1. 30 5月, 2012 1 次提交
  2. 13 1月, 2012 4 次提交
  3. 14 1月, 2011 2 次提交
    • R
      thp: fix anon memory statistics with transparent hugepages · 2c888cfb
      Rik van Riel 提交于
      Count each transparent hugepage as HPAGE_PMD_NR pages in the LRU
      statistics, so the Active(anon) and Inactive(anon) statistics in
      /proc/meminfo are correct.
      Signed-off-by: NRik van Riel <riel@redhat.com>
      Signed-off-by: NAndrea Arcangeli <aarcange@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      2c888cfb
    • A
      thp: transparent hugepage core · 71e3aac0
      Andrea Arcangeli 提交于
      Lately I've been working to make KVM use hugepages transparently without
      the usual restrictions of hugetlbfs.  Some of the restrictions I'd like to
      see removed:
      
      1) hugepages have to be swappable or the guest physical memory remains
         locked in RAM and can't be paged out to swap
      
      2) if a hugepage allocation fails, regular pages should be allocated
         instead and mixed in the same vma without any failure and without
         userland noticing
      
      3) if some task quits and more hugepages become available in the
         buddy, guest physical memory backed by regular pages should be
         relocated on hugepages automatically in regions under
         madvise(MADV_HUGEPAGE) (ideally event driven by waking up the
         kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes
         not null)
      
      4) avoidance of reservation and maximization of use of hugepages whenever
         possible. Reservation (needed to avoid runtime fatal faliures) may be ok for
         1 machine with 1 database with 1 database cache with 1 database cache size
         known at boot time. It's definitely not feasible with a virtualization
         hypervisor usage like RHEV-H that runs an unknown number of virtual machines
         with an unknown size of each virtual machine with an unknown amount of
         pagecache that could be potentially useful in the host for guest not using
         O_DIRECT (aka cache=off).
      
      hugepages in the virtualization hypervisor (and also in the guest!) are
      much more important than in a regular host not using virtualization,
      becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24
      to 19 in case only the hypervisor uses transparent hugepages, and they
      decrease the tlb-miss cacheline accesses from 19 to 15 in case both the
      linux hypervisor and the linux guest both uses this patch (though the
      guest will limit the addition speedup to anonymous regions only for
      now...).  Even more important is that the tlb miss handler is much slower
      on a NPT/EPT guest than for a regular shadow paging or no-virtualization
      scenario.  So maximizing the amount of virtual memory cached by the TLB
      pays off significantly more with NPT/EPT than without (even if there would
      be no significant speedup in the tlb-miss runtime).
      
      The first (and more tedious) part of this work requires allowing the VM to
      handle anonymous hugepages mixed with regular pages transparently on
      regular anonymous vmas.  This is what this patch tries to achieve in the
      least intrusive possible way.  We want hugepages and hugetlb to be used in
      a way so that all applications can benefit without changes (as usual we
      leverage the KVM virtualization design: by improving the Linux VM at
      large, KVM gets the performance boost too).
      
      The most important design choice is: always fallback to 4k allocation if
      the hugepage allocation fails!  This is the _very_ opposite of some large
      pagecache patches that failed with -EIO back then if a 64k (or similar)
      allocation failed...
      
      Second important decision (to reduce the impact of the feature on the
      existing pagetable handling code) is that at any time we can split an
      hugepage into 512 regular pages and it has to be done with an operation
      that can't fail.  This way the reliability of the swapping isn't decreased
      (no need to allocate memory when we are short on memory to swap) and it's
      trivial to plug a split_huge_page* one-liner where needed without
      polluting the VM.  Over time we can teach mprotect, mremap and friends to
      handle pmd_trans_huge natively without calling split_huge_page*.  The fact
      it can't fail isn't just for swap: if split_huge_page would return -ENOMEM
      (instead of the current void) we'd need to rollback the mprotect from the
      middle of it (ideally including undoing the split_vma) which would be a
      big change and in the very wrong direction (it'd likely be simpler not to
      call split_huge_page at all and to teach mprotect and friends to handle
      hugepages instead of rolling them back from the middle).  In short the
      very value of split_huge_page is that it can't fail.
      
