- 05 6月, 2015 3 次提交
-
-
由 Paolo Bonzini 提交于
This is now very simple to do. The only interesting part is a simple trick to find the right memslot in gfn_to_rmap, retrieving the address space from the spte role word. The same trick is used in the auditing code. The comment on top of union kvm_mmu_page_role has been stale forever, so remove it. Speaking of stale code, remove pad_for_nice_hex_output too: it was splitting the "access" bitfield across two bytes and thus had effectively turned into pad_for_ugly_hex_output. Reviewed-by: NRadim Krčmář <rkrcmar@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Paolo Bonzini 提交于
This patch has no semantic change, but it prepares for the introduction of a second address space for system management mode. A new function x86_set_memory_region (and the "slots_lock taken" counterpart __x86_set_memory_region) is introduced in order to operate on all address spaces when adding or deleting private memory slots. Reviewed-by: NRadim Krčmář <rkrcmar@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Paolo Bonzini 提交于
We need to hide SMRAM from guests not running in SMM. Therefore, all uses of kvm_read_guest* and kvm_write_guest* must be changed to check whether the VCPU is in system management mode and use a different set of memslots. Switch from kvm_* to the newly-introduced kvm_vcpu_*, which call into kvm_arch_vcpu_memslots_id. Reviewed-by: NRadim Krčmář <rkrcmar@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 04 6月, 2015 8 次提交
-
-
由 Paolo Bonzini 提交于
The big ugly one. This patch adds support for switching in and out of system management mode, respectively upon receiving KVM_REQ_SMI and upon executing a RSM instruction. Both 32- and 64-bit formats are supported for the SMM state save area. Reviewed-by: NRadim Krčmář <rkrcmar@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Paolo Bonzini 提交于
Do not process INITs immediately while in system management mode, keep it instead in apic->pending_events. Tell userspace if an INIT is pending when they issue GET_VCPU_EVENTS, and similarly handle the new field in SET_VCPU_EVENTS. Note that the same treatment should be done while in VMX non-root mode. Reviewed-by: NRadim Krčmář <rkrcmar@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Paolo Bonzini 提交于
This patch adds the interface between x86.c and the emulator: the SMBASE register, a new emulator flag, the RSM instruction. It also adds a new request bit that will be used by the KVM_SMI ioctl. Reviewed-by: NRadim Krčmář <rkrcmar@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Paolo Bonzini 提交于
This patch includes changes to the external API for SMM support. Userspace can predicate the availability of the new fields and ioctls on a new capability, KVM_CAP_X86_SMM, which is added at the end of the patch series. Reviewed-by: NRadim Krčmář <rkrcmar@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Paolo Bonzini 提交于
The hflags field will contain information about system management mode and will be useful for the emulator. Pass the entire field rather than just the guest-mode information. Reviewed-by: NRadim Krčmář <rkrcmar@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Paolo Bonzini 提交于
SMBASE is only readable from SMM for the VCPU, but it must be always accessible if userspace is accessing it. Thus, all functions that read MSRs are changed to accept a struct msr_data; the host_initiated and index fields are pre-initialized, while the data field is filled on return. Reviewed-by: NRadim Krčmář <rkrcmar@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Paolo Bonzini 提交于
We will want to filter away MSR_IA32_SMBASE from the emulated_msrs if the host CPU does not support SMM virtualization. Introduce the logic to do that, and also move paravirt MSRs to emulated_msrs for simplicity and to get rid of KVM_SAVE_MSRS_BEGIN. Reviewed-by: NRadim Krčmář <rkrcmar@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Paolo Bonzini 提交于
