1. 19 8月, 2014 5 次提交
    • M
      Btrfs: fix unzeroed members in fs_devices when creating a fs from seed fs · 69611ac8
      Miao Xie 提交于
      We forgot to zero some members in fs_devices when we create new fs_devices
      from the one of the seed fs. It would cause the problem that we got wrong
      chunk profile when allocating chunks. Fix it.
      Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      69611ac8
    • A
      btrfs: check generation as replace duplicates devid+uuid · 77bdae4d
      Anand Jain 提交于
      When FS in unmounted we need to check generation number as well
      since devid+uuid combination could match with the missing replaced
      disk when it reappears, and without this patch it might pair with
      the replaced disk again.
      
       device_list_add() function is called in the following threads,
      	mount device option
      	mount argument
      	ioctl BTRFS_IOC_SCAN_DEV (btrfs dev scan)
      	ioctl BTRFS_IOC_DEVICES_READY (btrfs dev ready <dev>)
       they have been unit tested to work fine with this patch.
      
       If the user knows what he is doing and really want to pair with
       replaced disk (which is not a standard operation), then he should
       first clear the kernel btrfs device list in the memory by doing
       the module unload/load and followed with the mount -o device option.
      Signed-off-by: NAnand Jain <anand.jain@oracle.com>
      Signed-off-by: NWang Shilong <wangsl.fnst@cn.fujitsu.com>
      Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      77bdae4d
    • A
      Btrfs: device_list_add() should not update list when mounted · b96de000
      Anand Jain 提交于
      device_list_add() is called when user runs btrfs dev scan, which would add
      any btrfs device into the btrfs_fs_devices list.
      
      Now think of a mounted btrfs. And a new device which contains the a SB
      from the mounted btrfs devices.
      
      In this situation when user runs btrfs dev scan, the current code would
      just replace existing device with the new device.
      
      Which is to note that old device is neither closed nor gracefully
      removed from the btrfs.
      
      The FS is still operational with the old bdev however the device name
      is the btrfs_device is new which is provided by the btrfs dev scan.
      
      reproducer:
      
      devmgt[1] detach /dev/sdc
      
      replace the missing disk /dev/sdc
      
      btrfs rep start -f 1 /dev/sde /btrfs
      Label: none  uuid: 5dc0aaf4-4683-4050-b2d6-5ebe5f5cd120
              Total devices 2 FS bytes used 32.00KiB
              devid    1 size 958.94MiB used 115.88MiB path /dev/sde
              devid    2 size 958.94MiB used 103.88MiB path /dev/sdd
      
      make /dev/sdc to reappear
      
      devmgt attach host2
      
      btrfs dev scan
      
      btrfs fi show -m
      Label: none  uuid: 5dc0aaf4-4683-4050-b2d6-5ebe5f5cd120^M
              Total devices 2 FS bytes used 32.00KiB^M
              devid    1 size 958.94MiB used 115.88MiB path /dev/sdc <- Wrong.
              devid    2 size 958.94MiB used 103.88MiB path /dev/sdd
      
      since /dev/sdc has been replaced with /dev/sde, the /dev/sdc shouldn't be
      part of the btrfs-fsid when it reappears. If user want it to be part of it
      then sys admin should be using btrfs device add instead.
      
      [1] github.com/anajain/devmgt.git
      Signed-off-by: NAnand Jain <anand.jain@oracle.com>
      Signed-off-by: NWang Shilong <wangsl.fnst@cn.fujitsu.com>
      Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com>
      Reviewed-by: NSatoru Takeuchi <takeuchi_satoru@jp.fujitsu.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      b96de000
    • C
      Btrfs: fill_holes: Fix slot number passed to hole_mergeable() call. · 1707e26d
      chandan 提交于
      For a non-existent key, btrfs_search_slot() sets path->slots[0] to the slot
      where the key could have been present, which in this case would be the slot
      containing the extent item which would be the next neighbor of the file range
      being punched. The current code passes an incremented path->slots[0] and we
      skip to the wrong file extent item. This would mean that we would fail to
      merge the "yet to be created" hole with the next neighboring hole (if one
      exists). Fix this.
      Signed-off-by: NChandan Rajendra <chandan@linux.vnet.ibm.com>
      Reviewed-by: NWang Shilong <wangsl.fnst@cn.fujitsu.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      1707e26d
    • M
      Btrfs: fix put dio bio twice when we submit dio bio fail · 7a5c3c9b
      Miao Xie 提交于
      The caller of btrfs_submit_direct_hook() will put the original dio bio
      when btrfs_submit_direct_hook() return a error number, so we needn't
      put the original bio in btrfs_submit_direct_hook().
      Signed-off-by: NMiao Xie <miaox@cn.fujitsu.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      7a5c3c9b
  2. 15 8月, 2014 9 次提交
    • C
      btrfs: disable strict file flushes for renames and truncates · 8d875f95
      Chris Mason 提交于
      Truncates and renames are often used to replace old versions of a file
      with new versions.  Applications often expect this to be an atomic
      replacement, even if they haven't done anything to make sure the new
      version is fully on disk.
      