      The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and
      incremental and it'll just be an "harmless" addition later if this initial
      part is agreed upon.  It also should be noted that locking-wise replacing
      regular pages with hugepages is going to be very easy if compared to what
      I'm doing below in split_huge_page, as it will only happen when
      page_count(page) matches page_mapcount(page) if we can take the PG_lock
      and mmap_sem in write mode.  collapse_huge_page will be a "best effort"
      that (unlike split_huge_page) can fail at the minimal sign of trouble and
      we can try again later.  collapse_huge_page will be similar to how KSM
      works and the madvise(MADV_HUGEPAGE) will work similar to
      madvise(MADV_MERGEABLE).
      
      The default I like is that transparent hugepages are used at page fault
      time.  This can be changed with
      /sys/kernel/mm/transparent_hugepage/enabled.  The control knob can be set
      to three values "always", "madvise", "never" which mean respectively that
      hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions,
      or never used.  /sys/kernel/mm/transparent_hugepage/defrag instead
      controls if the hugepage allocation should defrag memory aggressively
      "always", only inside "madvise" regions, or "never".
      
      The pmd_trans_splitting/pmd_trans_huge locking is very solid.  The
      put_page (from get_user_page users that can't use mmu notifier like
      O_DIRECT) that runs against a __split_huge_page_refcount instead was a
      pain to serialize in a way that would result always in a coherent page
      count for both tail and head.  I think my locking solution with a
      compound_lock taken only after the page_first is valid and is still a
      PageHead should be safe but it surely needs review from SMP race point of
      view.  In short there is no current existing way to serialize the O_DIRECT
      final put_page against split_huge_page_refcount so I had to invent a new
      one (O_DIRECT loses knowledge on the mapping status by the time gup_fast
      returns so...).  And I didn't want to impact all gup/gup_fast users for
      now, maybe if we change the gup interface substantially we can avoid this
      locking, I admit I didn't think too much about it because changing the gup
      unpinning interface would be invasive.
      
      If we ignored O_DIRECT we could stick to the existing compound refcounting
      code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM
      (and any other mmu notifier user) would call it without FOLL_GET (and if
      FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the
      current task mmu notifier list yet).  But O_DIRECT is fundamental for
      decent performance of virtualized I/O on fast storage so we can't avoid it
      to solve the race of put_page against split_huge_page_refcount to achieve
      a complete hugepage feature for KVM.
      
      Swap and oom works fine (well just like with regular pages ;).  MMU
      notifier is handled transparently too, with the exception of the young bit
      on the pmd, that didn't have a range check but I think KVM will be fine
      because the whole point of hugepages is that EPT/NPT will also use a huge
      pmd when they notice gup returns pages with PageCompound set, so they
      won't care of a range and there's just the pmd young bit to check in that
      case.
      
      NOTE: in some cases if the L2 cache is small, this may slowdown and waste
      memory during COWs because 4M of memory are accessed in a single fault
      instead of 8k (the payoff is that after COW the program can run faster).
      So we might want to switch the copy_huge_page (and clear_huge_page too) to
      not temporal stores.  I also extensively researched ways to avoid this
      cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k
      up to 1M (I can send those patches that fully implemented prefault) but I
      concluded they're not worth it and they add an huge additional complexity
      and they remove all tlb benefits until the full hugepage has been faulted
      in, to save a little bit of memory and some cache during app startup, but
      they still don't improve substantially the cache-trashing during startup
      if the prefault happens in >4k chunks.  One reason is that those 4k pte
      entries copied are still mapped on a perfectly cache-colored hugepage, so
      the trashing is the worst one can generate in those copies (cow of 4k page
      copies aren't so well colored so they trashes less, but again this results
      in software running faster after the page fault).  Those prefault patches
      allowed things like a pte where post-cow pages were local 4k regular anon
      pages and the not-yet-cowed pte entries were pointing in the middle of
      some hugepage mapped read-only.  If it doesn't payoff substantially with
      todays hardware it will payoff even less in the future with larger l2
      caches, and the prefault logic would blot the VM a lot.  If one is
      emebdded transparent_hugepage can be disabled during boot with sysfs or
      with the boot commandline parameter transparent_hugepage=0 (or
      transparent_hugepage=2 to restrict hugepages inside madvise regions) that
      will ensure not a single hugepage is allocated at boot time.  It is simple
      enough to just disable transparent hugepage globally and let transparent
      hugepages be allocated selectively by applications in the MADV_HUGEPAGE
      region (both at page fault time, and if enabled with the
      collapse_huge_page too through the kernel daemon).
      