This was noticed by Radim while reviewing the implementation of system management mode. Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 29 5月, 2015 1 次提交
-
-
由 Marcelo Tosatti 提交于
Initialize kvmclock base, on kvmclock system MSR write time, so that the guest sees kvmclock counting from zero. This matches baremetal behaviour when kvmclock in guest sets sched clock stable. Signed-off-by: NMarcelo Tosatti <mtosatti@redhat.com> [Remove unnecessary comment. - Paolo] Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 28 5月, 2015 2 次提交
-
-
由 Marcelo Tosatti 提交于
The periodic kvmclock sync can be an undesired source of latencies. When running cyclictest on a guest, a latency spike is visible. With kvmclock periodic sync disabled, the spike is gone. Guests should use ntp which means the propagations of ntp corrections from the host clock are unnecessary. v2: -> Make parameter read-only (Radim) -> Return early on kvmclock_sync_fn (Andrew) Reported-and-tested-by: NLuiz Capitulino <lcapitulino@redhat.com> Signed-off-by: NMarcelo Tosatti <mtosatti@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Paolo Bonzini 提交于
This lets the function access the new memory slot without going through kvm_memslots and id_to_memslot. It will simplify the code when more than one address space will be supported. Unfortunately, the "const"ness of the new argument must be casted away in two places. Fixing KVM to accept const struct kvm_memory_slot pointers would require modifications in pretty much all architectures, and is left for later. Reviewed-by: NRadim Krcmar <rkrcmar@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 26 5月, 2015 3 次提交
-
-
由 Paolo Bonzini 提交于
Prepare for the case of multiple address spaces. Reviewed-by: NRadim Krcmar <rkrcmar@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Paolo Bonzini 提交于
Architecture-specific helpers are not supposed to muck with struct kvm_userspace_memory_region contents. Add const to enforce this. In order to eliminate the only write in __kvm_set_memory_region, the cleaning of deleted slots is pulled up from update_memslots to __kvm_set_memory_region. Reviewed-by: NTakuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp> Reviewed-by: NRadim Krcmar <rkrcmar@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Paolo Bonzini 提交于
kvm_memslots provides lockdep checking. Use it consistently instead of explicit dereferencing of kvm->memslots. Reviewed-by: NRadim Krcmar <rkrcmar@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 20 5月, 2015 5 次提交
-
-
由 Liang Li 提交于
The MPX feature requires eager KVM FPU restore support. We have verified that MPX cannot work correctly with the current lazy KVM FPU restore mechanism. Eager KVM FPU restore should be enabled if the MPX feature is exposed to VM. Signed-off-by: NYang Zhang <yang.z.zhang@intel.com> Signed-off-by: NLiang Li <liang.z.li@intel.com> [Also activate the FPU on AMD processors. - Paolo] Cc: stable@vger.kernel.org Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Andrea Arcangeli 提交于
memslot->userfault_addr is set by the kernel with a mmap executed from the kernel but the userland can still munmap it and lead to the below oops after memslot->userfault_addr points to a host virtual address that has no vma or mapping. [ 327.538306] BUG: unable to handle kernel paging request at fffffffffffffffe [ 327.538407] IP: [<ffffffff811a7b55>] put_page+0x5/0x50 [ 327.538474] PGD 1a01067 PUD 1a03067 PMD 0 [ 327.538529] Oops: 0000 [#1] SMP [ 327.538574] Modules linked in: macvtap macvlan xt_CHECKSUM iptable_mangle ipt_MASQUERADE nf_nat_masquerade_ipv4 iptable_nat nf_nat_ipv4 nf_nat nf_conntrack_ipv4 nf_defrag_ipv4 xt_conntrack