1. 16 1月, 2016 3 次提交
  2. 15 1月, 2016 2 次提交
    • M
      mm: allow GFP_{FS,IO} for page_cache_read page cache allocation · c20cd45e
      Michal Hocko 提交于
      page_cache_read has been historically using page_cache_alloc_cold to
      allocate a new page.  This means that mapping_gfp_mask is used as the
      base for the gfp_mask.  Many filesystems are setting this mask to
      GFP_NOFS to prevent from fs recursion issues.  page_cache_read is called
      from the vm_operations_struct::fault() context during the page fault.
      This context doesn't need the reclaim protection normally.
      
      ceph and ocfs2 which call filemap_fault from their fault handlers seem
      to be OK because they are not taking any fs lock before invoking generic
      implementation.  xfs which takes XFS_MMAPLOCK_SHARED is safe from the
      reclaim recursion POV because this lock serializes truncate and punch
      hole with the page faults and it doesn't get involved in the reclaim.
      
      There is simply no reason to deliberately use a weaker allocation
      context when a __GFP_FS | __GFP_IO can be used.  The GFP_NOFS protection
      might be even harmful.  There is a push to fail GFP_NOFS allocations
      rather than loop within allocator indefinitely with a very limited
      reclaim ability.  Once we start failing those requests the OOM killer
      might be triggered prematurely because the page cache allocation failure
      is propagated up the page fault path and end up in
      pagefault_out_of_memory.
      
      We cannot play with mapping_gfp_mask directly because that would be racy
      wrt.  parallel page faults and it might interfere with other users who
      really rely on NOFS semantic from the stored gfp_mask.  The mask is also
      inode proper so it would even be a layering violation.  What we can do
      instead is to push the gfp_mask into struct vm_fault and allow fs layer
      to overwrite it should the callback need to be called with a different
      allocation context.
      
      Initialize the default to (mapping_gfp_mask | __GFP_FS | __GFP_IO)
      because this should be safe from the page fault path normally.  Why do
      we care about mapping_gfp_mask at all then? Because this doesn't hold
      only reclaim protection flags but it also might contain zone and
      movability restrictions (GFP_DMA32, __GFP_MOVABLE and others) so we have
      to respect those.
      Signed-off-by: NMichal Hocko <mhocko@suse.com>
      Reported-by: NTetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
      Acked-by: NJan Kara <jack@suse.com>
      Acked-by: NVlastimil Babka <vbabka@suse.cz>
      Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: Dave Chinner <david@fromorbit.com>
      Cc: Mark Fasheh <mfasheh@suse.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      c20cd45e
    • J
      mm, shmem: add internal shmem resident memory accounting · eca56ff9
      Jerome Marchand 提交于
      Currently looking at /proc/<pid>/status or statm, there is no way to
      distinguish shmem pages from pages mapped to a regular file (shmem pages
      are mapped to /dev/zero), even though their implication in actual memory
      use is quite different.
      
      The internal accounting currently counts shmem pages together with
      regular files.  As a preparation to extend the userspace interfaces,
      this patch adds MM_SHMEMPAGES counter to mm_rss_stat to account for
      shmem pages separately from MM_FILEPAGES.  The next patch will expose it
      to userspace - this patch doesn't change the exported values yet, by
      adding up MM_SHMEMPAGES to MM_FILEPAGES at places where MM_FILEPAGES was
      used before.  The only user-visible change after this patch is the OOM
      killer message that separates the reported "shmem-rss" from "file-rss".
      
      [vbabka@suse.cz: forward-porting, tweak changelog]
      Signed-off-by: NJerome Marchand <jmarchan@redhat.com>
      Signed-off-by: NVlastimil Babka <vbabka@suse.cz>
      Acked-by: NKonstantin Khlebnikov <khlebnikov@yandex-team.ru>
      Acked-by: NMichal Hocko <mhocko@suse.com>
      Acked-by: NHugh Dickins <hughd@google.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      eca56ff9
  3. 19 11月, 2015 1 次提交
    • Y
      mm, dax: fix DAX deadlocks (COW fault) · 0df9d41a
      Yigal Korman 提交于
      DAX handling of COW faults has wrong locking sequence:
      	dax_fault does i_mmap_lock_read
      	do_cow_fault does i_mmap_unlock_write
      
      Ross's commit[1] missed a fix[2] that Kirill added to Matthew's
      commit[3].
      
      Original COW locking logic was introduced by Matthew here[4].
      
      This should be applied to v4.3 as well.
      
      [1] 0f90cc66 mm, dax: fix DAX deadlocks
      [2] 52a2b53f mm, dax: use i_mmap_unlock_write() in do_cow_fault()
      [3] 84317297 dax: fix race between simultaneous faults
      [4] 2e4cdab0 mm: allow page fault handlers to perform the COW
      
      Cc: <stable@vger.kernel.org>
      Cc: Boaz Harrosh <boaz@plexistor.com>
      Cc: Alexander Viro <viro@zeniv.linux.org.uk>
      Cc: Dave Chinner <dchinner@redhat.com>
      Cc: Jan Kara <jack@suse.com>
      Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
      Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
      Acked-by: NRoss Zwisler <ross.zwisler@linux.intel.com>
      Signed-off-by: NYigal Korman <yigal@plexistor.com>
      Signed-off-by: NDan Williams <dan.j.williams@intel.com>
      0df9d41a
  4. 17 10月, 2015 1 次提交
  5. 11 9月, 2015 1 次提交
  6. 09 9月, 2015 5 次提交
  7. 05 9月, 2015 2 次提交
  8. 10 7月, 2015 1 次提交
  9. 25 6月, 2015 1 次提交
    • M
      mm, memcg: Try charging a page before setting page up to date · eb3c24f3
      Mel Gorman 提交于
      Historically memcg overhead was high even if memcg was unused.  This has
      improved a lot but it still showed up in a profile summary as being a
      problem.
      