      This patch supports only hugepages mapped in the pmd, archs that have
      smaller hugepages will not fit in this patch alone.  Also some archs like
      power have certain tlb limits that prevents mixing different page size in
      the same regions so they will not fit in this framework that requires
      "graceful fallback" to basic PAGE_SIZE in case of physical memory
      fragmentation.  hugetlbfs remains a perfect fit for those because its
      software limits happen to match the hardware limits.  hugetlbfs also
      remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped
      to be found not fragmented after a certain system uptime and that would be
      very expensive to defragment with relocation, so requiring reservation.
      hugetlbfs is the "reservation way", the point of transparent hugepages is
      not to have any reservation at all and maximizing the use of cache and
      hugepages at all times automatically.
      
      Some performance result:
      
      vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep
      ages3
      memset page fault 1566023
      memset tlb miss 453854
      memset second tlb miss 453321
      random access tlb miss 41635
      random access second tlb miss 41658
      vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3
      memset page fault 1566471
      memset tlb miss 453375
      memset second tlb miss 453320
      random access tlb miss 41636
      random access second tlb miss 41637
      vmx andrea # ./largepages3
      memset page fault 1566642
      memset tlb miss 453417
      memset second tlb miss 453313
      random access tlb miss 41630
      random access second tlb miss 41647
      vmx andrea # ./largepages3
      memset page fault 1566872
      memset tlb miss 453418
      memset second tlb miss 453315
      random access tlb miss 41618
      random access second tlb miss 41659
      vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage
      vmx andrea # ./largepages3
      memset page fault 2182476
      memset tlb miss 460305
      memset second tlb miss 460179
      random access tlb miss 44483
      random access second tlb miss 44186
      vmx andrea # ./largepages3
      memset page fault 2182791
      memset tlb miss 460742
      memset second tlb miss 459962
      random access tlb miss 43981
      random access second tlb miss 43988
      
      ============
      #include <stdio.h>
      #include <stdlib.h>
      #include <string.h>
      #include <sys/time.h>
      
      #define SIZE (3UL*1024*1024*1024)
      
      int main()
      {
      	char *p = malloc(SIZE), *p2;
      	struct timeval before, after;
      
      	gettimeofday(&before, NULL);
      	memset(p, 0, SIZE);
      	gettimeofday(&after, NULL);
      	printf("memset page fault %Lu\n",
      	       (after.tv_sec-before.tv_sec)*1000000UL +
      	       after.tv_usec-before.tv_usec);
      
      	gettimeofday(&before, NULL);
      	memset(p, 0, SIZE);
      	gettimeofday(&after, NULL);
      	printf("memset tlb miss %Lu\n",
      	       (after.tv_sec-before.tv_sec)*1000000UL +
      	       after.tv_usec-before.tv_usec);
      
      	gettimeofday(&before, NULL);
      	memset(p, 0, SIZE);
      	gettimeofday(&after, NULL);
      	printf("memset second tlb miss %Lu\n",
      	       (after.tv_sec-before.tv_sec)*1000000UL +
      	       after.tv_usec-before.tv_usec);
      
      	gettimeofday(&before, NULL);
      	for (p2 = p; p2 < p+SIZE; p2 += 4096)
      		*p2 = 0;
      	gettimeofday(&after, NULL);
      	printf("random access tlb miss %Lu\n",
      	       (after.tv_sec-before.tv_sec)*1000000UL +
      	       after.tv_usec-before.tv_usec);
      
      	gettimeofday(&before, NULL);
      	for (p2 = p; p2 < p+SIZE; p2 += 4096)
      		*p2 = 0;
      	gettimeofday(&after, NULL);
      	printf("random access second tlb miss %Lu\n",
      	       (after.tv_sec-before.tv_sec)*1000000UL +
      	       after.tv_usec-before.tv_usec);
      
      	return 0;
      }
      ============
      Signed-off-by: NAndrea Arcangeli <aarcange@redhat.com>
      Acked-by: NRik van Riel <riel@redhat.com>
      Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      71e3aac0
  4. 22 9月, 2009 2 次提交
  5. 09 1月, 2009 2 次提交
    • K
      inactive_anon_is_low: move to vmscan · f89eb90e
      KOSAKI Motohiro 提交于
      The inactive_anon_is_low() is called only vmscan.  Then it can move to
      vmscan.c
      
      This patch doesn't have any functional change.
      Reviewd-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Acked-by: NRik van Riel <riel@redhat.com>
      Signed-off-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
      Cc: Balbir Singh <balbir@in.ibm.com>
      Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
      Cc: Hugh Dickins <hugh@veritas.com>
      Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      f89eb90e
    • K
      memcg: synchronized LRU · 08e552c6
      KAMEZAWA Hiroyuki 提交于
      A big patch for changing memcg's LRU semantics.
      
