1. 20 4月, 2011 4 次提交
  2. 02 9月, 2010 1 次提交
    • P
      powerpc: Account time using timebase rather than PURR · cf9efce0
      Paul Mackerras 提交于
      Currently, when CONFIG_VIRT_CPU_ACCOUNTING is enabled, we use the
      PURR register for measuring the user and system time used by
      processes, as well as other related times such as hardirq and
      softirq times.  This turns out to be quite confusing for users
      because it means that a program will often be measured as taking
      less time when run on a multi-threaded processor (SMT2 or SMT4 mode)
      than it does when run on a single-threaded processor (ST mode), even
      though the program takes longer to finish.  The discrepancy is
      accounted for as stolen time, which is also confusing, particularly
      when there are no other partitions running.
      
      This changes the accounting to use the timebase instead, meaning that
      the reported user and system times are the actual number of real-time
      seconds that the program was executing on the processor thread,
      regardless of which SMT mode the processor is in.  Thus a program will
      generally show greater user and system times when run on a
      multi-threaded processor than on a single-threaded processor.
      
      On pSeries systems on POWER5 or later processors, we measure the
      stolen time (time when this partition wasn't running) using the
      hypervisor dispatch trace log.  We check for new entries in the
      log on every entry from user mode and on every transition from
      kernel process context to soft or hard IRQ context (i.e. when
      account_system_vtime() gets called).  So that we can correctly
      distinguish time stolen from user time and time stolen from system
      time, without having to check the log on every exit to user mode,
      we store separate timestamps for exit to user mode and entry from
      user mode.
      
      On systems that have a SPURR (POWER6 and POWER7), we read the SPURR
      in account_system_vtime() (as before), and then apportion the SPURR
      ticks since the last time we read it between scaled user time and
      scaled system time according to the relative proportions of user
      time and system time over the same interval.  This avoids having to
      read the SPURR on every kernel entry and exit.  On systems that have
      PURR but not SPURR (i.e., POWER5), we do the same using the PURR
      rather than the SPURR.
      
      This disables the DTL user interface in /sys/debug/kernel/powerpc/dtl
      for now since it conflicts with the use of the dispatch trace log
      by the time accounting code.
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
      cf9efce0
  3. 05 11月, 2009 1 次提交
  4. 20 8月, 2009 3 次提交
    • B
      powerpc: Remove use of a second scratch SPRG in STAB code · c5a8c0c9
      Benjamin Herrenschmidt 提交于
      The STAB code used on Power3 and RS/64 uses a second scratch SPRG to
      save a GPR in order to decide whether to go to do_stab_bolted_* or
      to handle a normal data access exception.
      
      This prevents our scheme of freeing SPRG3 which is user visible for
      user uses since we cannot use SPRG0 which, on RS/64, seems to be
      read-only for supervisor mode (like POWER4).
      
      This reworks the STAB exception entry to use the PACA as temporary
      storage instead.
      Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
      c5a8c0c9
    • B
      powerpc: Use names rather than numbers for SPRGs (v2) · ee43eb78
      Benjamin Herrenschmidt 提交于
      The kernel uses SPRG registers for various purposes, typically in
      low level assembly code as scratch registers or to hold per-cpu
      global infos such as the PACA or the current thread_info pointer.
      
      We want to be able to easily shuffle the usage of those registers
      as some implementations have specific constraints realted to some
      of them, for example, some have userspace readable aliases, etc..
      and the current choice isn't always the best.
      
      This patch should not change any code generation, and replaces the
      usage of SPRN_SPRGn everywhere in the kernel with a named replacement
      and adds documentation next to the definition of the names as to
      what those are used for on each processor family.
      
      The only parts that still use the original numbers are bits of KVM
      or suspend/resume code that just blindly needs to save/restore all
      the SPRGs.
      Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
      ee43eb78
    • B
      powerpc: Rename exception.h to exception-64s.h · 8aa34ab8
      Benjamin Herrenschmidt 提交于
      The file include/asm/exception.h contains definitions
      that are specific to exception handling on 64-bit server
      type processors.
      
      This renames the file to exception-64s.h to reflect that
      fact and avoid confusion.
      Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
      8aa34ab8
  5. 16 9月, 2008 1 次提交
    • P
      powerpc: Make it possible to move the interrupt handlers away from the kernel · 1f6a93e4
      Paul Mackerras 提交于
      This changes the way that the exception prologs transfer control to
      the handlers in 64-bit kernels with the aim of making it possible to
      have the prologs separate from the main body of the kernel.  Now,
      instead of computing the address of the handler by taking the top
      32 bits of the paca address (to get the 0xc0000000........ part) and
      ORing in something in the bottom 16 bits, we get the base address of
      the kernel by doing a load from the paca and add an offset.
      
      This also replaces an mfmsr and an ori to compute the MSR value for
      the handler with a load from the paca.  That makes it unnecessary to
      have a separate version of EXCEPTION_PROLOG_PSERIES that forces 64-bit
      mode.
      
      We can no longer use a direct branches in the exception prolog code,
      which means that the SLB miss handlers can't branch directly to
      .slb_miss_realmode any more.  Instead we have to compute the address
      and do an indirect branch.  This is conditional on CONFIG_RELOCATABLE;
      for non-relocatable kernels we use a direct branch as before.  (A later
      change will allow CONFIG_RELOCATABLE to be set on 64-bit powerpc.)
      
      Since the secondary CPUs on pSeries start execution in the first 0x100
      bytes of real memory and then have to get to wherever the kernel is,
      we can't use a direct branch to get there.  Instead this changes
      __secondary_hold_spinloop from a flag to a function pointer.  When it
      is set to a non-NULL value, the secondary CPUs jump to the function
      pointed to by that value.
      
      Finally this eliminates one code difference between 32-bit and 64-bit
      by making __secondary_hold be the text address of the secondary CPU
      spinloop rather than a function descriptor for it.
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      1f6a93e4
  6. 04 8月, 2008 1 次提交
  7. 18 4月, 2008 1 次提交
  8. 13 9月, 2007 1 次提交
  9. 22 8月, 2007 2 次提交