“7724105686e718ac476a6ad3304fea2fbcfcffde”上不存在“drivers/infiniband/hw/hfi1/ruc.c”
  1. 27 7月, 2016 5 次提交
    • M
      slab: do not panic on invalid gfp_mask · 72baeef0
      Michal Hocko 提交于
      Both SLAB and SLUB BUG() when a caller provides an invalid gfp_mask.
      This is a rather harsh way to announce a non-critical issue.  Allocator
      is free to ignore invalid flags.  Let's simply replace BUG() by
      dump_stack to tell the offender and fixup the mask to move on with the
      allocation request.
      
      This is an example for kmalloc(GFP_KERNEL|__GFP_HIGHMEM) from a test
      module:
      
        Unexpected gfp: 0x2 (__GFP_HIGHMEM). Fixing up to gfp: 0x24000c0 (GFP_KERNEL). Fix your code!
        CPU: 0 PID: 2916 Comm: insmod Tainted: G           O    4.6.0-slabgfp2-00002-g4cdfc2ef4892-dirty #936
        Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Debian-1.8.2-1 04/01/2014
        Call Trace:
          dump_stack+0x67/0x90
          cache_alloc_refill+0x201/0x617
          kmem_cache_alloc_trace+0xa7/0x24a
          ? 0xffffffffa0005000
          mymodule_init+0x20/0x1000 [test_slab]
          do_one_initcall+0xe7/0x16c
          ? rcu_read_lock_sched_held+0x61/0x69
          ? kmem_cache_alloc_trace+0x197/0x24a
          do_init_module+0x5f/0x1d9
          load_module+0x1a3d/0x1f21
          ? retint_kernel+0x2d/0x2d
          SyS_init_module+0xe8/0x10e
          ? SyS_init_module+0xe8/0x10e
          do_syscall_64+0x68/0x13f
          entry_SYSCALL64_slow_path+0x25/0x25
      
      Link: http://lkml.kernel.org/r/1465548200-11384-2-git-send-email-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com>
      Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Pekka Enberg <penberg@kernel.org>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      72baeef0
    • M
      slab: make GFP_SLAB_BUG_MASK information more human readable · bacdcb34
      Michal Hocko 提交于
      printk offers %pGg for quite some time so let's use it to get a human
      readable list of invalid flags.
      
      The original output would be
        [  429.191962] gfp: 2
      
      after the change
        [  429.191962] Unexpected gfp: 0x2 (__GFP_HIGHMEM)
      
      Link: http://lkml.kernel.org/r/1465548200-11384-1-git-send-email-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com>
      Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Pekka Enberg <penberg@kernel.org>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      bacdcb34
    • T
      mm: SLUB freelist randomization · 210e7a43
      Thomas Garnier 提交于
      Implements freelist randomization for the SLUB allocator.  It was
      previous implemented for the SLAB allocator.  Both use the same
      configuration option (CONFIG_SLAB_FREELIST_RANDOM).
      
      The list is randomized during initialization of a new set of pages.  The
      order on different freelist sizes is pre-computed at boot for
      performance.  Each kmem_cache has its own randomized freelist.
      
      This security feature reduces the predictability of the kernel SLUB
      allocator against heap overflows rendering attacks much less stable.
      
      For example these attacks exploit the predictability of the heap:
       - Linux Kernel CAN SLUB overflow (https://goo.gl/oMNWkU)
       - Exploiting Linux Kernel Heap corruptions (http://goo.gl/EXLn95)
      
      Performance results:
      
      slab_test impact is between 3% to 4% on average for 100000 attempts
      without smp.  It is a very focused testing, kernbench show the overall
      impact on the system is way lower.
      
      Before:
      
        Single thread testing
        =====================
        1. Kmalloc: Repeatedly allocate then free test
        100000 times kmalloc(8) -> 49 cycles kfree -> 77 cycles
        100000 times kmalloc(16) -> 51 cycles kfree -> 79 cycles
        100000 times kmalloc(32) -> 53 cycles kfree -> 83 cycles
        100000 times kmalloc(64) -> 62 cycles kfree -> 90 cycles
        100000 times kmalloc(128) -> 81 cycles kfree -> 97 cycles
        100000 times kmalloc(256) -> 98 cycles kfree -> 121 cycles
        100000 times kmalloc(512) -> 95 cycles kfree -> 122 cycles
        100000 times kmalloc(1024) -> 96 cycles kfree -> 126 cycles
        100000 times kmalloc(2048) -> 115 cycles kfree -> 140 cycles
        100000 times kmalloc(4096) -> 149 cycles kfree -> 171 cycles
        2. Kmalloc: alloc/free test
        100000 times kmalloc(8)/kfree -> 70 cycles
        100000 times kmalloc(16)/kfree -> 70 cycles
        100000 times kmalloc(32)/kfree -> 70 cycles
        100000 times kmalloc(64)/kfree -> 70 cycles
        100000 times kmalloc(128)/kfree -> 70 cycles
        100000 times kmalloc(256)/kfree -> 69 cycles
        100000 times kmalloc(512)/kfree -> 70 cycles
        100000 times kmalloc(1024)/kfree -> 73 cycles
        100000 times kmalloc(2048)/kfree -> 72 cycles
        100000 times kmalloc(4096)/kfree -> 71 cycles
      