      Now,
        - page_cgroup is linked to mem_cgroup's its own LRU (per zone).
      
        - LRU of page_cgroup is not synchronous with global LRU.
      
        - page and page_cgroup is one-to-one and statically allocated.
      
        - To find page_cgroup is on what LRU, you have to check pc->mem_cgroup as
          - lru = page_cgroup_zoneinfo(pc, nid_of_pc, zid_of_pc);
      
        - SwapCache is handled.
      
      And, when we handle LRU list of page_cgroup, we do following.
      
      	pc = lookup_page_cgroup(page);
      	lock_page_cgroup(pc); .....................(1)
      	mz = page_cgroup_zoneinfo(pc);
      	spin_lock(&mz->lru_lock);
      	.....add to LRU
      	spin_unlock(&mz->lru_lock);
      	unlock_page_cgroup(pc);
      
      But (1) is spin_lock and we have to be afraid of dead-lock with zone->lru_lock.
      So, trylock() is used at (1), now. Without (1), we can't trust "mz" is correct.
      
      This is a trial to remove this dirty nesting of locks.
      This patch changes mz->lru_lock to be zone->lru_lock.
      Then, above sequence will be written as
      
              spin_lock(&zone->lru_lock); # in vmscan.c or swap.c via global LRU
      	mem_cgroup_add/remove/etc_lru() {
      		pc = lookup_page_cgroup(page);
      		mz = page_cgroup_zoneinfo(pc);
      		if (PageCgroupUsed(pc)) {
      			....add to LRU
      		}
              spin_lock(&zone->lru_lock); # in vmscan.c or swap.c via global LRU
      
      This is much simpler.
      (*) We're safe even if we don't take lock_page_cgroup(pc). Because..
          1. When pc->mem_cgroup can be modified.
             - at charge.
             - at account_move().
          2. at charge
             the PCG_USED bit is not set before pc->mem_cgroup is fixed.
          3. at account_move()
             the page is isolated and not on LRU.
      
      Pros.
        - easy for maintenance.
        - memcg can make use of laziness of pagevec.
        - we don't have to duplicated LRU/Active/Unevictable bit in page_cgroup.
        - LRU status of memcg will be synchronized with global LRU's one.
        - # of locks are reduced.
        - account_move() is simplified very much.
      Cons.
        - may increase cost of LRU rotation.
          (no impact if memcg is not configured.)
      Signed-off-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Cc: Li Zefan <lizf@cn.fujitsu.com>
      Cc: Balbir Singh <balbir@in.ibm.com>
      Cc: Pavel Emelyanov <xemul@openvz.org>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      08e552c6
  6. 20 10月, 2008 6 次提交
    • K
      vmscan: kill unused lru functions · 902d2e8a
      KOSAKI Motohiro 提交于
      Several LRU manupuration function are not used now.  So they can be
      removed.
      Signed-off-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
      Acked-by: NRik van Riel <riel@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      902d2e8a
    • L
      Unevictable LRU Infrastructure · 894bc310
      Lee Schermerhorn 提交于
      When the system contains lots of mlocked or otherwise unevictable pages,
      the pageout code (kswapd) can spend lots of time scanning over these
      pages.  Worse still, the presence of lots of unevictable pages can confuse
      kswapd into thinking that more aggressive pageout modes are required,
      resulting in all kinds of bad behaviour.
      
      Infrastructure to manage pages excluded from reclaim--i.e., hidden from
      vmscan.  Based on a patch by Larry Woodman of Red Hat.  Reworked to
      maintain "unevictable" pages on a separate per-zone LRU list, to "hide"
      them from vmscan.
      
      Kosaki Motohiro added the support for the memory controller unevictable
      lru list.
      