      Btrfs has strict flushing in place to make sure that renaming over an
      old file with a new file will fully flush out the new file before
      allowing the transaction commit with the rename to complete.
      
      This ordering means the commit code needs to be able to lock file pages,
      and there are a few paths in the filesystem where we will try to end a
      transaction with the page lock held.  It's rare, but these things can
      deadlock.
      
      This patch removes the ordered flushes and switches to a best effort
      filemap_flush like ext4 uses. It's not perfect, but it should fix the
      deadlocks.
      Signed-off-by: NChris Mason <clm@fb.com>
      8d875f95
    • F
      Btrfs: fix csum tree corruption, duplicate and outdated checksums · 27b9a812
      Filipe Manana 提交于
      Under rare circumstances we can end up leaving 2 versions of a checksum
      for the same file extent range.
      
      The reason for this is that after calling btrfs_next_leaf we process
      slot 0 of the leaf it returns, instead of processing the slot set in
      path->slots[0]. Most of the time (by far) path->slots[0] is 0, but after
      btrfs_next_leaf() releases the path and before it searches for the next
      leaf, another task might cause a split of the next leaf, which migrates
      some of its keys to the leaf we were processing before calling
      btrfs_next_leaf(). In this case btrfs_next_leaf() returns again the
      same leaf but with path->slots[0] having a slot number corresponding
      to the first new key it got, that is, a slot number that didn't exist
      before calling btrfs_next_leaf(), as the leaf now has more keys than
      it had before. So we must really process the returned leaf starting at
      path->slots[0] always, as it isn't always 0, and the key at slot 0 can
      have an offset much lower than our search offset/bytenr.
      
      For example, consider the following scenario, where we have:
      
      sums->bytenr: 40157184, sums->len: 16384, sums end: 40173568
      four 4kb file data blocks with offsets 40157184, 40161280, 40165376, 40169472
      
        Leaf N:
      
          slot = 0                           slot = btrfs_header_nritems() - 1
        |-------------------------------------------------------------------|
        | [(CSUM CSUM 39239680), size 8] ... [(CSUM CSUM 40116224), size 4] |
        |-------------------------------------------------------------------|
      
        Leaf N + 1:
      
            slot = 0                          slot = btrfs_header_nritems() - 1
        |--------------------------------------------------------------------|
        | [(CSUM CSUM 40161280), size 32] ... [((CSUM CSUM 40615936), size 8 |
        |--------------------------------------------------------------------|
      
      Because we are at the last slot of leaf N, we call btrfs_next_leaf() to
      find the next highest key, which releases the current path and then searches
      for that next key. However after releasing the path and before finding that
      next key, the item at slot 0 of leaf N + 1 gets moved to leaf N, due to a call
      to ctree.c:push_leaf_left() (via ctree.c:split_leaf()), and therefore
      btrfs_next_leaf() will returns us a path again with leaf N but with the slot
      pointing to its new last key (CSUM CSUM 40161280). This new version of leaf N
      is then:
      
          slot = 0                        slot = btrfs_header_nritems() - 2  slot = btrfs_header_nritems() - 1
        |----------------------------------------------------------------------------------------------------|
        | [(CSUM CSUM 39239680), size 8] ... [(CSUM CSUM 40116224), size 4]  [(CSUM CSUM 40161280), size 32] |
        |----------------------------------------------------------------------------------------------------|
      
      And incorrecly using slot 0, makes us set next_offset to 39239680 and we jump
      into the "insert:" label, which will set tmp to:
      
          tmp = min((sums->len - total_bytes) >> blocksize_bits,
              (next_offset - file_key.offset) >> blocksize_bits) =
          min((16384 - 0) >> 12, (39239680 - 40157184) >> 12) =
          min(4, (u64)-917504 = 18446744073708634112 >> 12) = 4
      
      and
      
         ins_size = csum_size * tmp = 4 * 4 = 16 bytes.
      
