- 21 4月, 2015 20 次提交
-
-
由 Paul Mackerras 提交于
This uses msgsnd where possible for signalling other threads within the same core on POWER8 systems, rather than IPIs through the XICS interrupt controller. This includes waking secondary threads to run the guest, the interrupts generated by the virtual XICS, and the interrupts to bring the other threads out of the guest when exiting. Aggregated statistics from debugfs across vcpus for a guest with 32 vcpus, 8 threads/vcore, running on a POWER8, show this before the change: rm_entry: 3387.6ns (228 - 86600, 1008969 samples) rm_exit: 4561.5ns (12 - 3477452, 1009402 samples) rm_intr: 1660.0ns (12 - 553050, 3600051 samples) and this after the change: rm_entry: 3060.1ns (212 - 65138, 953873 samples) rm_exit: 4244.1ns (12 - 9693408, 954331 samples) rm_intr: 1342.3ns (12 - 1104718, 3405326 samples) for a test of booting Fedora 20 big-endian to the login prompt. The time taken for a H_PROD hcall (which is handled in the host kernel) went down from about 35 microseconds to about 16 microseconds with this change. The noinline added to kvmppc_run_core turned out to be necessary for good performance, at least with gcc 4.9.2 as packaged with Fedora 21 and a little-endian POWER8 host. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This replaces the assembler code for kvmhv_commence_exit() with C code in book3s_hv_builtin.c. It also moves the IPI sending code that was in book3s_hv_rm_xics.c into a new kvmhv_rm_send_ipi() function so it can be used by kvmhv_commence_exit() as well as icp_rm_set_vcpu_irq(). Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
On entry to the guest, secondary threads now wait for the primary to switch the MMU after loading up most of their state, rather than before. This means that the secondary threads get into the guest sooner, in the common case where the secondary threads get to kvmppc_hv_entry before the primary thread. On exit, the first thread out increments the exit count and interrupts the other threads (to get them out of the guest) before saving most of its state, rather than after. That means that the other threads exit sooner and means that the first thread doesn't spend so much time waiting for the other threads at the point where the MMU gets switched back to the host. This pulls out the code that increments the exit count and interrupts other threads into a separate function, kvmhv_commence_exit(). This also makes sure that r12 and vcpu->arch.trap are set correctly in some corner cases. Statistics from /sys/kernel/debug/kvm/vm*/vcpu*/timings show the improvement. Aggregating across vcpus for a guest with 32 vcpus, 8 threads/vcore, running on a POWER8, gives this before the change: rm_entry: avg 4537.3ns (222 - 48444, 1068878 samples) rm_exit: avg 4787.6ns (152 - 165490, 1010717 samples) rm_intr: avg 1673.6ns (12 - 341304, 3818691 samples) and this after the change: rm_entry: avg 3427.7ns (232 - 68150, 1118921 samples) rm_exit: avg 4716.0ns (12 - 150720, 1119477 samples) rm_intr: avg 1614.8ns (12 - 522436, 3850432 samples) showing a substantial reduction in the time spent per guest entry in the real-mode guest entry code, and smaller reductions in the real mode guest exit and interrupt handling times. (The test was to start the guest and boot Fedora 20 big-endian to the login prompt.) Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
Currently, the entry_exit_count field in the kvmppc_vcore struct contains two 8-bit counts, one of the threads that have started entering the guest, and one of the threads that have started exiting the guest. This changes it to an entry_exit_map field which contains two bitmaps of 8 bits each. The advantage of doing this is that it gives us a bitmap of which threads need to be signalled when exiting the guest. That means that we no longer need to use the trick of setting the HDEC to 0 to pull the other threads out of the guest, which led in some cases to a spurious HDEC interrupt on the next guest entry. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This arranges for threads that are napping due to their vcpu having ceded or due to not having a vcpu to wake up at the end of the guest's timeslice without having to be poked with an IPI. We do that by arranging for the decrementer to contain a value no greater than the number of timebase ticks remaining until the end of the timeslice. In the case of a thread with no vcpu, this number is in the hypervisor decrementer already. In the case of a ceded vcpu, we use the smaller of the HDEC value and the DEC value. Using the DEC like this when ceded means we need to save and restore the guest decrementer value around the nap. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