      Pages on the unevictable list have both PG_unevictable and PG_lru set.
      Thus, PG_unevictable is analogous to and mutually exclusive with
      PG_active--it specifies which LRU list the page is on.
      
      The unevictable infrastructure is enabled by a new mm Kconfig option
      [CONFIG_]UNEVICTABLE_LRU.
      
      A new function 'page_evictable(page, vma)' in vmscan.c tests whether or
      not a page may be evictable.  Subsequent patches will add the various
      !evictable tests.  We'll want to keep these tests light-weight for use in
      shrink_active_list() and, possibly, the fault path.
      
      To avoid races between tasks putting pages [back] onto an LRU list and
      tasks that might be moving the page from non-evictable to evictable state,
      the new function 'putback_lru_page()' -- inverse to 'isolate_lru_page()'
      -- tests the "evictability" of a page after placing it on the LRU, before
      dropping the reference.  If the page has become unevictable,
      putback_lru_page() will redo the 'putback', thus moving the page to the
      unevictable list.  This way, we avoid "stranding" evictable pages on the
      unevictable list.
      
      [akpm@linux-foundation.org: fix fallout from out-of-order merge]
      [riel@redhat.com: fix UNEVICTABLE_LRU and !PROC_PAGE_MONITOR build]
      [nishimura@mxp.nes.nec.co.jp: remove redundant mapping check]
      [kosaki.motohiro@jp.fujitsu.com: unevictable-lru-infrastructure: putback_lru_page()/unevictable page handling rework]
      [kosaki.motohiro@jp.fujitsu.com: kill unnecessary lock_page() in vmscan.c]
      [kosaki.motohiro@jp.fujitsu.com: revert migration change of unevictable lru infrastructure]
      [kosaki.motohiro@jp.fujitsu.com: revert to unevictable-lru-infrastructure-kconfig-fix.patch]
      [kosaki.motohiro@jp.fujitsu.com: restore patch failure of vmstat-unevictable-and-mlocked-pages-vm-events.patch]
      Signed-off-by: NLee Schermerhorn <lee.schermerhorn@hp.com>
      Signed-off-by: NRik van Riel <riel@redhat.com>
      Signed-off-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
      Debugged-by: NBenjamin Kidwell <benjkidwell@yahoo.com>
      Signed-off-by: NDaisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
      Signed-off-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      894bc310
    • R
      vmscan: second chance replacement for anonymous pages · 556adecb
      Rik van Riel 提交于
      We avoid evicting and scanning anonymous pages for the most part, but
      under some workloads we can end up with most of memory filled with
      anonymous pages.  At that point, we suddenly need to clear the referenced
      bits on all of memory, which can take ages on very large memory systems.
      
      We can reduce the maximum number of pages that need to be scanned by not
      taking the referenced state into account when deactivating an anonymous
      page.  After all, every anonymous page starts out referenced, so why
      check?
      
      If an anonymous page gets referenced again before it reaches the end of
      the inactive list, we move it back to the active list.
      
      To keep the maximum amount of necessary work reasonable, we scale the
      active to inactive ratio with the size of memory, using the formula
      active:inactive ratio = sqrt(memory in GB * 10).
      
      Kswapd CPU use now seems to scale by the amount of pageout bandwidth,
      instead of by the amount of memory present in the system.
      
      [kamezawa.hiroyu@jp.fujitsu.com: fix OOM with memcg]
      [kamezawa.hiroyu@jp.fujitsu.com: memcg: lru scan fix]
      Signed-off-by: NRik van Riel <riel@redhat.com>
      Signed-off-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
      Signed-off-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      556adecb
    • R
      vmscan: split LRU lists into anon & file sets · 4f98a2fe
      Rik van Riel 提交于
      Split the LRU lists in two, one set for pages that are backed by real file
      systems ("file") and one for pages that are backed by memory and swap
      ("anon").  The latter includes tmpfs.
      
      The advantage of doing this is that the VM will not have to scan over lots
      of anonymous pages (which we generally do not want to swap out), just to
      find the page cache pages that it should evict.
      
      This patch has the infrastructure and a basic policy to balance how much
      we scan the anon lists and how much we scan the file lists.  The big
      policy changes are in separate patches.
      
