- 09 10月, 2014 1 次提交
-
-
由 Tejun Heo 提交于
When @gfp is specified, the percpu allocator is interested in whether it contains all of GFP_KERNEL or not. If it does, the normal allocation path is taken; otherwise, the atomic allocation path. Unfortunately, pcpu_alloc() was incorrectly testing for whether @gfp contains any part of GFP_KERNEL. Fix it by testing "(gfp & GFP_KERNEL) != GFP_KERNEL" instead of "!(gfp & GFP_KERNEL)" to decide whether the allocation should be atomic or not. Signed-off-by: NTejun Heo <tj@kernel.org>
-
- 22 9月, 2014 1 次提交
-
-
由 Guenter Roeck 提交于
This reverts commit 3189eddb ("percpu: free percpu allocation info for uniprocessor system"). The commit causes a hang with a crisv32 image. This may be an architecture problem, but at least for now the revert is necessary to be able to boot a crisv32 image. Cc: Tejun Heo <tj@kernel.org> Cc: Honggang Li <enjoymindful@gmail.com> Signed-off-by: NGuenter Roeck <linux@roeck-us.net> Signed-off-by: NTejun Heo <tj@kernel.org> Fixes: 3189eddb ("percpu: free percpu allocation info for uniprocessor system") Cc: stable@vger.kernel.org # Please don't apply 3189eddb
-
- 19 9月, 2014 1 次提交
-
-
由 Krzysztof Hałasa 提交于
dma_pool_create() needs to unlock the mutex in error case. The bug was introduced in the 3.16 by commit cc6b664a ("mm/dmapool.c: remove redundant NULL check for dev in dma_pool_create()")/ Signed-off-by: NKrzysztof Hałasa <khc@piap.pl> Cc: stable@vger.kernel.org # v3.16 Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 14 9月, 2014 1 次提交
-
-
由 Ard Biesheuvel 提交于
In order to make the static inline function is_zero_pfn() callable by modules, export its symbol dependencies 'zero_pfn' and (for s390 and mips) 'zero_page_mask'. We need this for KVM, as CONFIG_KVM is a tristate for all supported architectures except ARM and arm64, and testing a pfn whether it refers to the zero page is required to correctly distinguish the zero page from other special RAM ranges that may also have the PG_reserved bit set, but need to be treated as MMIO memory. Signed-off-by: NArd Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 11 9月, 2014 2 次提交
-
-
由 Sasha Levin 提交于
Make sure we actually see the output of validate_mm() and browse_rb() before triggering a BUG(). pr_info isn't shown by default so the reason for the BUG() isn't obvious. Signed-off-by: NSasha Levin <sasha.levin@oracle.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Xishi Qiu 提交于
Let memblock skip the hotpluggable memory regions in __next_mem_range(), it is used to to prevent memblock from allocating hotpluggable memory for the kernel at early time. The code is the same as __next_mem_range_rev(). Clear hotpluggable flag before releasing free pages to the buddy allocator. If we don't clear hotpluggable flag in free_low_memory_core_early(), the memory which marked hotpluggable flag will not free to buddy allocator. Because __next_mem_range() will skip them. free_low_memory_core_early for_each_free_mem_range for_each_mem_range __next_mem_range [akpm@linux-foundation.org: fix warning] Signed-off-by: NXishi Qiu <qiuxishi@huawei.com> Cc: Tejun Heo <tj@kernel.org> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 09 9月, 2014 1 次提交
-
-
由 Tejun Heo 提交于
While updating locking, b38d08f3 ("percpu: restructure locking") broke pcpu_create_chunk() creation path in pcpu_alloc(). It returns without releasing pcpu_alloc_mutex. Fix it. Signed-off-by: NTejun Heo <tj@kernel.org> Reported-by: NJulia Lawall <julia.lawall@lip6.fr>
-
- 08 9月, 2014 2 次提交
-
-
由 Tejun Heo 提交于
Percpu allocator now supports allocation mask. Add @gfp to [flex_]proportions init functions so that !GFP_KERNEL allocation masks can be used with them too. This patch doesn't make any functional difference. Signed-off-by: NTejun Heo <tj@kernel.org> Reviewed-by: NJan Kara <jack@suse.cz> Cc: Peter Zijlstra <peterz@infradead.org>
-
由 Tejun Heo 提交于
Percpu allocator now supports allocation mask. Add @gfp to percpu_counter_init() so that !GFP_KERNEL allocation masks can be used with percpu_counters too. We could have left percpu_counter_init() alone and added percpu_counter_init_gfp(); however, the number of users isn't that high and introducing _gfp variants to all percpu data structures would be quite ugly, so let's just do the conversion. This is the one with the most users. Other percpu data structures are a lot easier to convert. This patch doesn't make any functional difference. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NJan Kara <jack@suse.cz> Acked-by: N"David S. Miller" <davem@davemloft.net> Cc: x86@kernel.org Cc: Jens Axboe <axboe@kernel.dk> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org>
