered, otherwise they may run when userspace is expected to be frozen. Add a WARN_ON in thaw_processes if more than one thread has the PF_SUSPEND_TASK flag set. Reported-and-tested-by: NMichael Leun <lkml20130126@newton.leun.net> Signed-off-by: NColin Cross <ccross@android.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 23 7月, 2013 1 次提交
-
-
由 Michael Wang 提交于
The wake-affine scheduler feature is currently always trying to pull the wakee close to the waker. In theory this should be beneficial if the waker's CPU caches hot data for the wakee, and it's also beneficial in the extreme ping-pong high context switch rate case. Testing shows it can benefit hackbench up to 15%. However, the feature is somewhat blind, from which some workloads such as pgbench suffer. It's also time-consuming algorithmically. Testing shows it can damage pgbench up to 50% - far more than the benefit it brings in the best case. So wake-affine should be smarter and it should realize when to stop its thankless effort at trying to find a suitable CPU to wake on. This patch introduces 'wakee_flips', which will be increased each time the task flips (switches) its wakee target. So a high 'wakee_flips' value means the task has more than one wakee, and the bigger the number, the higher the wakeup frequency. Now when making the decision on whether to pull or not, pay attention to the wakee with a high 'wakee_flips', pulling such a task may benefit the wakee. Also imply that the waker will face cruel competition later, it could be very cruel or very fast depends on the story behind 'wakee_flips', waker therefore suffers. Furthermore, if waker also has a high 'wakee_flips', that implies that multiple tasks rely on it, then waker's higher latency will damage all of them, so pulling wakee seems to be a bad deal. Thus, when 'waker->wakee_flips / wakee->wakee_flips' becomes higher and higher, the cost of pulling seems to be worse and worse. The patch therefore helps the wake-affine feature to stop its pulling work when: wakee->wakee_flips > factor && waker->wakee_flips > (factor * wakee->wakee_flips) The 'factor' here is the number of CPUs in the current CPU's NUMA node, so a bigger node will lead to more pulling since the trial becomes more severe. After applying the patch, pgbench shows up to 40% improvements and no regressions. Tested with 12 cpu x86 server and tip 3.10.0-rc7. The percentages in the final column highlight the areas with the biggest wins, all other areas improved as well: pgbench base smart | db_size | clients | tps | | tps | +---------+---------+-------+ +-------+ | 22 MB | 1 | 10598 | | 10796 | | 22 MB | 2 | 21257 | | 21336 | | 22 MB | 4 | 41386 | | 41622 | | 22 MB | 8 | 51253 | | 57932 | | 22 MB | 12 | 48570 | | 54000 | | 22 MB | 16 | 46748 | | 55982 | +19.75% | 22 MB | 24 | 44346 | | 55847 | +25.93% | 22 MB | 32 | 43460 | | 54614 | +25.66% | 7484 MB | 1 | 8951 | | 9193 | | 7484 MB | 2 | 19233 | | 19240 | | 7484 MB | 4 | 37239 | | 37302 | | 7484 MB | 8 | 46087 | | 50018 | | 7484 MB | 12 | 42054 | | 48763 | | 7484 MB | 16 | 40765 | | 51633 | +26.66% | 7484 MB | 24 | 37651 | | 52377 | +39.11% | 7484 MB | 32 | 37056 | | 51108 | +37.92% | 15 GB | 1 | 8845 | | 9104 | | 15 GB | 2 | 19094 | | 19162 | | 15 GB | 4 | 36979 | | 36983 | | 15 GB | 8 | 46087 | | 49977 | | 15 GB | 12 | 41901 | | 48591 | | 15 GB | 16 | 40147 | | 50651 | +26.16% | 15 GB | 24 | 37250 | | 52365 | +40.58% | 15 GB | 32 | 36470 | | 50015 | +37.14% Signed-off-by: NMichael Wang <wangyun@linux.vnet.ibm.com> Cc: Mike Galbraith <efault@gmx.de> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/51D50057.9000809@linux.vnet.ibm.com [ Improved the changelog. ] Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 18 7月, 2013 2 次提交
-
-
由 Marcelo Tosatti 提交于
Linux as a guest on KVM hypervisor, the only user of the pvclock vsyscall interface, does not require notification on task migration because: 1. cpu ID number maps 1:1 to per-CPU pvclock time info. 2. per-CPU pvclock time info is updated if the underlying CPU changes. 3. that version is increased whenever underlying CPU changes. Which is sufficient to guarantee nanoseconds counter is calculated properly. Signed-off-by: NMarcelo Tosatti <mtosatti@redhat.com> Acked-by: NPeter Zijlstra <peterz@infradead.org> Signed-off-by: NGleb Natapov <gleb@redhat.com>