      [lee.schermerhorn@hp.com: collect lru meminfo statistics from correct offset]
      [kosaki.motohiro@jp.fujitsu.com: prevent incorrect oom under split_lru]
      [kosaki.motohiro@jp.fujitsu.com: fix pagevec_move_tail() doesn't treat unevictable page]
      [hugh@veritas.com: memcg swapbacked pages active]
      [hugh@veritas.com: splitlru: BDI_CAP_SWAP_BACKED]
      [akpm@linux-foundation.org: fix /proc/vmstat units]
      [nishimura@mxp.nes.nec.co.jp: memcg: fix handling of shmem migration]
      [kosaki.motohiro@jp.fujitsu.com: adjust Quicklists field of /proc/meminfo]
      [kosaki.motohiro@jp.fujitsu.com: fix style issue of get_scan_ratio()]
      Signed-off-by: NRik van Riel <riel@redhat.com>
      Signed-off-by: NLee Schermerhorn <Lee.Schermerhorn@hp.com>
      Signed-off-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
      Signed-off-by: NHugh Dickins <hugh@veritas.com>
      Signed-off-by: NDaisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      4f98a2fe
    • R
      define page_file_cache() function · b2e18538
      Rik van Riel 提交于
      Define page_file_cache() function to answer the question:
      	is page backed by a file?
      
      Originally part of Rik van Riel's split-lru patch.  Extracted to make
      available for other, independent reclaim patches.
      
      Moved inline function to linux/mm_inline.h where it will be needed by
      subsequent "split LRU" and "noreclaim" patches.
      
      Unfortunately this needs to use a page flag, since the PG_swapbacked state
      needs to be preserved all the way to the point where the page is last
      removed from the LRU.  Trying to derive the status from other info in the
      page resulted in wrong VM statistics in earlier split VM patchsets.
      
      The total number of page flags in use on a 32 bit machine after this patch
      is 19.
      
      [akpm@linux-foundation.org: fix up out-of-order merge fallout]
      [hugh@veritas.com: splitlru: shmem_getpage SetPageSwapBacked sooner[
      Signed-off-by: NRik van Riel <riel@redhat.com>
      Signed-off-by: NLee Schermerhorn <lee.schermerhorn@hp.com>
      Signed-off-by: NMinChan Kim <minchan.kim@gmail.com>
      Signed-off-by: NHugh Dickins <hugh@veritas.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      b2e18538
    • C
      vmscan: Use an indexed array for LRU variables · b69408e8
      Christoph Lameter 提交于
      Currently we are defining explicit variables for the inactive and active
      list.  An indexed array can be more generic and avoid repeating similar
      code in several places in the reclaim code.
      
      We are saving a few bytes in terms of code size:
      
      Before:
      
         text    data     bss     dec     hex filename
      4097753  573120 4092484 8763357  85b7dd vmlinux
      
      After:
      
         text    data     bss     dec     hex filename
      4097729  573120 4092484 8763333  85b7c5 vmlinux
      
      Having an easy way to add new lru lists may ease future work on the
      reclaim code.
      Signed-off-by: NRik van Riel <riel@redhat.com>
      Signed-off-by: NLee Schermerhorn <lee.schermerhorn@hp.com>
      Signed-off-by: NChristoph Lameter <cl@linux-foundation.org>
      Signed-off-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      b69408e8
  7. 12 2月, 2007 1 次提交
    • C
      [PATCH] Use ZVC for inactive and active counts · c8785385
      Christoph Lameter 提交于
      The determination of the dirty ratio to determine writeback behavior is
      currently based on the number of total pages on the system.
      
      However, not all pages in the system may be dirtied.  Thus the ratio is always
      too low and can never reach 100%.  The ratio may be particularly skewed if
      large hugepage allocations, slab allocations or device driver buffers make
      large sections of memory not available anymore.  In that case we may get into
      a situation in which f.e.  the background writeback ratio of 40% cannot be
      reached anymore which leads to undesired writeback behavior.
      
      This patchset fixes that issue by determining the ratio based on the actual
      pages that may potentially be dirty.  These are the pages on the active and
      the inactive list plus free pages.
      
      The problem with those counts has so far been that it is expensive to
      calculate these because counts from multiple nodes and multiple zones will
      have to be summed up.  This patchset makes these counters ZVC counters.  This
      means that a current sum per zone, per node and for the whole system is always
      available via global variables and not expensive anymore to calculate.
      