      /usr/src/linux-4.0-vanilla/mm/memcontrol.c                           6.6441   395842
        mem_cgroup_try_charge                                                        2.950%   175781
        __mem_cgroup_count_vm_event                                                  1.431%    85239
        mem_cgroup_page_lruvec                                                       0.456%    27156
        mem_cgroup_commit_charge                                                     0.392%    23342
        uncharge_list                                                                0.323%    19256
        mem_cgroup_update_lru_size                                                   0.278%    16538
        memcg_check_events                                                           0.216%    12858
        mem_cgroup_charge_statistics.isra.22                                         0.188%    11172
        try_charge                                                                   0.150%     8928
        commit_charge                                                                0.141%     8388
        get_mem_cgroup_from_mm                                                       0.121%     7184
      
      That is showing that 6.64% of system CPU cycles were in memcontrol.c and
      dominated by mem_cgroup_try_charge.  The annotation shows that the bulk
      of the cost was checking PageSwapCache which is expected to be cache hot
      but is very expensive.  The problem appears to be that __SetPageUptodate
      is called just before the check which is a write barrier.  It is
      required to make sure struct page and page data is written before the
      PTE is updated and the data visible to userspace.  memcg charging does
      not require or need the barrier but gets unfairly hit with the cost so
      this patch attempts the charging before the barrier.  Aside from the
      accidental cost to memcg there is the added benefit that the barrier is
      avoided if the page cannot be charged.  When applied the relevant
      profile summary is as follows.
      
      /usr/src/linux-4.0-chargefirst-v2r1/mm/memcontrol.c                  3.7907   223277
        __mem_cgroup_count_vm_event                                                  1.143%    67312
        mem_cgroup_page_lruvec                                                       0.465%    27403
        mem_cgroup_commit_charge                                                     0.381%    22452
        uncharge_list                                                                0.332%    19543
        mem_cgroup_update_lru_size                                                   0.284%    16704
        get_mem_cgroup_from_mm                                                       0.271%    15952
        mem_cgroup_try_charge                                                        0.237%    13982
        memcg_check_events                                                           0.222%    13058
        mem_cgroup_charge_statistics.isra.22                                         0.185%    10920
        commit_charge                                                                0.140%     8235
        try_charge                                                                   0.131%     7716
      
      That brings the overhead down to 3.79% and leaves the memcg fault
      accounting to the root cgroup but it's an improvement.  The difference
      in headline performance of the page fault microbench is marginal as
      memcg is such a small component of it.
      
      pft faults
                                             4.0.0                  4.0.0
                                           vanilla            chargefirst
      Hmean    faults/cpu-1 1443258.1051 (  0.00%) 1509075.7561 (  4.56%)
      Hmean    faults/cpu-3 1340385.9270 (  0.00%) 1339160.7113 ( -0.09%)
      Hmean    faults/cpu-5  875599.0222 (  0.00%)  874174.1255 ( -0.16%)
      Hmean    faults/cpu-7  601146.6726 (  0.00%)  601370.9977 (  0.04%)
      Hmean    faults/cpu-8  510728.2754 (  0.00%)  510598.8214 ( -0.03%)
      Hmean    faults/sec-1 1432084.7845 (  0.00%) 1497935.5274 (  4.60%)
      Hmean    faults/sec-3 3943818.1437 (  0.00%) 3941920.1520 ( -0.05%)
      Hmean    faults/sec-5 3877573.5867 (  0.00%) 3869385.7553 ( -0.21%)
      Hmean    faults/sec-7 3991832.0418 (  0.00%) 3992181.4189 (  0.01%)
      Hmean    faults/sec-8 3987189.8167 (  0.00%) 3986452.2204 ( -0.02%)
      
      It's only visible at single threaded. The overhead is there for higher
      threads but other factors dominate.
      Signed-off-by: NMel Gorman <mgorman@suse.de>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Acked-by: NJohannes Weiner <hannes@cmpxchg.org>
      Cc: Tejun Heo <tj@kernel.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      eb3c24f3
  10. 24 6月, 2015 1 次提交
  11. 19 5月, 2015 1 次提交
    • D
      sched/preempt, mm/fault: Trigger might_sleep() in might_fault() with disabled pagefaults · 9ec23531
      David Hildenbrand 提交于
      Commit 662bbcb2 ("mm, sched: Allow uaccess in atomic with
      pagefault_disable()") removed might_sleep() checks for all user access
      code (that uses might_fault()).
      
      The reason was to disable wrong "sleep in atomic" warnings in the
      following scenario:
      
          pagefault_disable()
          rc = copy_to_user(...)
          pagefault_enable()
      
      Which is valid, as pagefault_disable() increments the preempt counter
      and therefore disables the pagefault handler. copy_to_user() will not
      sleep and return an error code if a page is not available.
      
      However, as all might_sleep() checks are removed,
      CONFIG_DEBUG_ATOMIC_SLEEP would no longer detect the following scenario:
      
          spin_lock(&lock);
          rc = copy_to_user(...)
          spin_unlock(&lock)
      
      If the kernel is compiled with preemption turned on, preempt_disable()
      will make in_atomic() detect disabled preemption. The fault handler would
      correctly never sleep on user access.
      However, with preemption turned off, preempt_disable() is usually a NOP
      (with !CONFIG_PREEMPT_COUNT), therefore in_atomic() will not be able to
      detect disabled preemption nor disabled pagefaults. The fault handler
      could sleep.
      We really want to enable CONFIG_DEBUG_ATOMIC_SLEEP checks for user access
      functions again, otherwise we can end up with horrible deadlocks.
      