When running a multi-threaded guest and vcpu 0 in a virtual core is not running in the guest (i.e. it is busy elsewhere in the host), thread 0 of the physical core will switch the MMU to the guest and then go to nap mode in the code at kvm_do_nap. If the guest sends an IPI to thread 0 using the msgsndp instruction, that will wake up thread 0 and cause all the threads in the guest to exit to the host unnecessarily. To avoid the unnecessary exit, this arranges for the PECEDP bit to be cleared in this situation. When napping due to a H_CEDE from the guest, we still set PECEDP so that the thread will wake up on an IPI sent using msgsndp. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
We can tell when a secondary thread has finished running a guest by the fact that it clears its kvm_hstate.kvm_vcpu pointer, so there is no real need for the nap_count field in the kvmppc_vcore struct. This changes kvmppc_wait_for_nap to poll the kvm_hstate.kvm_vcpu pointers of the secondary threads rather than polling vc->nap_count. Besides reducing the size of the kvmppc_vcore struct by 8 bytes, this also means that we can tell which secondary threads have got stuck and thus print a more informative error message. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
Rather than calling cond_resched() in kvmppc_run_core() before doing the post-processing for the vcpus that we have just run (that is, calling kvmppc_handle_exit_hv(), kvmppc_set_timer(), etc.), we now do that post-processing before calling cond_resched(), and that post- processing is moved out into its own function, post_guest_process(). The reschedule point is now in kvmppc_run_vcpu() and we define a new vcore state, VCORE_PREEMPT, to indicate that that the vcore's runner task is runnable but not running. (Doing the reschedule with the vcore in VCORE_INACTIVE state would be bad because there are potentially other vcpus waiting for the runner in kvmppc_wait_for_exec() which then wouldn't get woken up.) Also, we make use of the handy cond_resched_lock() function, which unlocks and relocks vc->lock for us around the reschedule. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
* Remove unused kvmppc_vcore::n_busy field. * Remove setting of RMOR, since it was only used on PPC970 and the PPC970 KVM support has been removed. * Don't use r1 or r2 in setting the runlatch since they are conventionally reserved for other things; use r0 instead. * Streamline the code a little and remove the ext_interrupt_to_host label. * Add some comments about register usage. * hcall_try_real_mode doesn't need to be global, and can't be called from C code anyway. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
Previously, if kvmppc_run_core() was running a VCPU that needed a VPA update (i.e. one of its 3 virtual processor areas needed to be pinned in memory so the host real mode code can update it on guest entry and exit), we would drop the vcore lock and do the update there and then. Future changes will make it inconvenient to drop the lock, so instead we now remove it from the list of runnable VCPUs and wake up its VCPU task. This will have the effect that the VCPU task will exit kvmppc_run_vcpu(), go around the do loop in kvmppc_vcpu_run_hv(), and re-enter kvmppc_run_vcpu(), whereupon it will do the necessary call to kvmppc_update_vpas() and then rejoin the vcore. The one complication is that the runner VCPU (whose VCPU task is the current task) might be one of the ones that gets removed from the runnable list. In that case we just return from kvmppc_run_core() and let the code in kvmppc_run_vcpu() wake up another VCPU task to be the runner if necessary. This all means that the VCORE_STARTING state is no longer used, so we remove it. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This reads the timebase at various points in the real-mode guest entry/exit code and uses that to accumulate total, minimum and maximum time spent in those parts of the code. Currently these times are accumulated per vcpu in 5 parts of the code: * rm_entry - time taken from the start of kvmppc_hv_entry() until just before entering the guest. * rm_intr - time from when we take a hypervisor interrupt in the guest until we either re-enter the guest or decide to exit to the host. This includes time spent handling hcalls in real mode. * rm_exit - time from when we decide to exit the guest until the return from kvmppc_hv_entry(). * guest - time spend in the guest * cede - time spent napping in real mode due to an H_CEDE hcall while other threads in the same vcore are active. These times are exposed in debugfs in a directory per vcpu that contains a file called "timings". This file contains one line for each of the 5 timings above, with the name followed by a colon and 4 numbers, which are the count (number of times the code has been executed), the total time, the minimum time, and the maximum time, all in nanoseconds. The overhead of the extra code amounts to about 30ns for an hcall that is handled in real mode (e.g. H_SET_DABR), which is about 25%. Since production environments may not wish to incur this overhead, the new code is conditional on a new config symbol, CONFIG_KVM_BOOK3S_HV_EXIT_TIMING. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This creates a debugfs directory for each HV guest (assuming debugfs is enabled in the kernel config), and within that directory, a file by which the contents of the guest's HPT (hashed page table) can be read. The directory is named vmnnnn, where nnnn is the PID of the process that created the guest. The file is named "htab". This is intended to help in debugging problems in the host's management of guest memory. The contents of the file consist of a series of lines like this: 3f48 4000d032bf003505 0000000bd7ff1196 00000003b5c71196 The first field is the index of the entry in the HPT, the second and third are the HPT entry, so the third entry contains the real page number that is mapped by the entry if the entry's valid bit is set. The fourth field is the guest's view of the second doubleword of the entry, so it contains the guest physical address. (The format of the second through fourth fields are described in the Power ISA and also in arch/powerpc/include/asm/mmu-hash64.h.) Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Suresh Warrier 提交于
Add two counters to count how often we generate real-mode ICS resend and reject events. The counters provide some performance statistics that could be used in the future to consider if the real mode functions need further optimizing. The counters are displayed as part of IPC and ICP state provided by /sys/debug/kernel/powerpc/kvm* for each VM. Also added two counters that count (approximately) how many times we don't find an ICP or ICS we're looking for. These are not currently exposed through sysfs, but can be useful when debugging crashes. Signed-off-by: NSuresh Warrier <warrier@linux.vnet.ibm.com> Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Suresh Warrier 提交于
Interrupt-based hypercalls return H_TOO_HARD to inform KVM that it needs to switch to the host to complete the rest of hypercall function in virtual mode. This patch ports the virtual mode ICS/ICP reject and resend functions to be runnable in hypervisor real mode, thus avoiding the need to switch to the host to execute these functions in virtual mode. However, the hypercalls continue to return H_TOO_HARD for vcpu_wakeup and notify events - these events cannot be done in real mode and they will still need a switch to host virtual mode. There are sufficient differences between the real mode code and the virtual mode code for the ICS/ICP resend and reject functions that for now the code has been duplicated instead of sharing common code. In the future, we can look at creating common functions. Signed-off-by: NSuresh Warrier <warrier@linux.vnet.ibm.com> Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Suresh Warrier 提交于
Replaces the ICS mutex lock with a spin lock since we will be porting these routines to real mode. Note that we need to disable interrupts before we take the lock in anticipation of the fact that on the guest side, we are running in the context of a hard irq and interrupts are disabled (EE bit off) when the lock is acquired. Again, because we will be acquiring the lock in hypervisor real mode, we need to use an arch_spinlock_t instead of a normal spinlock here as we want to avoid running any lockdep code (which may not be safe to execute in real mode). Signed-off-by: NSuresh Warrier <warrier@linux.vnet.ibm.com> Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Suresh E. Warrier 提交于