-
- 05 9月, 2014 1 次提交
-
-
由 Johannes Weiner 提交于
Dave Hansen reports a massive scalability regression in an uncontained page fault benchmark with more than 30 concurrent threads, which he bisected down to 05b84301 ("mm: memcontrol: use root_mem_cgroup res_counter") and pin-pointed on res_counter spinlock contention. That change relied on the per-cpu charge caches to mostly swallow the res_counter costs, but it's apparent that the caches don't scale yet. Revert memcg back to bypassing res_counters on the root level in order to restore performance for uncontained workloads. Reported-by: NDave Hansen <dave@sr71.net> Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Tested-by: NDave Hansen <dave.hansen@intel.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Acked-by: NVladimir Davydov <vdavydov@parallels.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 03 9月, 2014 13 次提交
-
-
由 Tejun Heo 提交于
The percpu allocator now supports atomic allocations by only allocating from already populated areas but the mechanism to ensure that there's adequate amount of populated areas was missing. This patch expands pcpu_balance_work so that in addition to freeing excess free chunks it also populates chunks to maintain an adequate level of populated areas. pcpu_alloc() schedules pcpu_balance_work if the amount of free populated areas is too low or after an atomic allocation failure. * PERPCU_DYNAMIC_RESERVE is increased by two pages to account for PCPU_EMPTY_POP_PAGES_LOW. * pcpu_async_enabled is added to gate both async jobs - chunk->map_extend_work and pcpu_balance_work - so that we don't end up scheduling them while the needed subsystems aren't up yet. Signed-off-by: NTejun Heo <tj@kernel.org>
-
由 Tejun Heo 提交于
pcpu_reclaim_work will also be used to populate chunks asynchronously. Rename it to pcpu_balance_work in preparation. pcpu_reclaim() is renamed to pcpu_balance_workfn() and some of its local variables are renamed too. This is pure rename. Signed-off-by: NTejun Heo <tj@kernel.org>
-
由 Tejun Heo 提交于
pcpu_nr_empty_pop_pages counts the number of empty populated pages across all chunks and chunk->nr_populated counts the number of populated pages in a chunk. Both will be used to implement pre/async population for atomic allocations. pcpu_chunk_[de]populated() are added to update chunk->populated, chunk->nr_populated and pcpu_nr_empty_pop_pages together. All successful chunk [de]populations should be followed by the corresponding pcpu_chunk_[de]populated() calls. Signed-off-by: NTejun Heo <tj@kernel.org>
-
由 Tejun Heo 提交于
An allocation attempt may require extending chunk->map array which requires GFP_KERNEL context which isn't available for atomic allocations. This patch ensures that chunk->map array usually keeps some amount of available space by directly allocating buffer space during GFP_KERNEL allocations and scheduling async extension during atomic ones. This should make atomic allocation failures from map space exhaustion rare. Signed-off-by: NTejun Heo <tj@kernel.org>
-
由 Tejun Heo 提交于
Now that pcpu_alloc_area() can allocate only from populated areas, it's easy to add atomic allocation support to [__]alloc_percpu(). Update pcpu_alloc() so that it accepts @gfp and skips all the blocking operations and allocates only from the populated areas if @gfp doesn't contain GFP_KERNEL. New interface functions [__]alloc_percpu_gfp() are added. While this means that atomic allocations are possible, this isn't complete yet as there's no mechanism to ensure that certain amount of populated areas is kept available and atomic allocations may keep failing under certain conditions. Signed-off-by: NTejun Heo <tj@kernel.org>
-
由 Tejun Heo 提交于
The next patch will conditionalize the population block in pcpu_alloc() which will end up making a rather large indentation change obfuscating the actual logic change. This patch puts the block under "if (true)" so that the next patch can avoid indentation changes. The defintions of the local variables which are used only in the block are moved into the block. This patch is purely cosmetic. Signed-off-by: NTejun Heo <tj@kernel.org>
-
由 Tejun Heo 提交于