      After:
      
        Single thread testing
        =====================
        1. Kmalloc: Repeatedly allocate then free test
        100000 times kmalloc(8) -> 57 cycles kfree -> 78 cycles
        100000 times kmalloc(16) -> 61 cycles kfree -> 81 cycles
        100000 times kmalloc(32) -> 76 cycles kfree -> 93 cycles
        100000 times kmalloc(64) -> 83 cycles kfree -> 94 cycles
        100000 times kmalloc(128) -> 106 cycles kfree -> 107 cycles
        100000 times kmalloc(256) -> 118 cycles kfree -> 117 cycles
        100000 times kmalloc(512) -> 114 cycles kfree -> 116 cycles
        100000 times kmalloc(1024) -> 115 cycles kfree -> 118 cycles
        100000 times kmalloc(2048) -> 147 cycles kfree -> 131 cycles
        100000 times kmalloc(4096) -> 214 cycles kfree -> 161 cycles
        2. Kmalloc: alloc/free test
        100000 times kmalloc(8)/kfree -> 66 cycles
        100000 times kmalloc(16)/kfree -> 66 cycles
        100000 times kmalloc(32)/kfree -> 66 cycles
        100000 times kmalloc(64)/kfree -> 66 cycles
        100000 times kmalloc(128)/kfree -> 65 cycles
        100000 times kmalloc(256)/kfree -> 67 cycles
        100000 times kmalloc(512)/kfree -> 67 cycles
        100000 times kmalloc(1024)/kfree -> 64 cycles
        100000 times kmalloc(2048)/kfree -> 67 cycles
        100000 times kmalloc(4096)/kfree -> 67 cycles
      
      Kernbench, before:
      
        Average Optimal load -j 12 Run (std deviation):
        Elapsed Time 101.873 (1.16069)
        User Time 1045.22 (1.60447)
        System Time 88.969 (0.559195)
        Percent CPU 1112.9 (13.8279)
        Context Switches 189140 (2282.15)
        Sleeps 99008.6 (768.091)
      
      After:
      
        Average Optimal load -j 12 Run (std deviation):
        Elapsed Time 102.47 (0.562732)
        User Time 1045.3 (1.34263)
        System Time 88.311 (0.342554)
        Percent CPU 1105.8 (6.49444)
        Context Switches 189081 (2355.78)
        Sleeps 99231.5 (800.358)
      
      Link: http://lkml.kernel.org/r/1464295031-26375-3-git-send-email-thgarnie@google.comSigned-off-by: NThomas Garnier <thgarnie@google.com>
      Reviewed-by: NKees Cook <keescook@chromium.org>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Pekka Enberg <penberg@kernel.org>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      210e7a43
    • T
      mm: reorganize SLAB freelist randomization · 7c00fce9
      Thomas Garnier 提交于
      The kernel heap allocators are using a sequential freelist making their
      allocation predictable.  This predictability makes kernel heap overflow
      easier to exploit.  An attacker can careful prepare the kernel heap to
      control the following chunk overflowed.
      
      For example these attacks exploit the predictability of the heap:
       - Linux Kernel CAN SLUB overflow (https://goo.gl/oMNWkU)
       - Exploiting Linux Kernel Heap corruptions (http://goo.gl/EXLn95)
      
      ***Problems that needed solving:
       - Randomize the Freelist (singled linked) used in the SLUB allocator.
       - Ensure good performance to encourage usage.
       - Get best entropy in early boot stage.
      
      ***Parts:
       - 01/02 Reorganize the SLAB Freelist randomization to share elements
         with the SLUB implementation.
       - 02/02 The SLUB Freelist randomization implementation. Similar approach
         than the SLAB but tailored to the singled freelist used in SLUB.
      
