- 16 3月, 2013 1 次提交
-
-
由 zhangwei(Jovi) 提交于
Use pr_warn_once, instead of making an open coded implementation. Link: http://lkml.kernel.org/r/513D8419.20400@huawei.comSigned-off-by: Nzhangwei(Jovi) <jovi.zhangwei@huawei.com> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
- 15 3月, 2013 35 次提交
-
-
由 Steven Rostedt (Red Hat) 提交于
The function trace_clock() calls "local_clock()" which is exactly the same clock that perf uses. I'm not sure why perf doesn't call trace_clock(), as trace_clock() doesn't have any users. But now it does. As trace_clock() calls local_clock() like perf does, I added the trace_clock "perf" option that uses trace_clock(). Now the ftrace buffers can use the same clock as perf uses. This will be useful when perf starts reading the ftrace buffers, and will be able to interleave them with the same clock data. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
Add a simple trace clock called "uptime" for those that are interested in the uptime of the trace. It uses jiffies as that's the safest method, as other uptime clocks grab seq locks, which could cause a deadlock if taken from an event or function tracer. Requested-by: NMauro Carvalho Chehab <mchehab@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
Currently, the only way to stop the latency tracers from doing function tracing is to fully disable the function tracer from the proc file system: echo 0 > /proc/sys/kernel/ftrace_enabled This is a big hammer approach as it disables function tracing for all users. This includes kprobes, perf, stack tracer, etc. Instead, create a function-trace option that the latency tracers can check to determine if it should enable function tracing or not. This option can be set or cleared even while the tracer is active and the tracers will disable or enable function tracing depending on how the option was set. Instead of using the proc file, disable latency function tracing with echo 0 > /debug/tracing/options/function-trace Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Clark Williams <williams@redhat.com> Cc: John Kacur <jkacur@redhat.com> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
Altough the trace_dump_stack() already skips three functions in the call to stack trace, which gets the stack trace to start at the caller of the function, the caller may want to skip some more too (as it may have helper functions). Add a skip argument to the trace_dump_stack() that lets the caller skip back tracing functions that it doesn't care about. Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
echo 'schedule:snapshot:1' > /debug/tracing/set_ftrace_filter This will cause the scheduler to trigger a snapshot the next time it's called (you can use any function that's not called by NMI). Even though it triggers only once, you still need to remove it with: echo '!schedule:snapshot:0' > /debug/tracing/set_ftrace_filter The :1 can be left off for the first command: echo 'schedule:snapshot' > /debug/tracing/set_ftrace_filter But this will cause all calls to schedule to trigger a snapshot. This must be removed without the ':0' echo '!schedule:snapshot' > /debug/tracing/set_ftrace_filter As adding a "count" is a different operation (internally). Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
Add alloc_snapshot() and free_snapshot() to allocate and free the snapshot buffer respectively, and use these to remove duplicate code. Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
Add EXPORT_SYMBOL_GPL() to let the tracing_snapshot() functions be called from modules. Also add a test to see if the snapshot was called from NMI context and just warn in the tracing buffer if so, and return. Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
There's a few places that ftrace uses trace_printk() for internal use, but this requires context (normal, softirq, irq, NMI) buffers to keep things lockless. But the trace_puts() does not, as it can write the string directly into the ring buffer. Make a internal helper for trace_puts() and have the internal functions use that. This way the extra context buffers are not used. Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
The trace_printk() is extremely fast and is very handy as it can be used in any context (including NMIs!). But it still requires scanning the fmt string for parsing the args. Even the trace_bprintk() requires a scan to know what args will be saved, although it doesn't copy the format string itself. Several times trace_printk() has no args, and wastes cpu cycles scanning the fmt string. Adding trace_puts() allows the developer to use an even faster tracing method that only saves the pointer to the string in the ring buffer without doing any format parsing at all. This will help remove even more of the "Heisenbug" effect, when debugging. Also fixed up the F_printk()s for the ftrace internal bprint and print events. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
If debugging the kernel, and the developer wants to use tracing_snapshot() in places where tracing_snapshot_alloc() may be difficult (or more likely, the developer is lazy and doesn't want to bother with tracing_snapshot_alloc() at all), then adding alloc_snapshot to the kernel command line parameter will tell ftrace to allocate the snapshot buffer (if configured) when it allocates the main tracing buffer. I also noticed that ring_buffer_expanded and tracing_selftest_disabled had inconsistent use of boolean "true" and "false" with "0" and "1". I cleaned that up too. Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