      In other words, we insert a new csum item in the tree with key
      (CSUM_OBJECTID CSUM_KEY 40157184 = sums->bytenr) that contains the checksums
      for all the data (4 blocks of 4096 bytes each = sums->len). Which is wrong,
      because the item with key (CSUM CSUM 40161280) (the one that was moved from
      leaf N + 1 to the end of leaf N) contains the old checksums of the last 12288
      bytes of our data and won't get those old checksums removed.
      
      So this leaves us 2 different checksums for 3 4kb blocks of data in the tree,
      and breaks the logical rule:
      
         Key_N+1.offset >= Key_N.offset + length_of_data_its_checksums_cover
      
      An obvious bad effect of this is that a subsequent csum tree lookup to get
      the checksum of any of the blocks with logical offset of 40161280, 40165376
      or 40169472 (the last 3 4kb blocks of file data), will get the old checksums.
      
      Cc: stable@vger.kernel.org
      Signed-off-by: NFilipe Manana <fdmanana@suse.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      27b9a812
    • T
      Btrfs: Fix memory corruption by ulist_add_merge() on 32bit arch · 4eb1f66d
      Takashi Iwai 提交于
      We've got bug reports that btrfs crashes when quota is enabled on
      32bit kernel, typically with the Oops like below:
       BUG: unable to handle kernel NULL pointer dereference at 00000004
       IP: [<f9234590>] find_parent_nodes+0x360/0x1380 [btrfs]
       *pde = 00000000
       Oops: 0000 [#1] SMP
       CPU: 0 PID: 151 Comm: kworker/u8:2 Tainted: G S      W 3.15.2-1.gd43d97e-default #1
       Workqueue: btrfs-qgroup-rescan normal_work_helper [btrfs]
       task: f1478130 ti: f147c000 task.ti: f147c000
       EIP: 0060:[<f9234590>] EFLAGS: 00010213 CPU: 0
       EIP is at find_parent_nodes+0x360/0x1380 [btrfs]
       EAX: f147dda8 EBX: f147ddb0 ECX: 00000011 EDX: 00000000
       ESI: 00000000 EDI: f147dda4 EBP: f147ddf8 ESP: f147dd38
        DS: 007b ES: 007b FS: 00d8 GS: 00e0 SS: 0068
       CR0: 8005003b CR2: 00000004 CR3: 00bf3000 CR4: 00000690
       Stack:
        00000000 00000000 f147dda4 00000050 00000001 00000000 00000001 00000050
        00000001 00000000 d3059000 00000001 00000022 000000a8 00000000 00000000
        00000000 000000a1 00000000 00000000 00000001 00000000 00000000 11800000
       Call Trace:
        [<f923564d>] __btrfs_find_all_roots+0x9d/0xf0 [btrfs]
        [<f9237bb1>] btrfs_qgroup_rescan_worker+0x401/0x760 [btrfs]
        [<f9206148>] normal_work_helper+0xc8/0x270 [btrfs]
        [<c025e38b>] process_one_work+0x11b/0x390
        [<c025eea1>] worker_thread+0x101/0x340
        [<c026432b>] kthread+0x9b/0xb0
        [<c0712a71>] ret_from_kernel_thread+0x21/0x30
        [<c0264290>] kthread_create_on_node+0x110/0x110
      
      This indicates a NULL corruption in prefs_delayed list.  The further
      investigation and bisection pointed that the call of ulist_add_merge()
      results in the corruption.
      
      ulist_add_merge() takes u64 as aux and writes a 64bit value into
      old_aux.  The callers of this function in backref.c, however, pass a
      pointer of a pointer to old_aux.  That is, the function overwrites
      64bit value on 32bit pointer.  This caused a NULL in the adjacent
      variable, in this case, prefs_delayed.
      
      Here is a quick attempt to band-aid over this: a new function,
      ulist_add_merge_ptr() is introduced to pass/store properly a pointer
      value instead of u64.  There are still ugly void ** cast remaining
      in the callers because void ** cannot be taken implicitly.  But, it's
      safer than explicit cast to u64, anyway.
      