Update pcpu_alloc_area() so that it can skip unpopulated areas if the new parameter @pop_only is true. This is implemented by a new function, pcpu_fit_in_area(), which determines the amount of head padding considering the alignment and populated state. @pop_only is currently always false but this will be used to implement atomic allocation. Signed-off-by: NTejun Heo <tj@kernel.org>
-
由 Tejun Heo 提交于
At first, the percpu allocator required a sleepable context for both alloc and free paths and used pcpu_alloc_mutex to protect everything. Later, pcpu_lock was introduced to protect the index data structure so that the free path can be invoked from atomic contexts. The conversion only updated what's necessary and left most of the allocation path under pcpu_alloc_mutex. The percpu allocator is planned to add support for atomic allocation and this patch restructures locking so that the coverage of pcpu_alloc_mutex is further reduced. * pcpu_alloc() now grab pcpu_alloc_mutex only while creating a new chunk and populating the allocated area. Everything else is now protected soley by pcpu_lock. After this change, multiple instances of pcpu_extend_area_map() may race but the function already implements sufficient synchronization using pcpu_lock. This also allows multiple allocators to arrive at new chunk creation. To avoid creating multiple empty chunks back-to-back, a new chunk is created iff there is no other empty chunk after grabbing pcpu_alloc_mutex. * pcpu_lock is now held while modifying chunk->populated bitmap. After this, all data structures are protected by pcpu_lock. Signed-off-by: NTejun Heo <tj@kernel.org>
-
由 Tejun Heo 提交于
percpu-km instantiates the whole chunk on creation and doesn't make use of chunk->populated bitmap and leaves it as zero. While this currently doesn't cause any problem, the inconsistency makes it difficult to build further logic on top of chunk->populated. This patch makes percpu-km fill chunk->populated on creation so that the bitmap is always consistent. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NChristoph Lameter <cl@linux.com>
-
由 Tejun Heo 提交于
Previously, pcpu_[de]populate_chunk() were called with the range which may contain multiple target regions in it and pcpu_[de]populate_chunk() iterated over the regions. This has the benefit of batching up cache flushes for all the regions; however, we're planning to add more bookkeeping logic around [de]population to support atomic allocations and this delegation of iterations gets in the way. This patch moves the region iterations out of pcpu_[de]populate_chunk() into its callers - pcpu_alloc() and pcpu_reclaim() - so that we can later add logic to track more states around them. This change may make cache and tlb flushes more frequent but multi-region [de]populations are rare anyway and if this actually becomes a problem, it's not difficult to factor out cache flushes as separate callbacks which are directly invoked from percpu.c. Signed-off-by: NTejun Heo <tj@kernel.org>
-
由 Tejun Heo 提交于
percpu-vm and percpu-km implement separate versions of pcpu_[de]populate_chunk() and some part which is or should be common are currently in the specific implementations. Make the following changes. * Allocate area clearing is moved from the pcpu_populate_chunk() implementations to pcpu_alloc(). This makes percpu-km's version noop. * Quick exit tests in pcpu_[de]populate_chunk() of percpu-vm are moved to their respective callers so that they are applied to percpu-km too. This doesn't make any meaningful difference as both functions are noop for percpu-km; however, this is more consistent and will help implementing atomic allocation support. Signed-off-by: NTejun Heo <tj@kernel.org>
-
由 Tejun Heo 提交于
pcpu_get_pages() creates the temp pages array if not already allocated and returns the pointer to it. As the function is called from both [de]population paths and depopulation can only happen after at least one successful population, the param doesn't make any difference - the allocation will always happen on the population path anyway. Remove @may_alloc from pcpu_get_pages(). Also, add an lockdep assertion pcpu_alloc_mutex instead of vaguely stating that the exclusion is the caller's responsibility. Signed-off-by: NTejun Heo <tj@kernel.org>
-
由 Tejun Heo 提交于