Move the tracing startup selftest code into its own function and when not enabled, always have that function succeed. This makes the register_tracer() function much more readable. Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
The new snapshot feature is quite handy. It's a way for the user to take advantage of the spare buffer that, until then, only the latency tracers used to "snapshot" the buffer when it hit a max latency. Now users can trigger a "snapshot" manually when some condition is hit in a program. But a snapshot currently can not be triggered by a condition inside the kernel. With the addition of tracing_snapshot() and tracing_snapshot_alloc(), snapshots can now be taking when a condition is hit, and the developer wants to snapshot the case without stopping the trace. Note, any snapshot will overwrite the old one, so take care in how this is done. These new functions are to be used like tracing_on(), tracing_off() and trace_printk() are. That is, they should never be called in the mainline Linux kernel. They are solely for the purpose of debugging. The tracing_snapshot() will not allocate a buffer, but it is safe to be called from any context (except NMIs). But if a snapshot buffer isn't allocated when it is called, it will write to the live buffer, complaining about the lack of a snapshot buffer, and then stop tracing (giving you the "permanent snapshot"). tracing_snapshot_alloc() will allocate the snapshot buffer if it was not already allocated and then take the snapshot. This routine *may sleep*, and must be called from context that can sleep. The allocation is done with GFP_KERNEL and not atomic. If you need a snapshot in an atomic context, say in early boot, then it is best to call the tracing_snapshot_alloc() before then, where it will allocate the buffer, and then you can use the tracing_snapshot() anywhere you want and still get snapshots. Cc: Hiraku Toyooka <hiraku.toyooka.gu@hitachi.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
Add a ref count to the trace_array structure and prevent removal of instances that have open descriptors. Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
Add the per_cpu directory to the created tracing instances: cd /sys/kernel/debug/tracing/instances mkdir foo ls foo/per_cpu/cpu0 buffer_size_kb snapshot_raw trace trace_pipe_raw snapshot stats trace_pipe Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
Add the "snapshot" file to the the multi-buffer instances. cd /sys/kernel/debug/tracing/instances mkdir foo ls foo buffer_size_kb buffer_total_size_kb events free_buffer set_event snapshot trace trace_clock trace_marker trace_options trace_pipe tracing_on cat foo/snapshot # tracer: nop # # # * Snapshot is freed * # # Snapshot commands: # echo 0 > snapshot : Clears and frees snapshot buffer # echo 1 > snapshot : Allocates snapshot buffer, if not already allocated. # Takes a snapshot of the main buffer. # echo 2 > snapshot : Clears snapshot buffer (but does not allocate) # (Doesn't have to be '2' works with any number that # is not a '0' or '1') Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
There's a bit of duplicate code in creating the trace buffers for the normal trace buffer and the max trace buffer among the instances and the main global_trace. This code can be consolidated and cleaned up a bit making the code cleaner and more readable as well as less duplication. Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
The snapshot buffer belongs to the trace array not the tracer that is running. The trace array should be the data structure that keeps track of whether or not the snapshot buffer is allocated, not the tracer desciptor. Having the trace array keep track of it makes modifications so much easier. Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
Add a 'snapshot_raw' per_cpu file that allows tools to read the raw binary data of the snapshot buffer. Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
Add the snapshot file into the per_cpu tracing directories to allow them to be read for an individual cpu. This also allows to clear an individual cpu from the snapshot buffer. If the kernel allows it (CONFIG_RING_BUFFER_ALLOW_SWAP is set), then echoing in '1' into one of the per_cpu snapshot files will do an individual cpu buffer swap instead of the entire file. Cc: Hiraku Toyooka <hiraku.toyooka.gu@hitachi.com> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
Currently, the way the latency tracers and snapshot feature works is to have a separate trace_array called "max_tr" that holds the snapshot buffer. For latency tracers, this snapshot buffer is used to swap the running buffer with this buffer to save the current max latency. The only items needed for the max_tr is really just a copy of the buffer itself, the per_cpu data pointers, the time_start timestamp that states when the max latency was triggered, and the cpu that the max latency was triggered on. All other fields in trace_array are unused by the max_tr, making the max_tr mostly bloat. This change removes the max_tr completely, and adds a new structure called trace_buffer, that holds the buffer pointer, the per_cpu data pointers, the time_start timestamp, and the cpu where the latency occurred. The trace_array, now has two trace_buffers, one for the normal trace and one for the max trace or snapshot. By doing this, not only do we remove the bloat from the max_trace but the instances of traces can now use their own snapshot feature and not have just the top level global_trace have the snapshot feature and latency tracers for itself. Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