      Bugzilla: https://bugzilla.novell.com/show_bug.cgi?id=887046
      Cc: <stable@vger.kernel.org> [v3.11+]
      Signed-off-by: NTakashi Iwai <tiwai@suse.de>
      Signed-off-by: NChris Mason <clm@fb.com>
      4eb1f66d
    • L
      Btrfs: fix compressed write corruption on enospc · ce62003f
      Liu Bo 提交于
      When failing to allocate space for the whole compressed extent, we'll
      fallback to uncompressed IO, but we've forgotten to redirty the pages
      which belong to this compressed extent, and these 'clean' pages will
      simply skip 'submit' part and go to endio directly, at last we got data
      corruption as we write nothing.
      Signed-off-by: NLiu Bo <bo.li.liu@oracle.com>
      Tested-By: NMartin Steigerwald <martin@lichtvoll.de>
      Signed-off-by: NChris Mason <clm@fb.com>
      ce62003f
    • M
      btrfs: correctly handle return from ulist_add · f90e579c
      Mark Fasheh 提交于
      ulist_add() can return '1' on sucess, which qgroup_subtree_accounting()
      doesn't take into account. As a result, that value can be bubbled up to
      callers, causing an error to be printed. Fix this by only returning the
      value of ulist_add() when it indicates an error.
      Signed-off-by: NMark Fasheh <mfasheh@suse.de>
      Signed-off-by: NChris Mason <clm@fb.com>
      f90e579c
    • M
      btrfs: qgroup: account shared subtrees during snapshot delete · 1152651a
      Mark Fasheh 提交于
      During its tree walk, btrfs_drop_snapshot() will skip any shared
      subtrees it encounters. This is incorrect when we have qgroups
      turned on as those subtrees need to have their contents
      accounted. In particular, the case we're concerned with is when
      removing our snapshot root leaves the subtree with only one root
      reference.
      
      In those cases we need to find the last remaining root and add
      each extent in the subtree to the corresponding qgroup exclusive
      counts.
      
      This patch implements the shared subtree walk and a new qgroup
      operation, BTRFS_QGROUP_OPER_SUB_SUBTREE. When an operation of
      this type is encountered during qgroup accounting, we search for
      any root references to that extent and in the case that we find
      only one reference left, we go ahead and do the math on it's
      exclusive counts.
      Signed-off-by: NMark Fasheh <mfasheh@suse.de>
      Reviewed-by: NJosef Bacik <jbacik@fb.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      1152651a
    • F
      Btrfs: read lock extent buffer while walking backrefs · 6f7ff6d7
      Filipe Manana 提交于
      Before processing the extent buffer, acquire a read lock on it, so
      that we're safe against concurrent updates on the extent buffer.
      Signed-off-by: NFilipe Manana <fdmanana@suse.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      6f7ff6d7
    • J
      Btrfs: __btrfs_mod_ref should always use no_quota · e339a6b0
      Josef Bacik 提交于
      Before I extended the no_quota arg to btrfs_dec/inc_ref because I didn't
      understand how snapshot delete was using it and assumed that we needed the
      quota operations there.  With Mark's work this has turned out to be not the
      case, we _always_ need to use no_quota for btrfs_dec/inc_ref, so just drop the
      argument and make __btrfs_mod_ref call it's process function with no_quota set
      always.  Thanks,
      Signed-off-by: NJosef Bacik <jbacik@fb.com>
      Signed-off-by: NChris Mason <clm@fb.com>
      e339a6b0
    • D
      btrfs: adjust statfs calculations according to raid profiles · ba7b6e62
      David Sterba 提交于
      This has been discussed in thread:
      http://thread.gmane.org/gmane.comp.file-systems.btrfs/32528
      
      and this patch implements this proposal:
      http://thread.gmane.org/gmane.comp.file-systems.btrfs/32536
      
      Works fine for "clean" raid profiles where the raid factor correction
      does the right job. Otherwise it's pessimistic and may show low space
      although there's still some left.
      
      The df nubmers are lightly wrong in case of mixed block groups, but this
      is not a major usecase and can be addressed later.
      
      The RAID56 numbers are wrong almost the same way as before and will be
      addressed separately.
      