nf_conntrack ipt_REJECT iptable_filter ip_tables tun bridge stp llc rpcsec_gss_krb5 nfsv4 dns_resolver nfs fscache xprtrdma ib_isert iscsi_target_mod ib_iser libiscsi scsi_transport_iscsi ib_srpt target_core_mod ib_srp scsi_transport_srp scsi_tgt ib_ipoib rdma_ucm ib_ucm ib_uverbs ib_umad rdma_cm ib_cm iw_cm ipmi_devintf iTCO_wdt iTCO_vendor_support intel_powerclamp coretemp dcdbas intel_rapl kvm_intel kvm crct10dif_pclmul crc32_pclmul ghash_clmulni_intel aesni_intel lrw gf128mul glue_helper ablk_helper cryptd pcspkr sb_edac edac_core ipmi_si ipmi_msghandler acpi_pad wmi acpi_power_meter lpc_ich mfd_core mei_me [ 327.539488] mei shpchp nfsd auth_rpcgss nfs_acl lockd grace sunrpc mlx4_ib ib_sa ib_mad ib_core mlx4_en vxlan ib_addr ip_tunnel xfs libcrc32c sd_mod crc_t10dif crct10dif_common crc32c_intel mgag200 syscopyarea sysfillrect sysimgblt i2c_algo_bit drm_kms_helper ttm drm ahci i2c_core libahci mlx4_core libata tg3 ptp pps_core megaraid_sas ntb dm_mirror dm_region_hash dm_log dm_mod [ 327.539956] CPU: 3 PID: 3161 Comm: qemu-kvm Not tainted 3.10.0-240.el7.userfault19.4ca4011.x86_64.debug #1 [ 327.540045] Hardware name: Dell Inc. PowerEdge R420/0CN7CM, BIOS 2.1.2 01/20/2014 [ 327.540115] task: ffff8803280ccf00 ti: ffff880317c58000 task.ti: ffff880317c58000 [ 327.540184] RIP: 0010:[<ffffffff811a7b55>] [<ffffffff811a7b55>] put_page+0x5/0x50 [ 327.540261] RSP: 0018:ffff880317c5bcf8 EFLAGS: 00010246 [ 327.540313] RAX: 00057ffffffff000 RBX: ffff880616a20000 RCX: 0000000000000000 [ 327.540379] RDX: 0000000000002014 RSI: 00057ffffffff000 RDI: fffffffffffffffe [ 327.540445] RBP: ffff880317c5bd10 R08: 0000000000000103 R09: 0000000000000000 [ 327.540511] R10: 0000000000000000 R11: 0000000000000000 R12: fffffffffffffffe [ 327.540576] R13: 0000000000000000 R14: ffff880317c5bd70 R15: ffff880317c5bd50 [ 327.540643] FS: 00007fd230b7f700(0000) GS:ffff880630800000(0000) knlGS:0000000000000000 [ 327.540717] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 327.540771] CR2: fffffffffffffffe CR3: 000000062a2c3000 CR4: 00000000000427e0 [ 327.540837] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 327.540904] DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 [ 327.540974] Stack: [ 327.541008] ffffffffa05d6d0c ffff880616a20000 0000000000000000 ffff880317c5bdc0 [ 327.541093] ffffffffa05ddaa2 0000000000000000 00000000002191bf 00000042f3feab2d [ 327.541177] 00000042f3feab2d 0000000000000002 0000000000000001 0321000000000000 [ 327.541261] Call Trace: [ 327.541321] [<ffffffffa05d6d0c>] ? kvm_vcpu_reload_apic_access_page+0x6c/0x80 [kvm] [ 327.543615] [<ffffffffa05ddaa2>] vcpu_enter_guest+0x3f2/0x10f0 [kvm] [ 327.545918] [<ffffffffa05e2f10>] kvm_arch_vcpu_ioctl_run+0x2b0/0x5a0 [kvm] [ 327.548211] [<ffffffffa05e2d02>] ? kvm_arch_vcpu_ioctl_run+0xa2/0x5a0 [kvm] [ 327.550500] [<ffffffffa05ca845>] kvm_vcpu_ioctl+0x2b5/0x680 [kvm] [ 327.552768] [<ffffffff810b8d12>] ? creds_are_invalid.part.1+0x12/0x50 [ 327.555069] [<ffffffff810b8d71>] ? creds_are_invalid+0x21/0x30 [ 327.557373] [<ffffffff812d6066>] ? inode_has_perm.isra.49.constprop.65+0x26/0x80 [ 327.559663] [<ffffffff8122d985>] do_vfs_ioctl+0x305/0x530 [ 327.561917] [<ffffffff8122dc51>] SyS_ioctl+0xa1/0xc0 [ 327.564185] [<ffffffff816de829>] system_call_fastpath+0x16/0x1b [ 327.566480] Code: 0b 31 f6 4c 89 e7 e8 4b 7f ff ff 0f 0b e8 24 fd ff ff e9 a9 fd ff ff 66 66 66 66 66 66 2e 0f 1f 84 00 00 00 00 00 66 66 66 66 90 <48> f7 07 00 c0 00 00 55 48 89 e5 75 2a 8b 47 1c 85 c0 74 1e f0 Signed-off-by: NAndrea Arcangeli <aarcange@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Xiao Guangrong 提交于
CR0.CD and CR0.NW are not used by shadow page table so that need not adjust mmu if these two bit are changed Signed-off-by: NXiao Guangrong <guangrong.xiao@linux.intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Xiao Guangrong 提交于