percpu-vm uses pcpu_get_pages_and_bitmap() to acquire temp pages array and populated bitmap and uses the two during [de]population. The temp bitmap is used only to build the new bitmap that is copied to chunk->populated after the operation succeeds; however, the new bitmap can be trivially set after success without using the temp bitmap. This patch removes the temp populated bitmap usage from percpu-vm.c. * pcpu_get_pages_and_bitmap() is renamed to pcpu_get_pages() and no longer hands out the temp bitmap. * @populated arugment is dropped from all the related functions. @populated updates in pcpu_[un]map_pages() are dropped. * Two loops in pcpu_map_pages() are merged. * pcpu_[de]populated_chunk() modify chunk->populated bitmap directly from @page_start and @page_end after success. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NChristoph Lameter <cl@linux.com>
-
- 30 8月, 2014 5 次提交
-
-
由 Hugh Dickins 提交于
Sasha Levin has shown oopses on ffffea0003480048 and ffffea0003480008 at mm/memory.c:1132, running Trinity on different 3.16-rc-next kernels: where zap_pte_range() checks page->mapping to see if PageAnon(page). Those addresses fit struct pages for pfns d2001 and d2000, and in each dump a register or a stack slot showed d2001730 or d2000730: pte flags 0x730 are PCD ACCESSED PROTNONE SPECIAL IOMAP; and Sasha's e820 map has a hole between cfffffff and 100000000, which would need special access. Commit c46a7c81 ("x86: define _PAGE_NUMA by reusing software bits on the PMD and PTE levels") has broken vm_normal_page(): a PROTNONE SPECIAL pte no longer passes the pte_special() test, so zap_pte_range() goes on to try to access a non-existent struct page. Fix this by refining pte_special() (SPECIAL with PRESENT or PROTNONE) to complement pte_numa() (SPECIAL with neither PRESENT nor PROTNONE). A hint that this was a problem was that c46a7c81 added pte_numa() test to vm_normal_page(), and moved its is_zero_pfn() test from slow to fast path: This was papering over a pte_special() snag when the zero page was encountered during zap. This patch reverts vm_normal_page() to how it was before, relying on pte_special(). It still appears that this patch may be incomplete: aren't there other places which need to be handling PROTNONE along with PRESENT? For example, pte_mknuma() clears _PAGE_PRESENT and sets _PAGE_NUMA, but on a PROT_NONE area, that would make it pte_special(). This is side-stepped by the fact that NUMA hinting faults skipped PROT_NONE VMAs and there are no grounds where a NUMA hinting fault on a PROT_NONE VMA would be interesting. Fixes: c46a7c81 ("x86: define _PAGE_NUMA by reusing software bits on the PMD and PTE levels") Reported-by: NSasha Levin <sasha.levin@oracle.com> Tested-by: NSasha Levin <sasha.levin@oracle.com> Signed-off-by: NHugh Dickins <hughd@google.com> Signed-off-by: NMel Gorman <mgorman@suse.de> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Matthew Wilcox <matthew.r.wilcox@intel.com> Cc: <stable@vger.kernel.org> [3.16] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
spin_lock may be an empty struct for !SMP configurations and so arch_spin_is_locked may return unconditional 0 and trigger the VM_BUG_ON even when the lock is held. Replace spin_is_locked by lockdep_assert_held. We will not BUG anymore but it is questionable whether crashing makes a lot of sense in the uncharge path. Uncharge happens after the last page reference was released so nobody should touch the page and the function doesn't update any shared state except for res counter which uses synchronization of its own. Signed-off-by: NMichal Hocko <mhocko@suse.cz> Reviewed-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Kees Cook 提交于
To avoid potential format string expansion via module parameters, do not use the zpool type directly in request_module() without a format string. Additionally, to avoid arbitrary modules being loaded via zpool API (e.g. via the zswap_zpool_type module parameter) add a "zpool-" prefix to the requested module, as well as module aliases for the existing zpool types (zbud and zsmalloc). Signed-off-by: NKees Cook <keescook@chromium.org> Cc: Seth Jennings <sjennings@variantweb.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <ngupta@vflare.org> Acked-by: NDan Streetman <ddstreet@ieee.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Matthew Wilcox 提交于
Commit 67f87463 ("mm: clear pmd_numa before invalidating") cleared the NUMA bit in a copy of the PMD entry, but then wrote back the original Signed-off-by: NMatthew Wilcox <matthew.r.wilcox@intel.com> Acked-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Tang Chen 提交于