      CC: Hugo Mills <hugo@carfax.org.uk>
      CC: cwillu <cwillu@cwillu.com>
      CC: Josef Bacik <jbacik@fb.com>
      Signed-off-by: NDavid Sterba <dsterba@suse.cz>
      Signed-off-by: NChris Mason <clm@fb.com>
      ba7b6e62
  3. 04 8月, 2014 2 次提交
  4. 03 8月, 2014 1 次提交
    • L
      Merge branch 'fixes' of git://ftp.arm.linux.org.uk/~rmk/linux-arm · 3f9c08f7
      Linus Torvalds 提交于
      Pull ARM fixes from Russell King:
       "A few fixes for ARM.  Some of these are correctness issues:
         - TLBs must be flushed after the old mappings are removed by the DMA
           mapping code, but before the new mappings are established.
         - An off-by-one entry error in the Keystone LPAE setup code.
      
        Fixes include:
         - ensuring that the identity mapping for LPAE does not remove the
           kernel image from the identity map.
         - preventing userspace from trapping into kgdb.
         - fixing a preemption issue in the Intel iwmmxt code.
         - fixing a build error with nommu.
      
        Other changes include:
         - Adding a note about which areas of memory are expected to be
           accessible while the identity mapping tables are in place"
      
      * 'fixes' of git://ftp.arm.linux.org.uk/~rmk/linux-arm:
        ARM: 8124/1: don't enter kgdb when userspace executes a kgdb break instruction
        ARM: idmap: add identity mapping usage note
        ARM: 8115/1: LPAE: reduce damage caused by idmap to virtual memory layout
        ARM: fix alignment of keystone page table fixup
        ARM: 8112/1: only select ARM_PATCH_PHYS_VIRT if MMU is enabled
        ARM: 8100/1: Fix preemption disable in iwmmxt_task_enable()
        ARM: DMA: ensure that old section mappings are flushed from the TLB
      3f9c08f7
  5. 02 8月, 2014 9 次提交
  6. 01 8月, 2014 7 次提交
    • J
      timer: Fix lock inversion between hrtimer_bases.lock and scheduler locks · 504d5874
      Jan Kara 提交于
      clockevents_increase_min_delta() calls printk() from under
      hrtimer_bases.lock. That causes lock inversion on scheduler locks because
      printk() can call into the scheduler. Lockdep puts it as:
      
      ======================================================
      [ INFO: possible circular locking dependency detected ]
      3.15.0-rc8-06195-g939f04be #2 Not tainted
      -------------------------------------------------------
      trinity-main/74 is trying to acquire lock:
       (&port_lock_key){-.....}, at: [<811c60be>] serial8250_console_write+0x8c/0x10c
      
      but task is already holding lock:
       (hrtimer_bases.lock){-.-...}, at: [<8103caeb>] hrtimer_try_to_cancel+0x13/0x66
      
      which lock already depends on the new lock.
      
      the existing dependency chain (in reverse order) is:
      
      -> #5 (hrtimer_bases.lock){-.-...}:
             [<8104a942>] lock_acquire+0x92/0x101
             [<8142f11d>] _raw_spin_lock_irqsave+0x2e/0x3e
             [<8103c918>] __hrtimer_start_range_ns+0x1c/0x197
             [<8107ec20>] perf_swevent_start_hrtimer.part.41+0x7a/0x85
             [<81080792>] task_clock_event_start+0x3a/0x3f
             [<810807a4>] task_clock_event_add+0xd/0x14
             [<8108259a>] event_sched_in+0xb6/0x17a
             [<810826a2>] group_sched_in+0x44/0x122
             [<81082885>] ctx_sched_in.isra.67+0x105/0x11f
             [<810828e6>] perf_event_sched_in.isra.70+0x47/0x4b
             [<81082bf6>] __perf_install_in_context+0x8b/0xa3
             [<8107eb8e>] remote_function+0x12/0x2a
             [<8105f5af>] smp_call_function_single+0x2d/0x53
             [<8107e17d>] task_function_call+0x30/0x36
             [<8107fb82>] perf_install_in_context+0x87/0xbb
             [<810852c9>] SYSC_perf_event_open+0x5c6/0x701
             [<810856f9>] SyS_perf_event_open+0x17/0x19
             [<8142f8ee>] syscall_call+0x7/0xb
      
      -> #4 (&ctx->lock){......}:
             [<8104a942>] lock_acquire+0x92/0x101
             [<8142f04c>] _raw_spin_lock+0x21/0x30
             [<81081df3>] __perf_event_task_sched_out+0x1dc/0x34f
             [<8142cacc>] __schedule+0x4c6/0x4cb
             [<8142cae0>] schedule+0xf/0x11
             [<8142f9a6>] work_resched+0x5/0x30
      