      Root of all evil is that pagefault_disable() acts almost as
      preempt_disable(), depending on preemption being turned on/off.
      
      As we now have pagefault_disabled(), we can use it to distinguish
      whether user acces functions might sleep.
      
      Convert might_fault() into a makro that calls __might_fault(), to
      allow proper file + line messages in case of a might_sleep() warning.
      Reviewed-and-tested-by: NThomas Gleixner <tglx@linutronix.de>
      Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com>
      Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
      Cc: David.Laight@ACULAB.COM
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: airlied@linux.ie
      Cc: akpm@linux-foundation.org
      Cc: benh@kernel.crashing.org
      Cc: bigeasy@linutronix.de
      Cc: borntraeger@de.ibm.com
      Cc: daniel.vetter@intel.com
      Cc: heiko.carstens@de.ibm.com
      Cc: herbert@gondor.apana.org.au
      Cc: hocko@suse.cz
      Cc: hughd@google.com
      Cc: mst@redhat.com
      Cc: paulus@samba.org
      Cc: ralf@linux-mips.org
      Cc: schwidefsky@de.ibm.com
      Cc: yang.shi@windriver.com
      Link: http://lkml.kernel.org/r/1431359540-32227-3-git-send-email-dahi@linux.vnet.ibm.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
      9ec23531
  12. 16 4月, 2015 3 次提交
    • B
      mm: new pfn_mkwrite same as page_mkwrite for VM_PFNMAP · dd906184
      Boaz Harrosh 提交于
      This will allow FS that uses VM_PFNMAP | VM_MIXEDMAP (no page structs) to
      get notified when access is a write to a read-only PFN.
      
      This can happen if we mmap() a file then first mmap-read from it to
      page-in a read-only PFN, than we mmap-write to the same page.
      
      We need this functionality to fix a DAX bug, where in the scenario above
      we fail to set ctime/mtime though we modified the file.  An xfstest is
      attached to this patchset that shows the failure and the fix.  (A DAX
      patch will follow)
      
      This functionality is extra important for us, because upon dirtying of a
      pmem page we also want to RDMA the page to a remote cluster node.
      
      We define a new pfn_mkwrite and do not reuse page_mkwrite because
        1 - The name ;-)
        2 - But mainly because it would take a very long and tedious
            audit of all page_mkwrite functions of VM_MIXEDMAP/VM_PFNMAP
            users. To make sure they do not now CRASH. For example current
            DAX code (which this is for) would crash.
            If we would want to reuse page_mkwrite, We will need to first
            patch all users, so to not-crash-on-no-page. Then enable this
            patch. But even if I did that I would not sleep so well at night.
            Adding a new vector is the safest thing to do, and is not that
            expensive. an extra pointer at a static function vector per driver.
            Also the new vector is better for performance, because else we
            Will call all current Kernel vectors, so to:
              check-ha-no-page-do-nothing and return.
      
      No need to call it from do_shared_fault because do_wp_page is called to
      change pte permissions anyway.
      Signed-off-by: NYigal Korman <yigal@plexistor.com>
      Signed-off-by: NBoaz Harrosh <boaz@plexistor.com>
      Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
      Cc: Jan Kara <jack@suse.cz>
      Cc: Hugh Dickins <hughd@google.com>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: Dave Chinner <david@fromorbit.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      dd906184
    • K
      mm/memory: also print a_ops->readpage in print_bad_pte() · 2682582a
      Konstantin Khlebnikov 提交于
      A lot of filesystems use generic_file_mmap() and filemap_fault(),
      f_op->mmap and vm_ops->fault aren't enough to identify filesystem.
      
      This prints file name, vm_ops->fault, f_op->mmap and a_ops->readpage
      (which is almost always implemented and filesystem-specific).
      
      Example:
      
      [   23.676410] BUG: Bad page map in process sh  pte:1b7e6025 pmd:19bbd067
      [   23.676887] page:ffffea00006df980 count:4 mapcount:1 mapping:ffff8800196426c0 index:0x97
      [   23.677481] flags: 0x10000000000000c(referenced|uptodate)
      [   23.677896] page dumped because: bad pte
      [   23.678205] addr:00007f52fcb17000 vm_flags:00000075 anon_vma:          (null) mapping:ffff8800196426c0 index:97
      [   23.678922] file:libc-2.19.so fault:filemap_fault mmap:generic_file_readonly_mmap readpage:v9fs_vfs_readpage
      
      [akpm@linux-foundation.org: use pr_alert, per Kirill]
      Signed-off-by: NKonstantin Khlebnikov <khlebnikov@yandex-team.ru>
      Cc: Sasha Levin <sasha.levin@oracle.com>
      Acked-by: NKirill A. Shutemov <kirill@shutemov.name>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      2682582a
    • J
      mm: remove rest of ACCESS_ONCE() usages · 4db0c3c2
      Jason Low 提交于
      We converted some of the usages of ACCESS_ONCE to READ_ONCE in the mm/
      tree since it doesn't work reliably on non-scalar types.
      