      The patchset results in some other good side effects:
      
      - Removal of the various functions that sum up free, active and inactive
        page counts
      
      - Cleanup of the functions that display information via the proc filesystem.
      
      This patch:
      
      The use of a ZVC for nr_inactive and nr_active allows a simplification of some
      counter operations.  More ZVC functionality is used for sums etc in the
      following patches.
      
      [akpm@osdl.org: UP build fix]
      Signed-off-by: NChristoph Lameter <clameter@sgi.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      c8785385
  8. 22 3月, 2006 1 次提交
  9. 19 1月, 2006 1 次提交
  10. 09 1月, 2006 1 次提交
    • C
      [PATCH] Swap Migration V5: LRU operations · 21eac81f
      Christoph Lameter 提交于
      This is the start of the `swap migration' patch series.
      
      Swap migration allows the moving of the physical location of pages between
      nodes in a numa system while the process is running.  This means that the
      virtual addresses that the process sees do not change.  However, the system
      rearranges the physical location of those pages.
      
      The main intent of page migration patches here is to reduce the latency of
      memory access by moving pages near to the processor where the process
      accessing that memory is running.
      
      The patchset allows a process to manually relocate the node on which its
      pages are located through the MF_MOVE and MF_MOVE_ALL options while
      setting a new memory policy.
      
      The pages of process can also be relocated from another process using the
      sys_migrate_pages() function call.  Requires CAP_SYS_ADMIN.  The migrate_pages
      function call takes two sets of nodes and moves pages of a process that are
      located on the from nodes to the destination nodes.
      
      Manual migration is very useful if for example the scheduler has relocated a
      process to a processor on a distant node.  A batch scheduler or an
      administrator can detect the situation and move the pages of the process
      nearer to the new processor.
      
      sys_migrate_pages() could be used on non-numa machines as well, to force all
      of a particualr process's pages out to swap, if someone thinks that's useful.
      
      Larger installations usually partition the system using cpusets into sections
      of nodes.  Paul has equipped cpusets with the ability to move pages when a
      task is moved to another cpuset.  This allows automatic control over locality
      of a process.  If a task is moved to a new cpuset then also all its pages are
      moved with it so that the performance of the process does not sink
      dramatically (as is the case today).
      
      Swap migration works by simply evicting the page.  The pages must be faulted
      back in.  The pages are then typically reallocated by the system near the node
      where the process is executing.
      
      For swap migration the destination of the move is controlled by the allocation
      policy.  Cpusets set the allocation policy before calling sys_migrate_pages()
      in order to move the pages as intended.
      
      No allocation policy changes are performed for sys_migrate_pages().  This
      means that the pages may not faulted in to the specified nodes if no
      allocation policy was set by other means.  The pages will just end up near the
      node where the fault occurred.
      
      There's another patch series in the pipeline which implements "direct
      migration".
      
      The direct migration patchset extends the migration functionality to avoid
      going through swap.  The destination node of the relation is controllable
      during the actual moving of pages.  The crutch of using the allocation policy
      to relocate is not necessary and the pages are moved directly to the target.
      Its also faster since swap is not used.
      
      And sys_migrate_pages() can then move pages directly to the specified node.
      Implement functions to isolate pages from the LRU and put them back later.
      
      This patch:
      
      An earlier implementation was provided by Hirokazu Takahashi
      <taka@valinux.co.jp> and IWAMOTO Toshihiro <iwamoto@valinux.co.jp> for the
      memory hotplug project.
      
      From: Magnus
      
      This breaks out isolate_lru_page() and putpack_lru_page().  Needed for swap
      migration.
      Signed-off-by: NMagnus Damm <magnus.damm@gmail.com>
      Signed-off-by: NChristoph Lameter <clameter@sgi.com>
      Signed-off-by: NAndrew Morton <akpm@osdl.org>
      Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
      21eac81f
  11. 17 4月, 2005 1 次提交
    • L
      Linux-2.6.12-rc2 · 1da177e4
      Linus Torvalds 提交于
      Initial git repository build. I'm not bothering with the full history,
      even though we have it. We can create a separate "historical" git
      archive of that later if we want to, and in the meantime it's about
      3.2GB when imported into git - space that would just make the early
      git days unnecessarily complicated, when we don't have a lot of good
      infrastructure for it.
      
      Let it rip!
      1da177e4