Currently we do not know what buffer a module event was enabled in. On unload, it is safest to clear all buffer instances, not just the top level buffer. Todo: Clear only the buffer that the event was used in. The infrastructure is there to do this, but it makes the code a bit more complex. Lets get the current code vetted before we add that. Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
Move the logic to wake up on ring buffer data into the ring buffer code itself. This simplifies the tracing code a lot and also has the added benefit that waiters on one of the instance buffers can be woken only when data is added to that instance instead of data added to any instance. Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt 提交于
If the ring buffer is empty, a read to trace_pipe_raw wont block. The tracing code has the infrastructure to wake up waiting readers, but the trace_pipe_raw doesn't take advantage of that. When a read is done to trace_pipe_raw without the O_NONBLOCK flag set, have the read block until there's data in the requested buffer. Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt 提交于
The trace_pipe_raw never implemented polling and this was casing issues for several utilities. This is now implemented. Blocked reads still are on the TODO list. Reported-by: NMauro Carvalho Chehab <mchehab@redhat.com> Tested-by: NMauro Carvalho Chehab <mchehab@redhat.com> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
Currently only the splice NONBLOCK flag is checked to determine if the splice read should block or not. But the file descriptor NONBLOCK flag also needs to be checked. Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt 提交于
Add a method to the hijacked dentry descriptor of the "instances" directory to allow for rmdir to remove an instance of a multibuffer. Example: cd /debug/tracing/instances mkdir hello ls hello/ rmdir hello ls Like the mkdir method, the i_mutex is dropped for the instances directory. The instances directory is created at boot up and can not be renamed or removed. The trace_types_lock mutex is used to synchronize adding and removing of instances. I've run several stress tests with different threads trying to create and delete directories of the same name, and it has stood up fine. Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt 提交于
Add the interface ("instances" directory) to add multiple buffers to ftrace. To create a new instance, simply do a mkdir in the instances directory: This will create a directory with the following: # cd instances # mkdir foo # ls foo buffer_size_kb free_buffer trace_clock trace_pipe buffer_total_size_kb set_event trace_marker tracing_enabled events/ trace trace_options tracing_on Currently only events are able to be set, and there isn't a way to delete a buffer when one is created (yet). Note, the i_mutex lock is dropped from the parent "instances" directory during the mkdir operation. As the "instances" directory can not be renamed or deleted (created on boot), I do not see any harm in dropping the lock. The creation of the sub directories is protected by trace_types_lock mutex, which only lets one instance get into the code path at a time. If two tasks try to create or delete directories of the same name, only one will occur and the other will fail with -EEXIST. Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt 提交于
The global and max-tr currently use static per_cpu arrays for the CPU data descriptors. But in order to get new allocated trace_arrays, they need to be allocated per_cpu arrays. Instead of using the static arrays, switch the global and max-tr to use allocated data. Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt 提交于
Pass the struct ftrace_event_file *ftrace_file to the trace_event_buffer_lock_reserve() (new function that replaces the trace_current_buffer_lock_reserver()). The ftrace_file holds a pointer to the trace_array that is in use. In the case of multiple buffers with different trace_arrays, this allows different events to be recorded into different buffers. Also fixed some of the stale comments in include/trace/ftrace.h Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt 提交于
The global_trace variable in kernel/trace/trace.c has been kept 'static' and local to that file so that it would not be used too much outside of that file. This has paid off, even though there were lots of changes to make the trace_array structure more generic (not depending on global_trace). Removal of a lot of direct usages of global_trace is needed to be able to create more trace_arrays such that we can add multiple buffers. Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt 提交于