In memblock_find_in_range_node(), we defined ret as int. But it should be phys_addr_t because it is used to store the return value from __memblock_find_range_bottom_up(). The bug has not been triggered because when allocating low memory near the kernel end, the "int ret" won't turn out to be negative. When we started to allocate memory on other nodes, and the "int ret" could be minus. Then the kernel will panic. A simple way to reproduce this: comment out the following code in numa_init(), memblock_set_bottom_up(false); and the kernel won't boot. Reported-by: NXishi Qiu <qiuxishi@huawei.com> Signed-off-by: NTang Chen <tangchen@cn.fujitsu.com> Tested-by: NXishi Qiu <qiuxishi@huawei.com> Cc: <stable@vger.kernel.org> [3.13+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 16 8月, 2014 3 次提交
-
-
由 Honggang Li 提交于
Currently, only SMP system free the percpu allocation info. Uniprocessor system should free it too. For example, one x86 UML virtual machine with 256MB memory, UML kernel wastes one page memory. Signed-off-by: NHonggang Li <enjoymindful@gmail.com> Signed-off-by: NTejun Heo <tj@kernel.org> Cc: stable@vger.kernel.org
-
由 Tejun Heo 提交于
If pcpu_map_pages() fails midway, it unmaps the already mapped pages. Currently, it doesn't flush tlb after the partial unmapping. This may be okay in most cases as the established mapping hasn't been used at that point but it can go wrong and when it goes wrong it'd be extremely difficult to track down. Flush tlb after the partial unmapping. Signed-off-by: NTejun Heo <tj@kernel.org> Cc: stable@vger.kernel.org
-
由 Tejun Heo 提交于
When pcpu_alloc_pages() fails midway, pcpu_free_pages() is invoked to free what has already been allocated. The invocation is across the whole requested range and pcpu_free_pages() will try to free all non-NULL pages; unfortunately, this is incorrect as pcpu_get_pages_and_bitmap(), unlike what its comment suggests, doesn't clear the pages array and thus the array may have entries from the previous invocations making the partial failure path free incorrect pages. Fix it by open-coding the partial freeing of the already allocated pages. Signed-off-by: NTejun Heo <tj@kernel.org> Cc: stable@vger.kernel.org
-
- 15 8月, 2014 1 次提交
-
-
由 David Rientjes 提交于
Memcg aligns memory.limit_in_bytes to PAGE_SIZE as part of the resource counter since it makes no sense to allow a partial page to be charged. As a result of the hugetlb cgroup using the resource counter, it is also aligned to PAGE_SIZE but makes no sense unless aligned to the size of the hugepage being limited. Align hugetlb cgroup limit to hugepage size. Signed-off-by: NDavid Rientjes <rientjes@google.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Li Zefan <lizefan@huawei.com> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 12 8月, 2014 1 次提交
-
-
由 Al Viro 提交于
If DIO results in short write and sync write fails, we want to bugger off whether the DIO part has written anything or not; the logics on the return will take care of the right return value. Cc: stable@vger.kernel.org [3.16] Reported-by: NAnton Altaparmakov <aia21@cam.ac.uk> Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 09 8月, 2014 7 次提交
-
-
由 David Herrmann 提交于
If we set SEAL_WRITE on a file, we must make sure there cannot be any ongoing write-operations on the file. For write() calls, we simply lock the inode mutex, for mmap() we simply verify there're no writable mappings. However, there might be pages pinned by AIO, Direct-IO and similar operations via GUP. We must make sure those do not write to the memfd file after we set SEAL_WRITE. As there is no way to notify GUP users to drop pages or to wait for them to be done, we implement the wait ourself: When setting SEAL_WRITE, we check all pages for their ref-count. If it's bigger than 1, we know there's some user of the page. We then mark the page and wait for up to 150ms for those ref-counts to be dropped. If the ref-counts are not dropped in time, we refuse the seal operation. Signed-off-by: NDavid Herrmann <dh.herrmann@gmail.com> Acked-by: NHugh Dickins <hughd@google.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Ryan Lortie <desrt@desrt.ca> Cc: Lennart Poettering <lennart@poettering.net> Cc: Daniel Mack <zonque@gmail.com> Cc: Andy Lutomirski <luto@amacapital.net> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 David Herrmann 提交于