      -> #3 (&rq->lock){-.-.-.}:
             [<8104a942>] lock_acquire+0x92/0x101
             [<8142f04c>] _raw_spin_lock+0x21/0x30
             [<81040873>] __task_rq_lock+0x33/0x3a
             [<8104184c>] wake_up_new_task+0x25/0xc2
             [<8102474b>] do_fork+0x15c/0x2a0
             [<810248a9>] kernel_thread+0x1a/0x1f
             [<814232a2>] rest_init+0x1a/0x10e
             [<817af949>] start_kernel+0x303/0x308
             [<817af2ab>] i386_start_kernel+0x79/0x7d
      
      -> #2 (&p->pi_lock){-.-...}:
             [<8104a942>] lock_acquire+0x92/0x101
             [<8142f11d>] _raw_spin_lock_irqsave+0x2e/0x3e
             [<810413dd>] try_to_wake_up+0x1d/0xd6
             [<810414cd>] default_wake_function+0xb/0xd
             [<810461f3>] __wake_up_common+0x39/0x59
             [<81046346>] __wake_up+0x29/0x3b
             [<811b8733>] tty_wakeup+0x49/0x51
             [<811c3568>] uart_write_wakeup+0x17/0x19
             [<811c5dc1>] serial8250_tx_chars+0xbc/0xfb
             [<811c5f28>] serial8250_handle_irq+0x54/0x6a
             [<811c5f57>] serial8250_default_handle_irq+0x19/0x1c
             [<811c56d8>] serial8250_interrupt+0x38/0x9e
             [<810510e7>] handle_irq_event_percpu+0x5f/0x1e2
             [<81051296>] handle_irq_event+0x2c/0x43
             [<81052cee>] handle_level_irq+0x57/0x80
             [<81002a72>] handle_irq+0x46/0x5c
             [<810027df>] do_IRQ+0x32/0x89
             [<8143036e>] common_interrupt+0x2e/0x33
             [<8142f23c>] _raw_spin_unlock_irqrestore+0x3f/0x49
             [<811c25a4>] uart_start+0x2d/0x32
             [<811c2c04>] uart_write+0xc7/0xd6
             [<811bc6f6>] n_tty_write+0xb8/0x35e
             [<811b9beb>] tty_write+0x163/0x1e4
             [<811b9cd9>] redirected_tty_write+0x6d/0x75
             [<810b6ed6>] vfs_write+0x75/0xb0
             [<810b7265>] SyS_write+0x44/0x77
             [<8142f8ee>] syscall_call+0x7/0xb
      
      -> #1 (&tty->write_wait){-.....}:
             [<8104a942>] lock_acquire+0x92/0x101
             [<8142f11d>] _raw_spin_lock_irqsave+0x2e/0x3e
             [<81046332>] __wake_up+0x15/0x3b
             [<811b8733>] tty_wakeup+0x49/0x51
             [<811c3568>] uart_write_wakeup+0x17/0x19
             [<811c5dc1>] serial8250_tx_chars+0xbc/0xfb
             [<811c5f28>] serial8250_handle_irq+0x54/0x6a
             [<811c5f57>] serial8250_default_handle_irq+0x19/0x1c
             [<811c56d8>] serial8250_interrupt+0x38/0x9e
             [<810510e7>] handle_irq_event_percpu+0x5f/0x1e2
             [<81051296>] handle_irq_event+0x2c/0x43
             [<81052cee>] handle_level_irq+0x57/0x80
             [<81002a72>] handle_irq+0x46/0x5c
             [<810027df>] do_IRQ+0x32/0x89
             [<8143036e>] common_interrupt+0x2e/0x33
             [<8142f23c>] _raw_spin_unlock_irqrestore+0x3f/0x49
             [<811c25a4>] uart_start+0x2d/0x32
             [<811c2c04>] uart_write+0xc7/0xd6
             [<811bc6f6>] n_tty_write+0xb8/0x35e
             [<811b9beb>] tty_write+0x163/0x1e4
             [<811b9cd9>] redirected_tty_write+0x6d/0x75
             [<810b6ed6>] vfs_write+0x75/0xb0
             [<810b7265>] SyS_write+0x44/0x77
             [<8142f8ee>] syscall_call+0x7/0xb
      