Currently, whenever guest MTRR registers are changed kvm_mmu_reset_context is called to switch to the new root shadow page table, however, it's useless since: 1) the cache type is not cached into shadow page's attribute so that the original root shadow page will be reused 2) the cache type is set on the last spte, that means we should sync the last sptes when MTRR is changed This patch fixs this issue by drop all the spte in the gfn range which is being updated by MTRR Signed-off-by: NXiao Guangrong <guangrong.xiao@linux.intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Xiao Guangrong 提交于
KVM may turn a user page to a kernel page when kernel writes a readonly user page if CR0.WP = 1. This shadow page entry will be reused after SMAP is enabled so that kernel is allowed to access this user page Fix it by setting SMAP && !CR0.WP into shadow page's role and reset mmu once CR4.SMAP is updated Signed-off-by: NXiao Guangrong <guangrong.xiao@linux.intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 11 5月, 2015 1 次提交
-
-
由 Xiao Guangrong 提交于
KVM may turn a user page to a kernel page when kernel writes a readonly user page if CR0.WP = 1. This shadow page entry will be reused after SMAP is enabled so that kernel is allowed to access this user page Fix it by setting SMAP && !CR0.WP into shadow page's role and reset mmu once CR4.SMAP is updated Signed-off-by: NXiao Guangrong <guangrong.xiao@linux.intel.com> Cc: stable@vger.kernel.org Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 07 5月, 2015 6 次提交
-
-
由 Radim Krčmář 提交于
PAT should be 0007_0406_0007_0406h on RESET and not modified on INIT. VMX used a wrong value (host's PAT) and while SVM used the right one, it never got to arch.pat. This is not an issue with QEMU as it will force the correct value. Signed-off-by: NRadim Krčmář <rkrcmar@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Rik van Riel 提交于
Currently KVM will clear the FPU bits in CR0.TS in the VMCS, and trap to re-load them every time the guest accesses the FPU after a switch back into the guest from the host. This patch copies the x86 task switch semantics for FPU loading, with the FPU loaded eagerly after first use if the system uses eager fpu mode, or if the guest uses the FPU frequently. In the latter case, after loading the FPU for 255 times, the fpu_counter will roll over, and we will revert to loading the FPU on demand, until it has been established that the guest is still actively using the FPU. This mirrors the x86 task switch policy, which seems to work. Signed-off-by: NRik van Riel <riel@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 James Sullivan 提交于
Extended struct kvm_lapic_irq with bool msi_redir_hint, which will be used to determine if the delivery of the MSI should target only the lowest priority CPU in the logical group specified for delivery. (In physical dest mode, the RH bit is not relevant). Initialized the value of msi_redir_hint to true when RH=1 in kvm_set_msi_irq(), and initialized to false in all other cases. Added value of msi_redir_hint to a debug message dump of an IRQ in apic_send_ipi(). Signed-off-by: NJames Sullivan <sullivan.james.f@gmail.com> Reviewed-by: NRadim Krčmář <rkrcmar@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Nadav Amit 提交于