      ***Performance data:
      
      slab_test impact is between 3% to 4% on average for 100000 attempts
      without smp.  It is a very focused testing, kernbench show the overall
      impact on the system is way lower.
      
      Before:
      
        Single thread testing
        =====================
        1. Kmalloc: Repeatedly allocate then free test
        100000 times kmalloc(8) -> 49 cycles kfree -> 77 cycles
        100000 times kmalloc(16) -> 51 cycles kfree -> 79 cycles
        100000 times kmalloc(32) -> 53 cycles kfree -> 83 cycles
        100000 times kmalloc(64) -> 62 cycles kfree -> 90 cycles
        100000 times kmalloc(128) -> 81 cycles kfree -> 97 cycles
        100000 times kmalloc(256) -> 98 cycles kfree -> 121 cycles
        100000 times kmalloc(512) -> 95 cycles kfree -> 122 cycles
        100000 times kmalloc(1024) -> 96 cycles kfree -> 126 cycles
        100000 times kmalloc(2048) -> 115 cycles kfree -> 140 cycles
        100000 times kmalloc(4096) -> 149 cycles kfree -> 171 cycles
        2. Kmalloc: alloc/free test
        100000 times kmalloc(8)/kfree -> 70 cycles
        100000 times kmalloc(16)/kfree -> 70 cycles
        100000 times kmalloc(32)/kfree -> 70 cycles
        100000 times kmalloc(64)/kfree -> 70 cycles
        100000 times kmalloc(128)/kfree -> 70 cycles
        100000 times kmalloc(256)/kfree -> 69 cycles
        100000 times kmalloc(512)/kfree -> 70 cycles
        100000 times kmalloc(1024)/kfree -> 73 cycles
        100000 times kmalloc(2048)/kfree -> 72 cycles
        100000 times kmalloc(4096)/kfree -> 71 cycles
      
      After:
      
        Single thread testing
        =====================
        1. Kmalloc: Repeatedly allocate then free test
        100000 times kmalloc(8) -> 57 cycles kfree -> 78 cycles
        100000 times kmalloc(16) -> 61 cycles kfree -> 81 cycles
        100000 times kmalloc(32) -> 76 cycles kfree -> 93 cycles
        100000 times kmalloc(64) -> 83 cycles kfree -> 94 cycles
        100000 times kmalloc(128) -> 106 cycles kfree -> 107 cycles
        100000 times kmalloc(256) -> 118 cycles kfree -> 117 cycles
        100000 times kmalloc(512) -> 114 cycles kfree -> 116 cycles
        100000 times kmalloc(1024) -> 115 cycles kfree -> 118 cycles
        100000 times kmalloc(2048) -> 147 cycles kfree -> 131 cycles
        100000 times kmalloc(4096) -> 214 cycles kfree -> 161 cycles
        2. Kmalloc: alloc/free test
        100000 times kmalloc(8)/kfree -> 66 cycles
        100000 times kmalloc(16)/kfree -> 66 cycles
        100000 times kmalloc(32)/kfree -> 66 cycles
        100000 times kmalloc(64)/kfree -> 66 cycles
        100000 times kmalloc(128)/kfree -> 65 cycles
        100000 times kmalloc(256)/kfree -> 67 cycles
        100000 times kmalloc(512)/kfree -> 67 cycles
        100000 times kmalloc(1024)/kfree -> 64 cycles
        100000 times kmalloc(2048)/kfree -> 67 cycles
        100000 times kmalloc(4096)/kfree -> 67 cycles
      
      Kernbench, before:
      
        Average Optimal load -j 12 Run (std deviation):
        Elapsed Time 101.873 (1.16069)
        User Time 1045.22 (1.60447)
        System Time 88.969 (0.559195)
        Percent CPU 1112.9 (13.8279)
        Context Switches 189140 (2282.15)
        Sleeps 99008.6 (768.091)
      
      After:
      
        Average Optimal load -j 12 Run (std deviation):
        Elapsed Time 102.47 (0.562732)
        User Time 1045.3 (1.34263)
        System Time 88.311 (0.342554)
        Percent CPU 1105.8 (6.49444)
        Context Switches 189081 (2355.78)
        Sleeps 99231.5 (800.358)
      
      This patch (of 2):
      
      This commit reorganizes the previous SLAB freelist randomization to
      prepare for the SLUB implementation.  It moves functions that will be
      shared to slab_common.
      