memfd_create() is similar to mmap(MAP_ANON), but returns a file-descriptor that you can pass to mmap(). It can support sealing and avoids any connection to user-visible mount-points. Thus, it's not subject to quotas on mounted file-systems, but can be used like malloc()'ed memory, but with a file-descriptor to it. memfd_create() returns the raw shmem file, so calls like ftruncate() can be used to modify the underlying inode. Also calls like fstat() will return proper information and mark the file as regular file. If you want sealing, you can specify MFD_ALLOW_SEALING. Otherwise, sealing is not supported (like on all other regular files). Compared to O_TMPFILE, it does not require a tmpfs mount-point and is not subject to a filesystem size limit. It is still properly accounted to memcg limits, though, and to the same overcommit or no-overcommit accounting as all user memory. Signed-off-by: NDavid Herrmann <dh.herrmann@gmail.com> Acked-by: NHugh Dickins <hughd@google.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Ryan Lortie <desrt@desrt.ca> Cc: Lennart Poettering <lennart@poettering.net> Cc: Daniel Mack <zonque@gmail.com> Cc: Andy Lutomirski <luto@amacapital.net> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 David Herrmann 提交于
If two processes share a common memory region, they usually want some guarantees to allow safe access. This often includes: - one side cannot overwrite data while the other reads it - one side cannot shrink the buffer while the other accesses it - one side cannot grow the buffer beyond previously set boundaries If there is a trust-relationship between both parties, there is no need for policy enforcement. However, if there's no trust relationship (eg., for general-purpose IPC) sharing memory-regions is highly fragile and often not possible without local copies. Look at the following two use-cases: 1) A graphics client wants to share its rendering-buffer with a graphics-server. The memory-region is allocated by the client for read/write access and a second FD is passed to the server. While scanning out from the memory region, the server has no guarantee that the client doesn't shrink the buffer at any time, requiring rather cumbersome SIGBUS handling. 2) A process wants to perform an RPC on another process. To avoid huge bandwidth consumption, zero-copy is preferred. After a message is assembled in-memory and a FD is passed to the remote side, both sides want to be sure that neither modifies this shared copy, anymore. The source may have put sensible data into the message without a separate copy and the target may want to parse the message inline, to avoid a local copy. While SIGBUS handling, POSIX mandatory locking and MAP_DENYWRITE provide ways to achieve most of this, the first one is unproportionally ugly to use in libraries and the latter two are broken/racy or even disabled due to denial of service attacks. This patch introduces the concept of SEALING. If you seal a file, a specific set of operations is blocked on that file forever. Unlike locks, seals can only be set, never removed. Hence, once you verified a specific set of seals is set, you're guaranteed that no-one can perform the blocked operations on this file, anymore. An initial set of SEALS is introduced by this patch: - SHRINK: If SEAL_SHRINK is set, the file in question cannot be reduced in size. This affects ftruncate() and open(O_TRUNC). - GROW: If SEAL_GROW is set, the file in question cannot be increased in size. This affects ftruncate(), fallocate() and write(). - WRITE: If SEAL_WRITE is set, no write operations (besides resizing) are possible. This affects fallocate(PUNCH_HOLE), mmap() and write(). - SEAL: If SEAL_SEAL is set, no further seals can be added to a file. This basically prevents the F_ADD_SEAL operation on a file and can be set to prevent others from adding further seals that you don't want. The described use-cases can easily use these seals to provide safe use without any trust-relationship: 1) The graphics server can verify that a passed file-descriptor has SEAL_SHRINK set. This allows safe scanout, while the client is allowed to increase buffer size for window-resizing on-the-fly. Concurrent writes are explicitly allowed. 