x86 architecture defines differences between the reset and INIT sequences. INIT does not initialize the FPU (including MMX, XMM, YMM, etc.), TSC, PMU, MSRs (in general), MTRRs machine-check, APIC ID, APIC arbitration ID and BSP. References (from Intel SDM): "If the MP protocol has completed and a BSP is chosen, subsequent INITs (either to a specific processor or system wide) do not cause the MP protocol to be repeated." [8.4.2: MP Initialization Protocol Requirements and Restrictions] [Table 9-1. IA-32 Processor States Following Power-up, Reset, or INIT] "If the processor is reset by asserting the INIT# pin, the x87 FPU state is not changed." [9.2: X87 FPU INITIALIZATION] "The state of the local APIC following an INIT reset is the same as it is after a power-up or hardware reset, except that the APIC ID and arbitration ID registers are not affected." [10.4.7.3: Local APIC State After an INIT Reset ("Wait-for-SIPI" State)] Signed-off-by: NNadav Amit <namit@cs.technion.ac.il> Message-Id: <1428924848-28212-1-git-send-email-namit@cs.technion.ac.il> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Nadav Amit 提交于
Introducing KVM_CAP_DISABLE_QUIRKS for disabling x86 quirks that were previous created in order to overcome QEMU issues. Those issue were mostly result of invalid VM BIOS. Currently there are two quirks that can be disabled: 1. KVM_QUIRK_LINT0_REENABLED - LINT0 was enabled after boot 2. KVM_QUIRK_CD_NW_CLEARED - CD and NW are cleared after boot These two issues are already resolved in recent releases of QEMU, and would therefore be disabled by QEMU. Signed-off-by: NNadav Amit <namit@cs.technion.ac.il> Message-Id: <1428879221-29996-1-git-send-email-namit@cs.technion.ac.il> [Report capability from KVM_CHECK_EXTENSION too. - Paolo] Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Christian Borntraeger 提交于
Use __kvm_guest_{enter|exit} instead of kvm_guest_{enter|exit} where interrupts are disabled. Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 27 4月, 2015 1 次提交
-
-
由 Radim Krčmář 提交于
The kvmclock spec says that the host will increment a version field to an odd number, then update stuff, then increment it to an even number. The host is buggy and doesn't do this, and the result is observable when one vcpu reads another vcpu's kvmclock data. There's no good way for a guest kernel to keep its vdso from reading a different vcpu's kvmclock data, but we don't need to care about changing VCPUs as long as we read a consistent data from kvmclock. (VCPU can change outside of this loop too, so it doesn't matter if we return a value not fit for this VCPU.) Based on a patch by Radim Krčmář. Reviewed-by: NRadim Krčmář <rkrcmar@redhat.com> Acked-by: NMarcelo Tosatti <mtosatti@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 15 4月, 2015 1 次提交
-
-
由 Nadav Amit 提交于
kvm_init_msr_list is currently called before hardware_setup. As a result, vmx_mpx_supported always returns false when kvm_init_msr_list checks whether to save MSR_IA32_BNDCFGS. Move kvm_init_msr_list after vmx_hardware_setup is called to fix this issue. Signed-off-by: NNadav Amit <namit@cs.technion.ac.il> Message-Id: <1428864435-4732-1-git-send-email-namit@cs.technion.ac.il> Cc: stable@vger.kernel.org # 3.15+ Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 08 4月, 2015 7 次提交
-
-
由 Wanpeng Li 提交于
Dirty logging tracks sptes in 4k granularity, meaning that large sptes have to be split. If live migration is successful, the guest in the source machine will be destroyed and large sptes will be created in the destination. However, the guest continues to run in the source machine (for example if live migration fails), small sptes will remain around and cause bad performance. This patch introduce lazy collapsing of small sptes into large sptes. The rmap will be scanned in ioctl context when dirty logging is stopped, dropping those sptes which can be collapsed into a single large-page spte. Later page faults will create the large-page sptes. Reviewed-by: NXiao Guangrong <guangrong.xiao@linux.intel.com> Signed-off-by: NWanpeng Li <wanpeng.li@linux.intel.com> Message-Id: <1428046825-6905-1-git-send-email-wanpeng.li@linux.intel.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Nadav Amit 提交于