      This patch removes the rest of the usages of ACCESS_ONCE, and use the new
      READ_ONCE API for the read accesses.  This makes things cleaner, instead
      of using separate/multiple sets of APIs.
      Signed-off-by: NJason Low <jason.low2@hp.com>
      Acked-by: NMichal Hocko <mhocko@suse.cz>
      Acked-by: NDavidlohr Bueso <dave@stgolabs.net>
      Acked-by: NRik van Riel <riel@redhat.com>
      Reviewed-by: NChristian Borntraeger <borntraeger@de.ibm.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      4db0c3c2
  13. 15 4月, 2015 4 次提交
  14. 26 3月, 2015 3 次提交
    • M
      mm: numa: slow PTE scan rate if migration failures occur · 074c2381
      Mel Gorman 提交于
      Dave Chinner reported the following on https://lkml.org/lkml/2015/3/1/226
      
        Across the board the 4.0-rc1 numbers are much slower, and the degradation
        is far worse when using the large memory footprint configs. Perf points
        straight at the cause - this is from 4.0-rc1 on the "-o bhash=101073" config:
      
         -   56.07%    56.07%  [kernel]            [k] default_send_IPI_mask_sequence_phys
            - default_send_IPI_mask_sequence_phys
               - 99.99% physflat_send_IPI_mask
                  - 99.37% native_send_call_func_ipi
                       smp_call_function_many
                     - native_flush_tlb_others
                        - 99.85% flush_tlb_page
                             ptep_clear_flush
                             try_to_unmap_one
                             rmap_walk
                             try_to_unmap
                             migrate_pages
                             migrate_misplaced_page
                           - handle_mm_fault
                              - 99.73% __do_page_fault
                                   trace_do_page_fault
                                   do_async_page_fault
                                 + async_page_fault
                    0.63% native_send_call_func_single_ipi
                       generic_exec_single
                       smp_call_function_single
      
      This is showing excessive migration activity even though excessive
      migrations are meant to get throttled.  Normally, the scan rate is tuned
      on a per-task basis depending on the locality of faults.  However, if
      migrations fail for any reason then the PTE scanner may scan faster if
      the faults continue to be remote.  This means there is higher system CPU
      overhead and fault trapping at exactly the time we know that migrations
      cannot happen.  This patch tracks when migration failures occur and
      slows the PTE scanner.
      Signed-off-by: NMel Gorman <mgorman@suse.de>
      Reported-by: NDave Chinner <david@fromorbit.com>
      Tested-by: NDave Chinner <david@fromorbit.com>
      Cc: Ingo Molnar <mingo@kernel.org>
      Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      074c2381
    • M
      mm: numa: preserve PTE write permissions across a NUMA hinting fault · b191f9b1
      Mel Gorman 提交于
      Protecting a PTE to trap a NUMA hinting fault clears the writable bit
      and further faults are needed after trapping a NUMA hinting fault to set
      the writable bit again.  This patch preserves the writable bit when
      trapping NUMA hinting faults.  The impact is obvious from the number of
      minor faults trapped during the basis balancing benchmark and the system
      CPU usage;
      
        autonumabench
                                                   4.0.0-rc4             4.0.0-rc4
                                                    baseline              preserve
        Time System-NUMA01                  107.13 (  0.00%)      103.13 (  3.73%)
        Time System-NUMA01_THEADLOCAL       131.87 (  0.00%)       83.30 ( 36.83%)
        Time System-NUMA02                    8.95 (  0.00%)       10.72 (-19.78%)
        Time System-NUMA02_SMT                4.57 (  0.00%)        3.99 ( 12.69%)
        Time Elapsed-NUMA01                 515.78 (  0.00%)      517.26 ( -0.29%)
        Time Elapsed-NUMA01_THEADLOCAL      384.10 (  0.00%)      384.31 ( -0.05%)
        Time Elapsed-NUMA02                  48.86 (  0.00%)       48.78 (  0.16%)
        Time Elapsed-NUMA02_SMT              47.98 (  0.00%)       48.12 ( -0.29%)
      
                     4.0.0-rc4   4.0.0-rc4
                      baseline    preserve
        User          44383.95    43971.89
        System          252.61      201.24
        Elapsed         998.68     1000.94
      
        Minor Faults   2597249     1981230
        Major Faults       365         364
      
      There is a similar drop in system CPU usage using Dave Chinner's xfsrepair
      workload
      
                                            4.0.0-rc4             4.0.0-rc4
                                             baseline              preserve
        Amean    real-xfsrepair      454.14 (  0.00%)      442.36 (  2.60%)
        Amean    syst-xfsrepair      277.20 (  0.00%)      204.68 ( 26.16%)
      
      The patch looks hacky but the alternatives looked worse.  The tidest was
      to rewalk the page tables after a hinting fault but it was more complex
      than this approach and the performance was worse.  It's not generally
      safe to just mark the page writable during the fault if it's a write
      fault as it may have been read-only for COW so that approach was
      discarded.
      Signed-off-by: NMel Gorman <mgorman@suse.de>
      Reported-by: NDave Chinner <david@fromorbit.com>
      Tested-by: NDave Chinner <david@fromorbit.com>
      Cc: Ingo Molnar <mingo@kernel.org>
      Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      b191f9b1
    • M
      mm: numa: group related processes based on VMA flags instead of page table flags · bea66fbd
      Mel Gorman 提交于
      These are three follow-on patches based on the xfsrepair workload Dave
      Chinner reported was problematic in 4.0-rc1 due to changes in page table
      management -- https://lkml.org/lkml/2015/3/1/226.
      
      Much of the problem was reduced by commit 53da3bc2 ("mm: fix up numa
      read-only thread grouping logic") and commit ba68bc01 ("mm: thp:
      Return the correct value for change_huge_pmd").  It was known that the
      performance in 3.19 was still better even if is far less safe.  This
      series aims to restore the performance without compromising on safety.
      
