- 09 1月, 2006 5 次提交
-
-
由 Arnd Bergmann 提交于
One of my last patches contained a broken line from splitting out some other changes, this restores a working version. Signed-off-by: NArnd Bergmann <arndb@de.ibm.com> Signed-off-by: NPaul Mackerras <paulus@samba.org>
-
由 Arnd Bergmann 提交于
This patch reduces lock complexity of SPU scheduler, particularly for involuntary preemptive switches. As a result the new code does a better job of mapping the highest priority tasks to SPUs. Lock complexity is reduced by using the system default workqueue to perform involuntary saves. In this way we avoid nasty lock ordering problems that the previous code had. A "minimum timeslice" for SPU contexts is also introduced. The intent here is to avoid thrashing. While the new scheduler does a better job at prioritization it still does nothing for fairness. From: Mark Nutter <mnutter@us.ibm.com> Signed-off-by: NArnd Bergmann <arndb@de.ibm.com> Signed-off-by: NPaul Mackerras <paulus@samba.org>
-
由 Arnd Bergmann 提交于
This patch makes it easier to preempt an SPU context by having the scheduler hold ctx->state_sema for much shorter periods of time. As part of this restructuring, the control logic for the "run" operation is moved from arch/ppc64/kernel/spu_base.c to fs/spufs/file.c. Of course the base retains "bottom half" handlers for class{0,1} irqs. The new run loop will re-acquire an SPU if preempted. From: Mark Nutter <mnutter@us.ibm.com> Signed-off-by: NArnd Bergmann <arndb@de.ibm.com> Signed-off-by: NPaul Mackerras <paulus@samba.org>
-
由 Arnd Bergmann 提交于
spufs is rather noisy when debugging is enabled, this turns off the messages for production use. Signed-off-by: NArnd Bergmann <arndb@de.ibm.com> Signed-off-by: NPaul Mackerras <paulus@samba.org>
-
由 Arnd Bergmann 提交于
This adds a scheduler for SPUs to make it possible to use more logical SPUs than physical ones are present in the system. Currently, there is no support for preempting a running SPU thread, they have to leave the SPU by either triggering an event on the SPU that causes it to return to the owning thread or by sending a signal to it. This patch also adds operations that enable accessing an SPU in either runnable or saved state. We use an RW semaphore to protect the state of the SPU from changing underneath us, while we are holding it readable. In order to change the state, it is acquired writeable and a context save or restore is executed before downgrading the semaphore to read-only. From: Mark Nutter <mnutter@us.ibm.com>, Uli Weigand <Ulrich.Weigand@de.ibm.com> Signed-off-by: NArnd Bergmann <arndb@de.ibm.com> Signed-off-by: NPaul Mackerras <paulus@samba.org>
-