Add counters to track number of times we switch from guest real mode to host virtual mode during an interrupt-related hyper call because the hypercall requires actions that cannot be completed in real mode. This will help when making optimizations that reduce guest-host transitions. It is safe to use an ordinary increment rather than an atomic operation because there is one ICP per virtual CPU and kvmppc_xics_rm_complete() only works on the ICP for the current VCPU. The counters are displayed as part of IPC and ICP state provided by /sys/debug/kernel/powerpc/kvm* for each VM. Signed-off-by: NSuresh Warrier <warrier@linux.vnet.ibm.com> Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Aneesh Kumar K.V 提交于
This adds helper routines for locking and unlocking HPTEs, and uses them in the rest of the code. We don't change any locking rules in this patch. Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Aneesh Kumar K.V 提交于
We don't support real-mode areas now that 970 support is removed. Remove the remaining details of rma from the code. Also rename rma_setup_done to hpte_setup_done to better reflect the changes. Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Michael Ellerman 提交于
Some PowerNV systems include a hardware random-number generator. This HWRNG is present on POWER7+ and POWER8 chips and is capable of generating one 64-bit random number every microsecond. The random numbers are produced by sampling a set of 64 unstable high-frequency oscillators and are almost completely entropic. PAPR defines an H_RANDOM hypercall which guests can use to obtain one 64-bit random sample from the HWRNG. This adds a real-mode implementation of the H_RANDOM hypercall. This hypercall was implemented in real mode because the latency of reading the HWRNG is generally small compared to the latency of a guest exit and entry for all the threads in the same virtual core. Userspace can detect the presence of the HWRNG and the H_RANDOM implementation by querying the KVM_CAP_PPC_HWRNG capability. The H_RANDOM hypercall implementation will only be invoked when the guest does an H_RANDOM hypercall if userspace first enables the in-kernel H_RANDOM implementation using the KVM_CAP_PPC_ENABLE_HCALL capability. Signed-off-by: NMichael Ellerman <michael@ellerman.id.au> Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 David Gibson 提交于
On POWER, storage caching is usually configured via the MMU - attributes such as cache-inhibited are stored in the TLB and the hashed page table. This makes correctly performing cache inhibited IO accesses awkward when the MMU is turned off (real mode). Some CPU models provide special registers to control the cache attributes of real mode load and stores but this is not at all consistent. This is a problem in particular for SLOF, the firmware used on KVM guests, which runs entirely in real mode, but which needs to do IO to load the kernel. To simplify this qemu implements two special hypercalls, H_LOGICAL_CI_LOAD and H_LOGICAL_CI_STORE which simulate a cache-inhibited load or store to a logical address (aka guest physical address). SLOF uses these for IO. However, because these are implemented within qemu, not the host kernel, these bypass any IO devices emulated within KVM itself. The simplest way to see this problem is to attempt to boot a KVM guest from a virtio-blk device with iothread / dataplane enabled. The iothread code relies on an in kernel implementation of the virtio queue notification, which is not triggered by the IO hcalls, and so the guest will stall in SLOF unable to load the guest OS. This patch addresses this by providing in-kernel implementations of the 2 hypercalls, which correctly scan the KVM IO bus. Any access to an address not handled by the KVM IO bus will cause a VM exit, hitting the qemu implementation as before. Note that a userspace change is also required, in order to enable these new hcall implementations with KVM_CAP_PPC_ENABLE_HCALL. Signed-off-by: NDavid Gibson <david@gibson.dropbear.id.au> [agraf: fix compilation] Signed-off-by: NAlexander Graf <agraf@suse.de>
-
- 08 4月, 2015 1 次提交
-
-
由 Arseny Solokha 提交于
Drop unused static procedure which doesn't have callers within its translation unit. It had been already removed independently in QEMU[1] from the OpenPIC implementation borrowed from the kernel. [1] https://lists.gnu.org/archive/html/qemu-devel/2014-06/msg01812.htmlSigned-off-by: NArseny Solokha <asolokha@kb.kras.ru> Cc: Alexander Graf <agraf@suse.de> Cc: Gleb Natapov <gleb@kernel.org> Cc: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <1424768706-23150-3-git-send-email-asolokha@kb.kras.ru> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 27 3月, 2015 2 次提交