      For the test of this mail, I'm comparing 3.19 against 4.0-rc4 and the
      three patches applied on top
      
        autonumabench
                                                      3.19.0             4.0.0-rc4             4.0.0-rc4             4.0.0-rc4             4.0.0-rc4
                                                     vanilla               vanilla          vmwrite-v5r8         preserve-v5r8         slowscan-v5r8
        Time System-NUMA01                  124.00 (  0.00%)      161.86 (-30.53%)      107.13 ( 13.60%)      103.13 ( 16.83%)      145.01 (-16.94%)
        Time System-NUMA01_THEADLOCAL       115.54 (  0.00%)      107.64 (  6.84%)      131.87 (-14.13%)       83.30 ( 27.90%)       92.35 ( 20.07%)
        Time System-NUMA02                    9.35 (  0.00%)       10.44 (-11.66%)        8.95 (  4.28%)       10.72 (-14.65%)        8.16 ( 12.73%)
        Time System-NUMA02_SMT                3.87 (  0.00%)        4.63 (-19.64%)        4.57 (-18.09%)        3.99 ( -3.10%)        3.36 ( 13.18%)
        Time Elapsed-NUMA01                 570.06 (  0.00%)      567.82 (  0.39%)      515.78 (  9.52%)      517.26 (  9.26%)      543.80 (  4.61%)
        Time Elapsed-NUMA01_THEADLOCAL      393.69 (  0.00%)      384.83 (  2.25%)      384.10 (  2.44%)      384.31 (  2.38%)      380.73 (  3.29%)
        Time Elapsed-NUMA02                  49.09 (  0.00%)       49.33 ( -0.49%)       48.86 (  0.47%)       48.78 (  0.63%)       50.94 ( -3.77%)
        Time Elapsed-NUMA02_SMT              47.51 (  0.00%)       47.15 (  0.76%)       47.98 ( -0.99%)       48.12 ( -1.28%)       49.56 ( -4.31%)
      
                      3.19.0   4.0.0-rc4   4.0.0-rc4   4.0.0-rc4   4.0.0-rc4
                     vanilla     vanillavmwrite-v5r8preserve-v5r8slowscan-v5r8
        User        46334.60    46391.94    44383.95    43971.89    44372.12
        System        252.84      284.66      252.61      201.24      249.00
        Elapsed      1062.14     1050.96      998.68     1000.94     1026.78
      
      Overall the system CPU usage is comparable and the test is naturally a
      bit variable.  The slowing of the scanner hurts numa01 but on this
      machine it is an adverse workload and patches that dramatically help it
      often hurt absolutely everything else.
      
      Due to patch 2, the fault activity is interesting
      
                                        3.19.0   4.0.0-rc4   4.0.0-rc4   4.0.0-rc4   4.0.0-rc4
                                       vanilla     vanillavmwrite-v5r8preserve-v5r8slowscan-v5r8
        Minor Faults                   2097811     2656646     2597249     1981230     1636841
        Major Faults                       362         450         365         364         365
      
      Note the impact preserving the write bit across protection updates and
      fault reduces faults.
      
        NUMA alloc hit                 1229008     1217015     1191660     1178322     1199681
        NUMA alloc miss                      0           0           0           0           0
        NUMA interleave hit                  0           0           0           0           0
        NUMA alloc local               1228514     1216317     1190871     1177448     1199021
        NUMA base PTE updates        245706197   240041607   238195516   244704842   115012800
        NUMA huge PMD updates           479530      468448      464868      477573      224487
        NUMA page range updates      491225557   479886983   476207932   489222218   229950144
        NUMA hint faults                659753      656503      641678      656926      294842
        NUMA hint local faults          381604      373963      360478      337585      186249
        NUMA hint local percent             57          56          56          51          63
        NUMA pages migrated            5412140     6374899     6266530     5277468     5755096
        AutoNUMA cost                    5121%       5083%       4994%       5097%       2388%
      
      Here the impact of slowing the PTE scanner on migratrion failures is
      obvious as "NUMA base PTE updates" and "NUMA huge PMD updates" are
      massively reduced even though the headline performance is very similar.
      
      As xfsrepair was the reported workload here is the impact of the series
      on it.
      