      -> #0 (&port_lock_key){-.....}:
             [<8104a62d>] __lock_acquire+0x9ea/0xc6d
             [<8104a942>] lock_acquire+0x92/0x101
             [<8142f11d>] _raw_spin_lock_irqsave+0x2e/0x3e
             [<811c60be>] serial8250_console_write+0x8c/0x10c
             [<8104e402>] call_console_drivers.constprop.31+0x87/0x118
             [<8104f5d5>] console_unlock+0x1d7/0x398
             [<8104fb70>] vprintk_emit+0x3da/0x3e4
             [<81425f76>] printk+0x17/0x19
             [<8105bfa0>] clockevents_program_min_delta+0x104/0x116
             [<8105c548>] clockevents_program_event+0xe7/0xf3
             [<8105cc1c>] tick_program_event+0x1e/0x23
             [<8103c43c>] hrtimer_force_reprogram+0x88/0x8f
             [<8103c49e>] __remove_hrtimer+0x5b/0x79
             [<8103cb21>] hrtimer_try_to_cancel+0x49/0x66
             [<8103cb4b>] hrtimer_cancel+0xd/0x18
             [<8107f102>] perf_swevent_cancel_hrtimer.part.60+0x2b/0x30
             [<81080705>] task_clock_event_stop+0x20/0x64
             [<81080756>] task_clock_event_del+0xd/0xf
             [<81081350>] event_sched_out+0xab/0x11e
             [<810813e0>] group_sched_out+0x1d/0x66
             [<81081682>] ctx_sched_out+0xaf/0xbf
             [<81081e04>] __perf_event_task_sched_out+0x1ed/0x34f
             [<8142cacc>] __schedule+0x4c6/0x4cb
             [<8142cae0>] schedule+0xf/0x11
             [<8142f9a6>] work_resched+0x5/0x30
      
      other info that might help us debug this:
      
      Chain exists of:
        &port_lock_key --> &ctx->lock --> hrtimer_bases.lock
      
       Possible unsafe locking scenario:
      
             CPU0                    CPU1
             ----                    ----
        lock(hrtimer_bases.lock);
                                     lock(&ctx->lock);
                                     lock(hrtimer_bases.lock);
        lock(&port_lock_key);
      
       *** DEADLOCK ***
      
      4 locks held by trinity-main/74:
       #0:  (&rq->lock){-.-.-.}, at: [<8142c6f3>] __schedule+0xed/0x4cb
       #1:  (&ctx->lock){......}, at: [<81081df3>] __perf_event_task_sched_out+0x1dc/0x34f
       #2:  (hrtimer_bases.lock){-.-...}, at: [<8103caeb>] hrtimer_try_to_cancel+0x13/0x66
       #3:  (console_lock){+.+...}, at: [<8104fb5d>] vprintk_emit+0x3c7/0x3e4
      
      stack backtrace:
      CPU: 0 PID: 74 Comm: trinity-main Not tainted 3.15.0-rc8-06195-g939f04be #2
       00000000 81c3a310 8b995c14 81426f69 8b995c44 81425a99 8161f671 8161f570
       8161f538 8161f559 8161f538 8b995c78 8b142bb0 00000004 8b142fdc 8b142bb0
       8b995ca8 8104a62d 8b142fac 000016f2 81c3a310 00000001 00000001 00000003
      Call Trace:
       [<81426f69>] dump_stack+0x16/0x18
       [<81425a99>] print_circular_bug+0x18f/0x19c
       [<8104a62d>] __lock_acquire+0x9ea/0xc6d
       [<8104a942>] lock_acquire+0x92/0x101
       [<811c60be>] ? serial8250_console_write+0x8c/0x10c
       [<811c6032>] ? wait_for_xmitr+0x76/0x76
       [<8142f11d>] _raw_spin_lock_irqsave+0x2e/0x3e
       [<811c60be>] ? serial8250_console_write+0x8c/0x10c
       [<811c60be>] serial8250_console_write+0x8c/0x10c
       [<8104af87>] ? lock_release+0x191/0x223
       [<811c6032>] ? wait_for_xmitr+0x76/0x76
       [<8104e402>] call_console_drivers.constprop.31+0x87/0x118
       [<8104f5d5>] console_unlock+0x1d7/0x398
       [<8104fb70>] vprintk_emit+0x3da/0x3e4
       [<81425f76>] printk+0x17/0x19
       [<8105bfa0>] clockevents_program_min_delta+0x104/0x116
       [<8105cc1c>] tick_program_event+0x1e/0x23
       [<8103c43c>] hrtimer_force_reprogram+0x88/0x8f
       [<8103c49e>] __remove_hrtimer+0x5b/0x79
       [<8103cb21>] hrtimer_try_to_cancel+0x49/0x66
       [<8103cb4b>] hrtimer_cancel+0xd/0x18
       [<8107f102>] perf_swevent_cancel_hrtimer.part.60+0x2b/0x30
       [<81080705>] task_clock_event_stop+0x20/0x64
       [<81080756>] task_clock_event_del+0xd/0xf
       [<81081350>] event_sched_out+0xab/0x11e
       [<810813e0>] group_sched_out+0x1d/0x66
       [<81081682>] ctx_sched_out+0xaf/0xbf
       [<81081e04>] __perf_event_task_sched_out+0x1ed/0x34f
       [<8104416d>] ? __dequeue_entity+0x23/0x27
       [<81044505>] ? pick_next_task_fair+0xb1/0x120
       [<8142cacc>] __schedule+0x4c6/0x4cb
       [<81047574>] ? trace_hardirqs_off_caller+0xd7/0x108
       [<810475b0>] ? trace_hardirqs_off+0xb/0xd
       [<81056346>] ? rcu_irq_exit+0x64/0x77
      