-
-
由 Andre Przywara 提交于
iodev.h contains definitions for the kvm_io_bus framework. This is needed both by the generic KVM code in virt/kvm as well as by architecture specific code under arch/. Putting the header file in virt/kvm and using local includes in the architecture part seems at least dodgy to me, so let's move the file into include/kvm, so that a more natural "#include <kvm/iodev.h>" can be used by all of the code. This also solves a problem later when using struct kvm_io_device in arm_vgic.h. Fixing up the FSF address in the GPL header and a wrong include path on the way. Signed-off-by: NAndre Przywara <andre.przywara@arm.com> Acked-by: NChristoffer Dall <christoffer.dall@linaro.org> Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Reviewed-by: NMarcelo Tosatti <mtosatti@redhat.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
由 Nikolay Nikolaev 提交于
This is needed in e.g. ARM vGIC emulation, where the MMIO handling depends on the VCPU that does the access. Signed-off-by: NNikolay Nikolaev <n.nikolaev@virtualopensystems.com> Signed-off-by: NAndre Przywara <andre.przywara@arm.com> Acked-by: NPaolo Bonzini <pbonzini@redhat.com> Acked-by: NChristoffer Dall <christoffer.dall@linaro.org> Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com>
-
- 20 3月, 2015 3 次提交
-
-
由 Paul Mackerras 提交于
Commit 4a157d61 ("KVM: PPC: Book3S HV: Fix endianness of instruction obtained from HEIR register") had the side effect that we no longer reset vcpu->arch.last_inst to -1 on guest exit in the cases where the instruction is not fetched from the guest. This means that if instruction emulation turns out to be required in those cases, the host will emulate the wrong instruction, since vcpu->arch.last_inst will contain the last instruction that was emulated. This fixes it by making sure that vcpu->arch.last_inst is reset to -1 in those cases. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
The VPA (virtual processor area) is defined by PAPR and is therefore big-endian, so we need a be32_to_cpu when reading it in kvmppc_get_yield_count(). Without this, H_CONFER always fails on a little-endian host, causing SMP guests to waste time spinning on spinlocks. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
Currently, kvmppc_set_lpcr() has a spinlock around the whole function, and inside that does mutex_lock(&kvm->lock). It is not permitted to take a mutex while holding a spinlock, because the mutex_lock might call schedule(). In addition, this causes lockdep to warn about a lock ordering issue: ====================================================== [ INFO: possible circular locking dependency detected ] 3.18.0-kvm-04645-gdfea862-dirty #131 Not tainted ------------------------------------------------------- qemu-system-ppc/8179 is trying to acquire lock: (&kvm->lock){+.+.+.}, at: [<d00000000ecc1f54>] .kvmppc_set_lpcr+0xf4/0x1c0 [kvm_hv] but task is already holding lock: (&(&vcore->lock)->rlock){+.+...}, at: [<d00000000ecc1ea0>] .kvmppc_set_lpcr+0x40/0x1c0 [kvm_hv] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (&(&vcore->lock)->rlock){+.+...}: [<c000000000b3c120>] .mutex_lock_nested+0x80/0x570 [<d00000000ecc7a14>] .kvmppc_vcpu_run_hv+0xc4/0xe40 [kvm_hv] [<d00000000eb9f5cc>] .kvmppc_vcpu_run+0x2c/0x40 [kvm] [<d00000000eb9cb24>] .kvm_arch_vcpu_ioctl_run+0x54/0x160 [kvm] [<d00000000eb94478>] .kvm_vcpu_ioctl+0x4a8/0x7b0 [kvm] [<c00000000026cbb4>] .do_vfs_ioctl+0x444/0x770 [<c00000000026cfa4>] .SyS_ioctl+0xc4/0xe0 [<c000000000009264>] syscall_exit+0x0/0x98 -> #0 (&kvm->lock){+.+.+.}: [<c0000000000ff28c>] .lock_acquire+0xcc/0x1a0 [<c000000000b3c120>] .mutex_lock_nested+0x80/0x570 [<d00000000ecc1f54>] .kvmppc_set_lpcr+0xf4/0x1c0 [kvm_hv] [<d00000000ecc510c>] .kvmppc_set_one_reg_hv+0x4dc/0x990 [kvm_hv] [<d00000000eb9f234>] .kvmppc_set_one_reg+0x44/0x330 [kvm] [<d00000000eb9c9dc>] .kvm_vcpu_ioctl_set_one_reg+0x5c/0x150 [kvm] [<d00000000eb9ced4>] .kvm_arch_vcpu_ioctl+0x214/0x2c0 [kvm] [<d00000000eb940b0>] .kvm_vcpu_ioctl+0xe0/0x7b0 [kvm] [<c00000000026cbb4>] .do_vfs_ioctl+0x444/0x770 [<c00000000026cfa4>] .SyS_ioctl+0xc4/0xe0 [<c000000000009264>] syscall_exit+0x0/0x98 other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&(&vcore->lock)->rlock); lock(&kvm->lock); lock(&(&vcore->lock)->rlock); lock(&kvm->lock); *** DEADLOCK *** 2 locks held by qemu-system-ppc/8179: #0: (&vcpu->mutex){+.