        xfsrepair
                                               3.19.0             4.0.0-rc4             4.0.0-rc4             4.0.0-rc4             4.0.0-rc4
                                              vanilla               vanilla          vmwrite-v5r8         preserve-v5r8         slowscan-v5r8
        Min      real-fsmark        1183.29 (  0.00%)     1165.73 (  1.48%)     1152.78 (  2.58%)     1153.64 (  2.51%)     1177.62 (  0.48%)
        Min      syst-fsmark        4107.85 (  0.00%)     4027.75 (  1.95%)     3986.74 (  2.95%)     3979.16 (  3.13%)     4048.76 (  1.44%)
        Min      real-xfsrepair      441.51 (  0.00%)      463.96 ( -5.08%)      449.50 ( -1.81%)      440.08 (  0.32%)      439.87 (  0.37%)
        Min      syst-xfsrepair      195.76 (  0.00%)      278.47 (-42.25%)      262.34 (-34.01%)      203.70 ( -4.06%)      143.64 ( 26.62%)
        Amean    real-fsmark        1188.30 (  0.00%)     1177.34 (  0.92%)     1157.97 (  2.55%)     1158.21 (  2.53%)     1182.22 (  0.51%)
        Amean    syst-fsmark        4111.37 (  0.00%)     4055.70 (  1.35%)     3987.19 (  3.02%)     3998.72 (  2.74%)     4061.69 (  1.21%)
        Amean    real-xfsrepair      450.88 (  0.00%)      468.32 ( -3.87%)      454.14 ( -0.72%)      442.36 (  1.89%)      440.59 (  2.28%)
        Amean    syst-xfsrepair      199.66 (  0.00%)      290.60 (-45.55%)      277.20 (-38.84%)      204.68 ( -2.51%)      150.55 ( 24.60%)
        Stddev   real-fsmark           4.12 (  0.00%)       10.82 (-162.29%)       4.14 ( -0.28%)        5.98 (-45.05%)        4.60 (-11.53%)
        Stddev   syst-fsmark           2.63 (  0.00%)       20.32 (-671.82%)       0.37 ( 85.89%)       16.47 (-525.59%)      15.05 (-471.79%)
        Stddev   real-xfsrepair        6.87 (  0.00%)        4.55 ( 33.75%)        3.46 ( 49.58%)        1.78 ( 74.12%)        0.52 ( 92.50%)
        Stddev   syst-xfsrepair        3.02 (  0.00%)       10.30 (-241.37%)      13.17 (-336.37%)       0.71 ( 76.63%)        5.00 (-65.61%)
        CoeffVar real-fsmark           0.35 (  0.00%)        0.92 (-164.73%)       0.36 ( -2.91%)        0.52 (-48.82%)        0.39 (-12.10%)
        CoeffVar syst-fsmark           0.06 (  0.00%)        0.50 (-682.41%)       0.01 ( 85.45%)        0.41 (-543.22%)       0.37 (-478.78%)
        CoeffVar real-xfsrepair        1.52 (  0.00%)        0.97 ( 36.21%)        0.76 ( 49.94%)        0.40 ( 73.62%)        0.12 ( 92.33%)
        CoeffVar syst-xfsrepair        1.51 (  0.00%)        3.54 (-134.54%)       4.75 (-214.31%)       0.34 ( 77.20%)        3.32 (-119.63%)
        Max      real-fsmark        1193.39 (  0.00%)     1191.77 (  0.14%)     1162.90 (  2.55%)     1166.66 (  2.24%)     1188.50 (  0.41%)
        Max      syst-fsmark        4114.18 (  0.00%)     4075.45 (  0.94%)     3987.65 (  3.08%)     4019.45 (  2.30%)     4082.80 (  0.76%)
        Max      real-xfsrepair      457.80 (  0.00%)      474.60 ( -3.67%)      457.82 ( -0.00%)      444.42 (  2.92%)      441.03 (  3.66%)
        Max      syst-xfsrepair      203.11 (  0.00%)      303.65 (-49.50%)      294.35 (-44.92%)      205.33 ( -1.09%)      155.28 ( 23.55%)
      
      The really relevant lines as syst-xfsrepair which is the system CPU
      usage when running xfsrepair.  Note that on my machine the overhead was
      45% higher on 4.0-rc4 which may be part of what Dave is seeing.  Once we
      preserve the write bit across faults, it's only 2.51% higher on average.
      With the full series applied, system CPU usage is 24.6% lower on
      average.
      
      Again, the impact of preserving the write bit on minor faults is obvious
      and the impact of slowing scanning after migration failures is obvious
      on the PTE updates.  Note also that the number of pages migrated is much
      reduced even though the headline performance is comparable.
      
                                        3.19.0   4.0.0-rc4   4.0.0-rc4   4.0.0-rc4   4.0.0-rc4
                                       vanilla     vanillavmwrite-v5r8preserve-v5r8slowscan-v5r8
        Minor Faults                 153466827   254507978   249163829   153501373   105737890
        Major Faults                       610         702         690         649         724
        NUMA base PTE updates        217735049   210756527   217729596   216937111   144344993
        NUMA huge PMD updates           129294       85044      106921      127246       79887
        NUMA pages migrated           21938995    29705270    28594162    22687324    16258075
      
                              3.19.0   4.0.0-rc4   4.0.0-rc4   4.0.0-rc4   4.0.0-rc4
                             vanilla     vanillavmwrite-v5r8preserve-v5r8slowscan-v5r8
        Mean sdb-avgqusz       13.47        2.54        2.55        2.47        2.49
        Mean sdb-avgrqsz      202.32      140.22      139.50      139.02      138.12
        Mean sdb-await         25.92        5.09        5.33        5.02        5.22
        Mean sdb-r_await        4.71        0.19        0.83        0.51        0.11
        Mean sdb-w_await      104.13        5.21        5.38        5.05        5.32
        Mean sdb-svctm          0.59        0.13        0.14        0.13        0.14
        Mean sdb-rrqm           0.16        0.00        0.00        0.00        0.00
        Mean sdb-wrqm           3.59     1799.43     1826.84     1812.21     1785.67
        Max  sdb-avgqusz      111.06       12.13       14.05       11.66       15.60
        Max  sdb-avgrqsz      255.60      190.34      190.01      187.33      191.78
        Max  sdb-await        168.24       39.28       49.22       44.64       65.62
        Max  sdb-r_await      660.00       52.00      280.00       76.00       12.00
        Max  sdb-w_await     7804.00       39.28       49.22       44.64       65.62
        Max  sdb-svctm          4.00        2.82        2.86        1.98        2.84
        Max  sdb-rrqm           8.30        0.00        0.00        0.00        0.00
        Max  sdb-wrqm          34.20     5372.80     5278.60     5386.60     5546.15
      
      FWIW, I also checked SPECjbb in different configurations but it's
      similar observations -- minor faults lower, PTE update activity lower
      and performance is roughly comparable against 3.19.
      