      Fix the problem by using printk_deferred() which does not call into the
      scheduler.
      Reported-by: NFengguang Wu <fengguang.wu@intel.com>
      Signed-off-by: NJan Kara <jack@suse.cz>
      Cc: stable@vger.kernel.org
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      504d5874
    • E
      vfs: fix check for fallocate on active swapfile · 6d2b6170
      Eric Biggers 提交于
      Fix the broken check for calling sys_fallocate() on an active swapfile,
      introduced by commit 0790b31b ("fs: disallow all fallocate
      operation on active swapfile").
      Signed-off-by: NEric Biggers <ebiggers3@gmail.com>
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      6d2b6170
    • C
      direct-io: fix AIO regression · af436472
      Christoph Hellwig 提交于
      The direct-io.c rewrite to use the iov_iter infrastructure stopped updating
      the size field in struct dio_submit, and thus rendered the check for
      allowing asynchronous completions to always return false.  Fix this by
      comparing it to the count of bytes in the iov_iter instead.
      Signed-off-by: NChristoph Hellwig <hch@lst.de>
      Reported-by: NTim Chen <tim.c.chen@linux.intel.com>
      Tested-by: NTim Chen <tim.c.chen@linux.intel.com>
      af436472
    • L
      Merge tag 'pm+acpi-3.16-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm · 6f092803
      Linus Torvalds 提交于
      Pull ACPI fix from Rafael Wysocki:
       "One commit that fixes a problem causing PNP devices to be associated
        with wrong ACPI device objects sometimes during device enumeration due
        to an incorrect check in a matching function.
      
        That problem was uncovered by the ACPI device enumeration rework in
        3.14"
      
      * tag 'pm+acpi-3.16-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm:
        ACPI / PNP: Fix acpi_pnp_match()
      6f092803
    • L
      Merge tag 'clk-fixes-for-linus' of git://git.linaro.org/people/mike.turquette/linux · 7c909b09
      Linus Torvalds 提交于
      Pull clock driver fix from Mike Turquette:
       "A single patch to re-enable audio which is broken on all DRA7
        SoC-based platforms.  Missed this one from the last set of fixes"
      
      * tag 'clk-fixes-for-linus' of git://git.linaro.org/people/mike.turquette/linux:
        clk: ti: clk-7xx: Correct ABE DPLL configuration
      7c909b09
    • L
      Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6 · 5196626d
      Linus Torvalds 提交于
      Pull crypto fix from Herbert Xu:
       "This adds missing SELinux labeling to AF_ALG sockets which apparently
        causes SELinux (or at least the SELinux people) to misbehave :)"
      
      * git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6:
        crypto: af_alg - properly label AF_ALG socket
      5196626d
    • L
      Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi · 48418bb6
      Linus Torvalds 提交于
      Pull SCSI barrier fix from James Bottomley:
       "This is a potential data corruption fix: If we get an error sending
        down a barrier, we simply ignore it meaning the barrier semantics get
        violated without anyone being any the wiser.  If the system crashes at
        this point, the filesystem potentially becomes corrupt.  Fix is to
        report errors on failed barriers"
      
      * tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi:
        scsi: handle flush errors properly
      48418bb6
  7. 31 7月, 2014 7 次提交