+.+.}, at: [<d00000000eb93f18>] .vcpu_load+0x28/0x90 [kvm] #1: (&(&vcore->lock)->rlock){+.+...}, at: [<d00000000ecc1ea0>] .kvmppc_set_lpcr+0x40/0x1c0 [kvm_hv] stack backtrace: CPU: 4 PID: 8179 Comm: qemu-system-ppc Not tainted 3.18.0-kvm-04645-gdfea862-dirty #131 Call Trace: [c000001a66c0f310] [c000000000b486ac] .dump_stack+0x88/0xb4 (unreliable) [c000001a66c0f390] [c0000000000f8bec] .print_circular_bug+0x27c/0x3d0 [c000001a66c0f440] [c0000000000fe9e8] .__lock_acquire+0x2028/0x2190 [c000001a66c0f5d0] [c0000000000ff28c] .lock_acquire+0xcc/0x1a0 [c000001a66c0f6a0] [c000000000b3c120] .mutex_lock_nested+0x80/0x570 [c000001a66c0f7c0] [d00000000ecc1f54] .kvmppc_set_lpcr+0xf4/0x1c0 [kvm_hv] [c000001a66c0f860] [d00000000ecc510c] .kvmppc_set_one_reg_hv+0x4dc/0x990 [kvm_hv] [c000001a66c0f8d0] [d00000000eb9f234] .kvmppc_set_one_reg+0x44/0x330 [kvm] [c000001a66c0f960] [d00000000eb9c9dc] .kvm_vcpu_ioctl_set_one_reg+0x5c/0x150 [kvm] [c000001a66c0f9f0] [d00000000eb9ced4] .kvm_arch_vcpu_ioctl+0x214/0x2c0 [kvm] [c000001a66c0faf0] [d00000000eb940b0] .kvm_vcpu_ioctl+0xe0/0x7b0 [kvm] [c000001a66c0fcb0] [c00000000026cbb4] .do_vfs_ioctl+0x444/0x770 [c000001a66c0fd90] [c00000000026cfa4] .SyS_ioctl+0xc4/0xe0 [c000001a66c0fe30] [c000000000009264] syscall_exit+0x0/0x98 This fixes it by moving the mutex_lock()/mutex_unlock() pair outside the spin-locked region. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
- 13 2月, 2015 1 次提交
-
-
由 Mel Gorman 提交于
Convert existing users of pte_numa and friends to the new helper. Note that the kernel is broken after this patch is applied until the other page table modifiers are also altered. This patch layout is to make review easier. Signed-off-by: NMel Gorman <mgorman@suse.de> Acked-by: NLinus Torvalds <torvalds@linux-foundation.org> Acked-by: NAneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Acked-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org> Tested-by: NSasha Levin <sasha.levin@oracle.com> Cc: Dave Jones <davej@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Rik van Riel <riel@redhat.com> Cc: Sasha Levin <sasha.levin@oracle.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 06 2月, 2015 1 次提交
-
-
由 Paolo Bonzini 提交于
This patch introduces a new module parameter for the KVM module; when it is present, KVM attempts a bit of polling on every HLT before scheduling itself out via kvm_vcpu_block. This parameter helps a lot for latency-bound workloads---in particular I tested it with O_DSYNC writes with a battery-backed disk in the host. In this case, writes are fast (because the data doesn't have to go all the way to the platters) but they cannot be merged by either the host or the guest. KVM's performance here is usually around 30% of bare metal, or 50% if you use cache=directsync or cache=writethrough (these parameters avoid that the guest sends pointless flush requests, and at the same time they are not slow because of the battery-backed cache). The bad performance happens because on every halt the host CPU decides to halt itself too. When the interrupt comes, the vCPU thread is then migrated to a new physical CPU, and in general the latency is horrible because the vCPU thread has to be scheduled back in. With this patch performance reaches 60-65% of bare metal and, more important, 99% of what you get if you use idle=poll in the guest. This means that the tunable gets rid of this particular bottleneck, and more work can be done to improve performance in the kernel or QEMU. Of course there is some price to pay; every time an otherwise idle vCPUs is interrupted by an interrupt, it will poll unnecessarily and thus impose a little load on the host. The above results were obtained with a mostly random value of the parameter (500000), and the load was around 1.5-2.5% CPU usage on one of the host's core for each idle guest vCPU. The patch also adds a new stat, /sys/kernel/debug/kvm/halt_successful_poll, that can be used to tune the parameter. It counts how many HLT instructions received an interrupt during the polling period; each successful poll avoids that Linux schedules the VCPU thread out and back in, and may also avoid a likely trip to C1 and back for the physical CPU. While the VM is idle, a Linux 4 VCPU VM halts around 10 times per second. Of these halts, almost all are failed polls. During the benchmark, instead, basically all halts end within the polling period, except a more or less constant stream of 50 per second coming from vCPUs that are not running the benchmark. The wasted time is thus very low. Things may be slightly different for Windows VMs, which have a ~10 ms timer tick. The effect is also visible on Marcelo's recently-introduced latency test for the TSC deadline timer. Though of course a non-RT kernel has awful latency bounds, the latency of the timer is around 8000-10000 clock cycles compared to 20000-120000 without setting halt_poll_ns. For the TSC deadline timer, thus, the effect is both a smaller average latency and a smaller variance. Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 23 1月, 2015 1 次提交
