- 06 1月, 2009 4 次提交
-
-
由 Joel Becker 提交于
In the calc_code_bit() function, we must find all powers of two beneath the code bit number, *after* it's shifted by those powers of two. This requires a loop to see where it ends up. We can optimize it by starting at its most significant bit. This shaves 32% off the time, for a total of 67.6% shaved off of the original, naive implementation. Signed-off-by: NJoel Becker <joel.becker@oracle.com> Signed-off-by: NMark Fasheh <mfasheh@suse.com>
-
由 Joel Becker 提交于
When I wrote ocfs2_hamming_encode(), I was following documentation of the algorithm and didn't have quite the (possibly still imperfect) grasp of it I do now. As part of this, I literally hand-coded xor. I would test a bit, and then add that bit via xor to the parity word. I can, of course, just do a single xor of the parity word and the source word (the code buffer bit offset). This cuts CPU usage by 53% on a mostly populated buffer (an inode containing utmp.h inline). Joel Signed-off-by: NJoel Becker <joel.becker@oracle.com> Signed-off-by: NMark Fasheh <mfasheh@suse.com>
-
由 Joel Becker 提交于
Add block check calls to the read_block validate functions. This is the almost all of the read-side checking of metaecc. xattr buckets are not checked yet. Writes are also unchecked, and so a read-write mount will quickly fail. Signed-off-by: NJoel Becker <joel.becker@oracle.com> Signed-off-by: NMark Fasheh <mfasheh@suse.com>
-
由 Joel Becker 提交于
This is the code that computes crc32 and ecc for ocfs2 metadata blocks. There are high-level functions that check whether the filesystem has the ecc feature, mid-level functions that work on a single block or array of buffer_heads, and the low-level ecc hamming code that can handle multiple buffers like crc32_le(). It's not hooked up to the filesystem yet. Signed-off-by: NJoel Becker <joel.becker@oracle.com> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: NMark Fasheh <mfasheh@suse.com>
-