      This patch (of 3):
      
      Threads that share writable data within pages are grouped together as
      related tasks.  This decision is based on whether the PTE is marked
      dirty which is subject to timing races between the PTE scanner update
      and when the application writes the page.  If the page is file-backed,
      then background flushes and sync also affect placement.  This is
      unpredictable behaviour which is impossible to reason about so this
      patch makes grouping decisions based on the VMA flags.
      Signed-off-by: NMel Gorman <mgorman@suse.de>
      Reported-by: NDave Chinner <david@fromorbit.com>
      Tested-by: NDave Chinner <david@fromorbit.com>
      Cc: Ingo Molnar <mingo@kernel.org>
      Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      bea66fbd
  15. 12 3月, 2015 1 次提交
    • L
      mm: fix up numa read-only thread grouping logic · 53da3bc2
      Linus Torvalds 提交于
      Dave Chinner reported that commit 4d942466 ("mm: convert
      p[te|md]_mknonnuma and remaining page table manipulations") slowed down
      his xfsrepair test enormously.  In particular, it was using more system
      time due to extra TLB flushing.
      
      The ultimate reason turns out to be how the change to use the regular
      page table accessor functions broke the NUMA grouping logic.  The old
      special mknuma/mknonnuma code accessed the page table present bit and
      the magic NUMA bit directly, while the new code just changes the page
      protections using PROT_NONE and the regular vma protections.
      
      That sounds equivalent, and from a fault standpoint it really is, but a
      subtle side effect is that the *other* protection bits of the page table
      entries also change.  And the code to decide how to group the NUMA
      entries together used the writable bit to decide whether a particular
      page was likely to be shared read-only or not.
      
      And with the change to make the NUMA handling use the regular permission
      setting functions, that writable bit was basically always cleared for
      private mappings due to COW.  So even if the page actually ends up being
      written to in the end, the NUMA balancing would act as if it was always
      shared RO.
      
      This code is a heuristic anyway, so the fix - at least for now - is to
      instead check whether the page is dirty rather than writable.  The bit
      doesn't change with protection changes.
      
      NOTE! This also adds a FIXME comment to revisit this issue,
      
      Not only should we probably re-visit the whole "is this a shared
      read-only page" heuristic (we might want to take the vma permissions
      into account and base this more on those than the per-page ones, and
      also look at whether the particular access that triggers it is a write
      or not), but the whole COW issue shows that we should think about the
      NUMA fault handling some more.
      
      For example, maybe we should do the early-COW thing that a regular fault
      does.  Or maybe we should accept that while using the same bits as
      PROTNONE was a good thing (and got rid of the specual NUMA bit), we
      might still want to just preseve the other protection bits across NUMA
      faulting.
      
      Those are bigger questions, left for later.  This just fixes up the
      heuristic so that it at least approximates working again.  More analysis
      and work needed.
      Reported-by: NDave Chinner <david@fromorbit.com>
      Tested-by: NMel Gorman <mgorman@suse.de>
      Cc: Andrew Morton <akpm@linux-foundation.org>
      Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
      Cc: Ingo Molnar <mingo@kernel.org>,
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      53da3bc2
  16. 17 2月, 2015 2 次提交
    • M
      mm: allow page fault handlers to perform the COW · 2e4cdab0
      Matthew Wilcox 提交于
      Currently COW of an XIP file is done by first bringing in a read-only
      mapping, then retrying the fault and copying the page.  It is much more
      efficient to tell the fault handler that a COW is being attempted (by
      passing in the pre-allocated page in the vm_fault structure), and allow
      the handler to perform the COW operation itself.
      
      The handler cannot insert the page itself if there is already a read-only
      mapping at that address, so allow the handler to return VM_FAULT_LOCKED
      and set the fault_page to be NULL.  This indicates to the MM code that the
      i_mmap_lock is held instead of the page lock.
      Signed-off-by: NMatthew Wilcox <matthew.r.wilcox@intel.com>
      Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Cc: Andreas Dilger <andreas.dilger@intel.com>
      Cc: Boaz Harrosh <boaz@plexistor.com>
      Cc: Christoph Hellwig <hch@lst.de>
      Cc: Dave Chinner <david@fromorbit.com>
      Cc: Jan Kara <jack@suse.cz>
      Cc: Jens Axboe <axboe@kernel.dk>
      Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
      Cc: Randy Dunlap <rdunlap@infradead.org>
      Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
      Cc: Theodore Ts'o <tytso@mit.edu>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      2e4cdab0
    • M
      mm: fix XIP fault vs truncate race · 283307c7
      Matthew Wilcox 提交于
      DAX is a replacement for the variation of XIP currently supported by the
      ext2 filesystem.  We have three different things in the tree called 'XIP',
      and the new focus is on access to data rather than executables, so a name
      change was in order.  DAX stands for Direct Access.  The X is for
      eXciting.
      
      The new focus on data access has resulted in more careful attention to
      races that exist in the current XIP code, but are not hit by the use-case
      that it was designed for.  XIP's architecture worked fine for ext2, but
      DAX is architected to work with modern filsystems such as ext4 and XFS.
      DAX is not intended for use with btrfs; the value that btrfs adds relies
      on manipulating data and writing data to different locations, while DAX's
      value is for write-in-place and keeping the kernel from touching the data.
      
      DAX was developed in order to support NV-DIMMs, but it's become clear that
      its usefuless extends beyond NV-DIMMs and there are several potential
      customers including the tracing machinery.  Other people want to place the
      kernel log in an area of memory, as long as they have a BIOS that does not
      clear DRAM on reboot.
      
      Patch 1 is a bug fix, probably worth including in 3.18.
      
      Patches 2 & 3 are infrastructure for DAX.
      
      Patches 4-8 replace the XIP code with its DAX equivalents, transforming
      ext2 to use the DAX code as we go.  Note that patch 10 is the
      Documentation patch.
      