Both RING_BUFFER_ALL_CPUS and TRACE_PIPE_ALL_CPU are defined as -1 and used to say that all the ring buffers are to be modified or read (instead of just a single cpu, which would be >= 0). There's no reason to keep TRACE_PIPE_ALL_CPU as it is also started to be used for more than what it was created for, and now that the ring buffer code added a generic RING_BUFFER_ALL_CPUS define, we can clean up the trace code to use that instead and remove the TRACE_PIPE_ALL_CPU macro. Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt 提交于
The trace events for ftrace are all defined via global variables. The arrays of events and event systems are linked to a global list. This prevents multiple users of the event system (what to enable and what not to). By adding descriptors to represent the event/file relation, as well as to which trace_array descriptor they are associated with, allows for more than one set of events to be defined. Once the trace events files have a link between the trace event and the trace_array they are associated with, we can create multiple trace_arrays that can record separate events in separate buffers. Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
The latency tracers require the buffers to be in overwrite mode, otherwise they get screwed up. Force the buffers to stay in overwrite mode when latency tracers are enabled. Added a flag_changed() method to the tracer structure to allow the tracers to see what flags are being changed, and also be able to prevent the change from happing. Cc: stable@vger.kernel.org Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
Changing the overwrite mode for the ring buffer via the trace option only sets the normal buffer. But the snapshot buffer could swap with it, and then the snapshot would be in non overwrite mode and the normal buffer would be in overwrite mode, even though the option flag states otherwise. Keep the two buffers overwrite modes in sync. Cc: stable@vger.kernel.org Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
Seems that the tracer flags have never been protected from synchronous writes. Luckily, admins don't usually modify the tracing flags via two different tasks. But if scripts were to be used to modify them, then they could get corrupted. Move the trace_types_lock that protects against tracers changing to also protect the flags being set. Cc: stable@vger.kernel.org Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
- 12 3月, 2013 1 次提交
-
-
由 Steven Rostedt (Red Hat) 提交于
Although the swap is wrapped with a spin_lock, the assignment of the temp buffer used to swap is not within that lock. It needs to be moved into that lock, otherwise two swaps happening on two different CPUs, can end up using the wrong temp buffer to assign in the swap. Luckily, all current callers of the swap function appear to have their own locks. But in case something is added that allows two different callers to call the swap, then there's a chance that this race can trigger and corrupt the buffers. New code is coming soon that will allow for this race to trigger. I've Cc'd stable, so this bug will not show up if someone backports one of the changes that can trigger this bug. Cc: stable@vger.kernel.org Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
- 07 3月, 2013 2 次提交
-
-
由 Steven Rostedt (Red Hat) 提交于
To use the tracing snapshot feature, writing a '1' into the snapshot file causes the snapshot buffer to be allocated if it has not already been allocated and dose a 'swap' with the main buffer, so that the snapshot now contains what was in the main buffer, and the main buffer now writes to what was the snapshot buffer. To free the snapshot buffer, a '0' is written into the snapshot file. To clear the snapshot buffer, any number but a '0' or '1' is written into the snapshot file. But if the file is not allocated it returns -EINVAL error code. This is rather pointless. It is better just to do nothing and return success. Acked-by: NHiraku Toyooka <hiraku.toyooka.gu@hitachi.com> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
When cat'ing the snapshot file, instead of showing an empty trace header like the trace file does, show how to use the snapshot feature. Also, this is a good place to show if the snapshot has been allocated or not. Users may want to "pre allocate" the snapshot to have a fast "swap" of the current buffer. Otherwise, a swap would be slow and might fail as it would need to allocate the snapshot buffer, and that might fail under tight memory constraints. Here's what it looked like before: # tracer: nop # # entries-in-buffer/entries-written: 0/0 #P:4 # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # ||| / delay # TASK-PID CPU# |||| TIMESTAMP FUNCTION # | | | |||| | | Here's what it looks like now: # tracer: nop # # # * Snapshot is freed * # # Snapshot commands: # echo 0 > snapshot : Clears and frees snapshot buffer # echo 1 > snapshot : Allocates snapshot buffer, if not already allocated. # Takes a snapshot of the main buffer. # echo 2 > snapshot : Clears snapshot buffer (but does not allocate) # (Doesn't have to be '2' works with any number that # is not a '0' or '1') Acked-by: NHiraku Toyooka <hiraku.toyooka.gu@hitachi.com> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
- 08 2月, 2013 1 次提交
-
-
由 Clark Williams 提交于
Move rt scheduler definitions out of include/linux/sched.h into new file include/linux/sched/rt.h Signed-off-by: NClark Williams <williams@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Link: http://lkml.kernel.org/r/20130207094707.7b9f825f@riff.lanSigned-off-by: NIngo Molnar <mingo@kernel.org>
-