CR2 is not cleared as it should after reset. See Intel SDM table named "IA-32 Processor States Following Power-up, Reset, or INIT". Signed-off-by: NNadav Amit <namit@cs.technion.ac.il> Message-Id: <1427933438-12782-5-git-send-email-namit@cs.technion.ac.il> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Nadav Amit 提交于
DR0-DR3 are not cleared as they should during reset and when they are set from userspace. It appears to be caused by c77fb5fe ("KVM: x86: Allow the guest to run with dirty debug registers"). Force their reload on these situations. Signed-off-by: NNadav Amit <namit@cs.technion.ac.il> Message-Id: <1427933438-12782-4-git-send-email-namit@cs.technion.ac.il> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Nadav Amit 提交于
After reset, the CPU can change the BSP, which will be used upon INIT. Reset should return the BSP which QEMU asked for, and therefore handled accordingly. To quote: "If the MP protocol has completed and a BSP is chosen, subsequent INITs (either to a specific processor or system wide) do not cause the MP protocol to be repeated." [Intel SDM 8.4.2: MP Initialization Protocol Requirements and Restrictions] Signed-off-by: NNadav Amit <namit@cs.technion.ac.il> Message-Id: <1427933438-12782-3-git-send-email-namit@cs.technion.ac.il> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Eugene Korenevsky 提交于
cpuid_maxphyaddr(), which performs lot of memory accesses is called extensively across KVM, especially in nVMX code. This patch adds a cached value of maxphyaddr to vcpu.arch to reduce the pressure onto CPU cache and simplify the code of cpuid_maxphyaddr() callers. The cached value is initialized in kvm_arch_vcpu_init() and reloaded every time CPUID is updated by usermode. It is obvious that these reloads occur infrequently. Signed-off-by: NEugene Korenevsky <ekorenevsky@gmail.com> Message-Id: <20150329205612.GA1223@gnote> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Paolo Bonzini 提交于
The newly-added tracepoint shows the following results on the tscdeadline_latency test: qemu-kvm-8387 [002] 6425.558974: kvm_vcpu_wakeup: poll time 10407 ns qemu-kvm-8387 [002] 6425.558984: kvm_vcpu_wakeup: poll time 0 ns qemu-kvm-8387 [002] 6425.561242: kvm_vcpu_wakeup: poll time 10477 ns qemu-kvm-8387 [002] 6425.561251: kvm_vcpu_wakeup: poll time 0 ns and so on. This is because we need to go through kvm_vcpu_block again after the timer IRQ is injected. Avoid it by polling once before entering kvm_vcpu_block. On my machine (Xeon E5 Sandy Bridge) this removes about 500 cycles (7%) from the latency of the TSC deadline timer. Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Paolo Bonzini 提交于
Rename the old __vcpu_run to vcpu_run, and extract part of it to a new function vcpu_block. The next patch will add a new condition in vcpu_block, avoid extra indentation. Reviewed-by: NDavid Matlack <dmatlack@google.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 27 3月, 2015 2 次提交
-
-
由 Peter Zijlstra 提交于
In preparation of adding another tkr field, rename this one to tkr_mono. Also rename tk_read_base::base_mono to tk_read_base::base, since the structure is not specific to CLOCK_MONOTONIC and the mono name got added to the tk_read_base instance. Lots of trivial churn. Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Acked-by: NJohn Stultz <john.stultz@linaro.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20150319093400.344679419@infradead.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Nikolay Nikolaev 提交于
This is needed in e.g. ARM vGIC emulation, where the MMIO handling depends on the VCPU that does the access. Signed-off-by: NNikolay Nikolaev <n.nikolaev@virtualopensystems.com> Signed-off-by: NAndre Przywara <andre.przywara@arm.com> Acked-by: NPaolo Bonzini <pbonzini@redhat.com> Acked-by: NChristoffer Dall <christoffer.dall@linaro.org> Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-