-
由 Yacine Belkadi 提交于
When building the htmldocs (in verbose mode), scripts/kernel-doc reports the follwing type of warnings: Warning(kernel/sched/core.c:936): No description found for return value of 'task_curr' ... Fix those by: - adding the missing descriptions - using "Return" sections for the descriptions Signed-off-by: NYacine Belkadi <yacine.belkadi.1@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1373654747-2389-1-git-send-email-yacine.belkadi.1@gmail.com [ While at it, fix the cpupri_set() explanation. ] Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 11 7月, 2013 1 次提交
-
-
由 Michel Lespinasse 提交于
Since all architectures have been converted to use vm_unmapped_area(), there is no remaining use for the free_area_cache. Signed-off-by: NMichel Lespinasse <walken@google.com> Acked-by: NRik van Riel <riel@redhat.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Howells <dhowells@redhat.com> Cc: Helge Deller <deller@gmx.de> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Matt Turner <mattst88@gmail.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Richard Henderson <rth@twiddle.net> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 10 7月, 2013 1 次提交
-
-
由 Oleg Nesterov 提交于
This reverts commit bf26c018 ("Prepare to fix racy accesses on task breakpoints"). The patch was fine but we can no longer race with SIGKILL after commit 9899d11f ("ptrace: ensure arch_ptrace/ptrace_request can never race with SIGKILL"), the __TASK_TRACED tracee can't be woken up and ->ptrace_bps[] can't go away. Now that ptrace_get_breakpoints/ptrace_put_breakpoints have no callers, we can kill them and remove task->ptrace_bp_refcnt. Signed-off-by: NOleg Nesterov <oleg@redhat.com> Acked-by: NFrederic Weisbecker <fweisbec@gmail.com> Acked-by: NMichael Neuling <mikey@neuling.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Jan Kratochvil <jan.kratochvil@redhat.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Will Deacon <will.deacon@arm.com> Cc: Prasad <prasad@linux.vnet.ibm.com> Cc: Russell King <linux@arm.linux.org.uk> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 04 7月, 2013 1 次提交
-
-
由 Oleg Nesterov 提交于
Move __set_special_pids() from exit.c to sys.c close to its single caller and make it static. And rename it to set_special_pids(), another helper with this name has gone away. Signed-off-by: NOleg Nesterov <oleg@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 27 6月, 2013 2 次提交
-
-
由 Kamalesh Babulal 提交于
Remove extra 'for' from the description about member of struct sched_avg. Signed-off-by: NKamalesh Babulal <kamalesh@linux.vnet.ibm.com> Cc: pjt@google.com Cc: peterz@infradead.org Link: http://lkml.kernel.org/r/20130627060409.GB18582@linux.vnet.ibm.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Alex Shi 提交于
Remove CONFIG_FAIR_GROUP_SCHED that covers the runnable info, then we can use runnable load variables. Also remove 2 CONFIG_FAIR_GROUP_SCHED setting which is not in reverted patch(introduced in 9ee474f5), but also need to revert. Signed-off-by: NAlex Shi <alex.shi@intel.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/51CA76A3.3050207@intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 23 5月, 2013 1 次提交
-
-
由 Simon Horman 提交于
This is intended for use in loops which read data protected by RCU and may have a large number of iterations. Such an example is dumping the list of connections known to IPVS: ip_vs_conn_array() and ip_vs_conn_seq_next(). The benefits are for CONFIG_PREEMPT_RCU=y where we save CPU cycles by moving rcu_read_lock and rcu_read_unlock out of large loops but still allowing the current task to be preempted after every loop iteration for the CONFIG_PREEMPT_RCU=n case. The call to cond_resched() is not needed when CONFIG_PREEMPT_RCU=y. Thanks to Paul E. McKenney for explaining this and for the final version that checks the context with CONFIG_DEBUG_ATOMIC_SLEEP=y for all possible configurations. The function can be empty in the CONFIG_PREEMPT_RCU case, rcu_read_lock and rcu_read_unlock are not needed in this case because the task can be preempted on indication from scheduler. Thanks to Peter Zijlstra for catching this and for his help in trying a solution that changes __might_sleep. Initial cond_resched_rcu_lock() function suggested by Eric Dumazet. Tested-by: NJulian Anastasov <ja@ssi.bg> Signed-off-by: NJulian Anastasov <ja@ssi.bg> Signed-off-by: NSimon Horman <horms@verge.net.au> Acked-by: NPeter Zijlstra <peterz@infradead.org> Signed-off-by: NPablo Neira Ayuso <pablo@netfilter.org>