      The entropy functions are changed to align with the SLUB implementation,
      now using get_random_(int|long) functions.  These functions were chosen
      because they provide a bit more entropy early on boot and better
      performance when specific arch instructions are not available.
      
      [akpm@linux-foundation.org: fix build]
      Link: http://lkml.kernel.org/r/1464295031-26375-2-git-send-email-thgarnie@google.comSigned-off-by: NThomas Garnier <thgarnie@google.com>
      Reviewed-by: NKees Cook <keescook@chromium.org>
      Cc: Christoph Lameter <cl@linux.com>
      Cc: Pekka Enberg <penberg@kernel.org>
      Cc: David Rientjes <rientjes@google.com>
      Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      7c00fce9
    • D
      fs/fs-writeback.c: add a new writeback list for sync · 6c60d2b5
      Dave Chinner 提交于
      wait_sb_inodes() currently does a walk of all inodes in the filesystem
      to find dirty one to wait on during sync.  This is highly inefficient
      and wastes a lot of CPU when there are lots of clean cached inodes that
      we don't need to wait on.
      
      To avoid this "all inode" walk, we need to track inodes that are
      currently under writeback that we need to wait for.  We do this by
      adding inodes to a writeback list on the sb when the mapping is first
      tagged as having pages under writeback.  wait_sb_inodes() can then walk
      this list of "inodes under IO" and wait specifically just for the inodes
      that the current sync(2) needs to wait for.
      
      Define a couple helpers to add/remove an inode from the writeback list
      and call them when the overall mapping is tagged for or cleared from
      writeback.  Update wait_sb_inodes() to walk only the inodes under
      writeback due to the sync.
      
      With this change, filesystem sync times are significantly reduced for
      fs' with largely populated inode caches and otherwise no other work to
      do.  For example, on a 16xcpu 2GHz x86-64 server, 10TB XFS filesystem
      with a ~10m entry inode cache, sync times are reduced from ~7.3s to less
      than 0.1s when the filesystem is fully clean.
      
      Link: http://lkml.kernel.org/r/1466594593-6757-2-git-send-email-bfoster@redhat.comSigned-off-by: NDave Chinner <dchinner@redhat.com>
      Signed-off-by: NJosef Bacik <jbacik@fb.com>
      Signed-off-by: NBrian Foster <bfoster@redhat.com>
      Reviewed-by: NJan Kara <jack@suse.cz>
      Tested-by: NHolger Hoffstätte <holger.hoffstaette@applied-asynchrony.com>
      Cc: Al Viro <viro@ZenIV.linux.org.uk>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      6c60d2b5
  2. 23 7月, 2016 1 次提交
    • J
      mm: memcontrol: fix cgroup creation failure after many small jobs · 73f576c0
      Johannes Weiner 提交于
      The memory controller has quite a bit of state that usually outlives the
      cgroup and pins its CSS until said state disappears.  At the same time
      it imposes a 16-bit limit on the CSS ID space to economically store IDs
      in the wild.  Consequently, when we use cgroups to contain frequent but
      small and short-lived jobs that leave behind some page cache, we quickly
      run into the 64k limitations of outstanding CSSs.  Creating a new cgroup
      fails with -ENOSPC while there are only a few, or even no user-visible
      cgroups in existence.
      
      Although pinning CSSs past cgroup removal is common, there are only two
      instances that actually need an ID after a cgroup is deleted: cache
      shadow entries and swapout records.
      
      Cache shadow entries reference the ID weakly and can deal with the CSS
      having disappeared when it's looked up later.  They pose no hurdle.
      
      Swap-out records do need to pin the css to hierarchically attribute
      swapins after the cgroup has been deleted; though the only pages that
      remain swapped out after offlining are tmpfs/shmem pages.  And those
      references are under the user's control, so they are manageable.
      
      This patch introduces a private 16-bit memcg ID and switches swap and
      cache shadow entries over to using that.  This ID can then be recycled
      after offlining when the CSS remains pinned only by objects that don't
      specifically need it.
      
      This script demonstrates the problem by faulting one cache page in a new
      cgroup and deleting it again:
      
        set -e
        mkdir -p pages
        for x in `seq 128000`; do
          [ $((x % 1000)) -eq 0 ] && echo $x
          mkdir /cgroup/foo
          echo $$ >/cgroup/foo/cgroup.procs
          echo trex >pages/$x
          echo $$ >/cgroup/cgroup.procs
          rmdir /cgroup/foo
        done
      
      When run on an unpatched kernel, we eventually run out of possible IDs
      even though there are no visible cgroups:
      
        [root@ham ~]# ./cssidstress.sh
        [...]
        65000
        mkdir: cannot create directory '/cgroup/foo': No space left on device
      
      After this patch, the IDs get released upon cgroup destruction and the
      cache and css objects get released once memory reclaim kicks in.
      