2) For general-purpose IPC, both processes can verify that SEAL_SHRINK, SEAL_GROW and SEAL_WRITE are set. This guarantees that neither process can modify the data while the other side parses it. Furthermore, it guarantees that even with writable FDs passed to the peer, it cannot increase the size to hit memory-limits of the source process (in case the file-storage is accounted to the source). The new API is an extension to fcntl(), adding two new commands: F_GET_SEALS: Return a bitset describing the seals on the file. This can be called on any FD if the underlying file supports sealing. F_ADD_SEALS: Change the seals of a given file. This requires WRITE access to the file and F_SEAL_SEAL may not already be set. Furthermore, the underlying file must support sealing and there may not be any existing shared mapping of that file. Otherwise, EBADF/EPERM is returned. The given seals are _added_ to the existing set of seals on the file. You cannot remove seals again. The fcntl() handler is currently specific to shmem and disabled on all files. A file needs to explicitly support sealing for this interface to work. A separate syscall is added in a follow-up, which creates files that support sealing. There is no intention to support this on other file-systems. Semantics are unclear for non-volatile files and we lack any use-case right now. Therefore, the implementation is specific to shmem. Signed-off-by: NDavid Herrmann <dh.herrmann@gmail.com> Acked-by: NHugh Dickins <hughd@google.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Ryan Lortie <desrt@desrt.ca> Cc: Lennart Poettering <lennart@poettering.net> Cc: Daniel Mack <zonque@gmail.com> Cc: Andy Lutomirski <luto@amacapital.net> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 David Herrmann 提交于
This patch (of 6): The i_mmap_writable field counts existing writable mappings of an address_space. To allow drivers to prevent new writable mappings, make this counter signed and prevent new writable mappings if it is negative. This is modelled after i_writecount and DENYWRITE. This will be required by the shmem-sealing infrastructure to prevent any new writable mappings after the WRITE seal has been set. In case there exists a writable mapping, this operation will fail with EBUSY. Note that we rely on the fact that iff you already own a writable mapping, you can increase the counter without using the helpers. This is the same that we do for i_writecount. Signed-off-by: NDavid Herrmann <dh.herrmann@gmail.com> Acked-by: NHugh Dickins <hughd@google.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Ryan Lortie <desrt@desrt.ca> Cc: Lennart Poettering <lennart@poettering.net> Cc: Daniel Mack <zonque@gmail.com> Cc: Andy Lutomirski <luto@amacapital.net> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andy Lutomirski 提交于
The core mm code will provide a default gate area based on FIXADDR_USER_START and FIXADDR_USER_END if !defined(__HAVE_ARCH_GATE_AREA) && defined(AT_SYSINFO_EHDR). This default is only useful for ia64. arm64, ppc, s390, sh, tile, 64-bit UML, and x86_32 have their own code just to disable it. arm, 32-bit UML, and x86_64 have gate areas, but they have their own implementations. This gets rid of the default and moves the code into ia64. This should save some code on architectures without a gate area: it's now possible to inline the gate_area functions in the default case. Signed-off-by: NAndy Lutomirski <luto@amacapital.net> Acked-by: NNathan Lynch <nathan_lynch@mentor.com> Acked-by: NH. Peter Anvin <hpa@linux.intel.com> Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> [in principle] Acked-by: Richard Weinberger <richard@nod.at> [for um] Acked-by: Will Deacon <will.deacon@arm.com> [for arm64] Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Jeff Dike <jdike@addtoit.com> Cc: Richard Weinberger <richard@nod.at> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Nathan Lynch <Nathan_Lynch@mentor.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Fabian Frederick 提交于
zswap_entry_cache_destroy() is only called by __init init_zswap(). This patch also fixes function name zswap_entry_cache_ s/destory/destroy Signed-off-by: NFabian Frederick <fabf@skynet.be> Acked-by: NSeth Jennings <sjennings@variantweb.net> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
Charge migration currently disables IRQs twice to update the charge statistics for the old page and then again for the new page. But migration is a seamless transition of a charge from one physical page to another one of the same size, so this should be a non-event from an accounting point of view. Leave the statistics alone. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.cz> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-