-
- 08 5月, 2013 1 次提交
-
-
由 Kent Overstreet 提交于
Faster kernel compiles by way of fewer unnecessary includes. [akpm@linux-foundation.org: fix fallout] [akpm@linux-foundation.org: fix build] Signed-off-by: NKent Overstreet <koverstreet@google.com> Cc: Zach Brown <zab@redhat.com> Cc: Felipe Balbi <balbi@ti.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Jens Axboe <axboe@kernel.dk> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Benjamin LaHaise <bcrl@kvack.org> Reviewed-by: N"Theodore Ts'o" <tytso@mit.edu> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 04 5月, 2013 1 次提交
-
-
由 Frederic Weisbecker 提交于
The scheduler doesn't yet fully support environments with a single task running without a periodic tick. In order to ensure we still maintain the duties of scheduler_tick(), keep at least 1 tick per second. This makes sure that we keep the progression of various scheduler accounting and background maintainance even with a very low granularity. Examples include cpu load, sched average, CFS entity vruntime, avenrun and events such as load balancing, amongst other details handled in sched_class::task_tick(). This limitation will be removed in the future once we get these individual items to work in full dynticks CPUs. Suggested-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Hakan Akkan <hakanakkan@gmail.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Kevin Hilman <khilman@linaro.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de>
-
- 01 5月, 2013 2 次提交
-
-
由 Oleg Nesterov 提交于
threadgroup_lock() takes signal->cred_guard_mutex to ensure that thread_group_leader() is stable. This doesn't look nice, the scope of this lock in do_execve() is huge. And as Dave pointed out this can lead to deadlock, we have the following dependencies: do_execve: cred_guard_mutex -> i_mutex cgroup_mount: i_mutex -> cgroup_mutex attach_task_by_pid: cgroup_mutex -> cred_guard_mutex Change de_thread() to take threadgroup_change_begin() around the switch-the-leader code and change threadgroup_lock() to avoid ->cred_guard_mutex. Note that de_thread() can't sleep with ->group_rwsem held, this can obviously deadlock with the exiting leader if the writer is active, so it does threadgroup_change_end() before schedule(). Reported-by: NDave Jones <davej@redhat.com> Acked-by: NTejun Heo <tj@kernel.org> Acked-by: NLi Zefan <lizefan@huawei.com> Signed-off-by: NOleg Nesterov <oleg@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Oleg Nesterov 提交于
There are 2 well known and ancient problems with coredump/signals, and a lot of related bug reports: - do_coredump() clears TIF_SIGPENDING but of course this can't help if, say, SIGCHLD comes after that. In this case the coredump can fail unexpectedly. See for example wait_for_dump_helper()->signal_pending() check but there are other reasons. - At the same time, dumping a huge core on the slow media can take a lot of time/resources and there is no way to kill the coredumping task reliably. In particular this is not oom_kill-friendly. This patch tries to fix the 1st problem, and makes the preparation for the next changes. We add the new SIGNAL_GROUP_COREDUMP flag set by zap_threads() to indicate that this process dumps the core. prepare_signal() checks this flag and nacks any signal except SIGKILL. Note that this check tries to be conservative, in the long term we should probably treat the SIGNAL_GROUP_EXIT case equally but this needs more discussion. See marc.info/?l=linux-kernel&m=120508897917439 Notes: - recalc_sigpending() doesn't check SIGNAL_GROUP_COREDUMP. The patch assumes that dump_write/etc paths should never call it, but we can change it as well. - There is another source of TIF_SIGPENDING, freezer. This will be addressed separately. Signed-off-by: NOleg Nesterov <oleg@redhat.com> Tested-by: NMandeep Singh Baines <msb@chromium.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Neil Horman <nhorman@redhat.com> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Roland McGrath <roland@hack.frob.com> Cc: Tejun Heo <tj@kernel.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-