      [hannes@cmpxchg.org: init the IDR]
        Link: http://lkml.kernel.org/r/20160621154601.GA22431@cmpxchg.org
      Fixes: b2052564 ("mm: memcontrol: continue cache reclaim from offlined groups")
      Link: http://lkml.kernel.org/r/20160617162516.GD19084@cmpxchg.orgSigned-off-by: NJohannes Weiner <hannes@cmpxchg.org>
      Reported-by: NJohn Garcia <john.garcia@mesosphere.io>
      Reviewed-by: NVladimir Davydov <vdavydov@virtuozzo.com>
      Acked-by: NTejun Heo <tj@kernel.org>
      Cc: Nikolay Borisov <kernel@kyup.com>
      Cc: <stable@vger.kernel.org>	[3.19+]
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      73f576c0
  3. 15 7月, 2016 9 次提交
  4. 11 7月, 2016 1 次提交
    • H
      tmpfs: fix regression hang in fallocate undo · 7f556567
      Hugh Dickins 提交于
      The well-spotted fallocate undo fix is good in most cases, but not when
      fallocate failed on the very first page.  index 0 then passes lend -1
      to shmem_undo_range(), and that has two bad effects: (a) that it will
      undo every fallocation throughout the file, unrestricted by the current
      range; but more importantly (b) it can cause the undo to hang, because
      lend -1 is treated as truncation, which makes it keep on retrying until
      every page has gone, but those already fully instantiated will never go
      away.  Big thank you to xfstests generic/269 which demonstrates this.
      
      Fixes: b9b4bb26 ("tmpfs: don't undo fallocate past its last page")
      Cc: stable@vger.kernel.org
      Signed-off-by: NHugh Dickins <hughd@google.com>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      7f556567
  5. 08 7月, 2016 1 次提交
    • D
      x86/vdso: Add mremap hook to vm_special_mapping · b059a453
      Dmitry Safonov 提交于
      Add possibility for 32-bit user-space applications to move
      the vDSO mapping.
      
      Previously, when a user-space app called mremap() for the vDSO
      address, in the syscall return path it would land on the previous
      address of the vDSOpage, resulting in segmentation violation.
      
      Now it lands fine and returns to userspace with a remapped vDSO.
      
      This will also fix the context.vdso pointer for 64-bit, which does
      not affect the user of vDSO after mremap() currently, but this
      may change in the future.
      
      As suggested by Andy, return -EINVAL for mremap() that would
      split the vDSO image: that operation cannot possibly result in
      a working system so reject it.
      
      Renamed and moved the text_mapping structure declaration inside
      map_vdso(), as it used only there and now it complements the
      vvar_mapping variable.
      
      There is still a problem for remapping the vDSO in glibc
      applications: the linker relocates addresses for syscalls
      on the vDSO page, so you need to relink with the new
      addresses.
      
      Without that the next syscall through glibc may fail:
      
        Program received signal SIGSEGV, Segmentation fault.
        #0  0xf7fd9b80 in __kernel_vsyscall ()
        #1  0xf7ec8238 in _exit () from /usr/lib32/libc.so.6
      Signed-off-by: NDmitry Safonov <dsafonov@virtuozzo.com>
      Acked-by: NAndy Lutomirski <luto@kernel.org>
      Cc: 0x7f454c46@gmail.com
      Cc: Borislav Petkov <bp@alien8.de>
      Cc: Brian Gerst <brgerst@gmail.com>
      Cc: Denys Vlasenko <dvlasenk@redhat.com>
      Cc: H. Peter Anvin <hpa@zytor.com>
      Cc: Josh Poimboeuf <jpoimboe@redhat.com>
      Cc: Linus Torvalds <torvalds@linux-foundation.org>
      Cc: Peter Zijlstra <peterz@infradead.org>
      Cc: Thomas Gleixner <tglx@linutronix.de>
      Cc: linux-mm@kvack.org
      Link: http://lkml.kernel.org/r/20160628113539.13606-2-dsafonov@virtuozzo.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
      b059a453
  6. 25 6月, 2016 15 次提交
  7. 23 6月, 2016 1 次提交
  8. 10 6月, 2016 6 次提交
  9. 04 6月, 2016 1 次提交