      Patches 9-15 clean up after the XIP code, removing the infrastructure
      that is no longer needed and renaming various XIP things to DAX.
      Most of these patches were added after Jan found things he didn't
      like in an earlier version of the ext4 patch ... that had been copied
      from ext2.  So ext2 i being transformed to do things the same way that
      ext4 will later.  The ability to mount ext2 filesystems with the 'xip'
      option is retained, although the 'dax' option is now preferred.
      
      Patch 16 adds some DAX infrastructure to support ext4.
      
      Patch 17 adds DAX support to ext4.  It is broadly similar to ext2's DAX
      support, but it is more efficient than ext4's due to its support for
      unwritten extents.
      
      Patch 18 is another cleanup patch renaming XIP to DAX.
      
      My thanks to Mathieu Desnoyers for his reviews of the v11 patchset.  Most
      of the changes below were based on his feedback.
      
      This patch (of 18):
      
      Pagecache faults recheck i_size after taking the page lock to ensure that
      the fault didn't race against a truncate.  We don't have a page to lock in
      the XIP case, so use i_mmap_lock_read() instead.  It is locked in the
      truncate path in unmap_mapping_range() after updating i_size.  So while we
      hold it in the fault path, we are guaranteed that either i_size has
      already been updated in the truncate path, or that the truncate will
      subsequently call zap_page_range_single() and so remove the mapping we
      have just inserted.
      
      There is a window of time in which i_size has been reduced and the thread
      has a mapping to a page which will be removed from the file, but this is
      harmless as the page will not be allocated to a different purpose before
      the thread's access to it is revoked.
      
      [akpm@linux-foundation.org: switch to i_mmap_lock_read(), add comment in unmap_single_vma()]
      Signed-off-by: NMatthew Wilcox <matthew.r.wilcox@intel.com>
      Reviewed-by: NJan Kara <jack@suse.cz>
      Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Reviewed-by: NMathieu Desnoyers <mathieu.desnoyers@efficios.com>
      Cc: Andreas Dilger <andreas.dilger@intel.com>
      Cc: Boaz Harrosh <boaz@plexistor.com>
      Cc: Christoph Hellwig <hch@lst.de>
      Cc: Dave Chinner <david@fromorbit.com>
      Cc: Jens Axboe <axboe@kernel.dk>
      Cc: Randy Dunlap <rdunlap@infradead.org>
      Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
      Cc: Theodore Ts'o <tytso@mit.edu>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      283307c7
  17. 13 2月, 2015 5 次提交
  18. 12 2月, 2015 1 次提交
    • K
      mm: account pmd page tables to the process · dc6c9a35
      Kirill A. Shutemov 提交于
      Dave noticed that unprivileged process can allocate significant amount of
      memory -- >500 MiB on x86_64 -- and stay unnoticed by oom-killer and
      memory cgroup.  The trick is to allocate a lot of PMD page tables.  Linux
      kernel doesn't account PMD tables to the process, only PTE.
      
      The use-cases below use few tricks to allocate a lot of PMD page tables
      while keeping VmRSS and VmPTE low.  oom_score for the process will be 0.
      
      	#include <errno.h>
      	#include <stdio.h>
      	#include <stdlib.h>
      	#include <unistd.h>
      	#include <sys/mman.h>
      	#include <sys/prctl.h>
      
      	#define PUD_SIZE (1UL << 30)
      	#define PMD_SIZE (1UL << 21)
      
      	#define NR_PUD 130000
      
      	int main(void)
      	{
      		char *addr = NULL;
      		unsigned long i;
      
      		prctl(PR_SET_THP_DISABLE);
      		for (i = 0; i < NR_PUD ; i++) {
      			addr = mmap(addr + PUD_SIZE, PUD_SIZE, PROT_WRITE|PROT_READ,
      					MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
      			if (addr == MAP_FAILED) {
      				perror("mmap");
      				break;
      			}
      			*addr = 'x';
      			munmap(addr, PMD_SIZE);
      			mmap(addr, PMD_SIZE, PROT_WRITE|PROT_READ,
      					MAP_ANONYMOUS|MAP_PRIVATE|MAP_FIXED, -1, 0);
      			if (addr == MAP_FAILED)
      				perror("re-mmap"), exit(1);
      		}
      		printf("PID %d consumed %lu KiB in PMD page tables\n",
      				getpid(), i * 4096 >> 10);
      		return pause();
      	}
      
      The patch addresses the issue by account PMD tables to the process the
      same way we account PTE.
      
      The main place where PMD tables is accounted is __pmd_alloc() and
      free_pmd_range(). But there're few corner cases:
      
       - HugeTLB can share PMD page tables. The patch handles by accounting
         the table to all processes who share it.
      
       - x86 PAE pre-allocates few PMD tables on fork.
      
       - Architectures with FIRST_USER_ADDRESS > 0. We need to adjust sanity
         check on exit(2).
      
      Accounting only happens on configuration where PMD page table's level is
      present (PMD is not folded).  As with nr_ptes we use per-mm counter.  The
      counter value is used to calculate baseline for badness score by
      oom-killer.
      Signed-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com>
      Reported-by: NDave Hansen <dave.hansen@linux.intel.com>
      Cc: Hugh Dickins <hughd@google.com>
      Reviewed-by: NCyrill Gorcunov <gorcunov@openvz.org>
      Cc: Pavel Emelyanov <xemul@openvz.org>
      Cc: David Rientjes <rientjes@google.com>
      Tested-by: NSedat Dilek <sedat.dilek@gmail.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      dc6c9a35
  19. 11 2月, 2015 2 次提交