-
-
由 Dominik Dingel 提交于
The return value of kvm_arch_vcpu_postcreate is not checked in its caller. This is okay, because only x86 provides vcpu_postcreate right now and it could only fail if vcpu_load failed. But that is not possible during KVM_CREATE_VCPU (kvm_arch_vcpu_load is void, too), so just get rid of the unchecked return value. Signed-off-by: NDominik Dingel <dingel@linux.vnet.ibm.com> Acked-by: NCornelia Huck <cornelia.huck@de.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
- 19 1月, 2015 1 次提交
-
-
由 Christian Borntraeger 提交于
ACCESS_ONCE does not work reliably on non-scalar types. For example gcc 4.6 and 4.7 might remove the volatile tag for such accesses during the SRA (scalar replacement of aggregates) step (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58145) Change the ppc/kvm code to replace ACCESS_ONCE with READ_ONCE. Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com> Acked-by: NAlexander Graf <agraf@suse.de>
-
- 07 1月, 2015 1 次提交
-
-
由 Pranith Kumar 提交于
SRCU is not necessary to be compiled by default in all cases. For tinification efforts not compiling SRCU unless necessary is desirable. The current patch tries to make compiling SRCU optional by introducing a new Kconfig option CONFIG_SRCU which is selected when any of the components making use of SRCU are selected. If we do not select CONFIG_SRCU, srcu.o will not be compiled at all. text data bss dec hex filename 2007 0 0 2007 7d7 kernel/rcu/srcu.o Size of arch/powerpc/boot/zImage changes from text data bss dec hex filename 831552 64180 23944 919676 e087c arch/powerpc/boot/zImage : before 829504 64180 23952 917636 e0084 arch/powerpc/boot/zImage : after so the savings are about ~2000 bytes. Signed-off-by: NPranith Kumar <bobby.prani@gmail.com> CC: Paul E. McKenney <paulmck@linux.vnet.ibm.com> CC: Josh Triplett <josh@joshtriplett.org> CC: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> [ paulmck: resolve conflict due to removal of arch/ia64/kvm/Kconfig. ]
-
- 29 12月, 2014 1 次提交
-
-
由 Michael Ellerman 提交于
We have two arrays in kvm_host_state that contain register values for the PMU. Currently we only create an asm-offsets symbol for the base of the arrays, and do the array offset in the assembly code. Creating an asm-offsets symbol for each field individually makes the code much nicer to read, particularly for the MMCRx/SIxR/SDAR fields, and might have helped us notice the recent double restore bug we had in this code. Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au> Acked-by: NAlexander Graf <agraf@suse.de>
-
- 19 12月, 2014 1 次提交
-
-
由 Alexander Graf 提交于
Commit 69111bac ("powerpc: Replace __get_cpu_var uses") introduced compile breakage to the e500 target by introducing invalid automatically created C syntax. Fix up the breakage and make the code compile again. Signed-off-by: NAlexander Graf <agraf@suse.de> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 18 12月, 2014 1 次提交
-
-
由 Anton Blanchard 提交于
The in-kernel XICS emulation is faster than doing it all in QEMU and it has got a lot of testing, so enable it by default. Signed-off-by: NAnton Blanchard <anton@samba.org> Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
- 17 12月, 2014 6 次提交
-
-
由 Sam Bobroff 提交于
Currently the H_CONFER hcall is implemented in kernel virtual mode, meaning that whenever a guest thread does an H_CONFER, all the threads in that virtual core have to exit the guest. This is bad for performance because it interrupts the other threads even if they are doing useful work. The H_CONFER hcall is called by a guest VCPU when it is spinning on a spinlock and it detects that the spinlock is held by a guest VCPU that is currently not running on a physical CPU. The idea is to give this VCPU's time slice to the holder VCPU so that it can make progress towards releasing the lock. To avoid having the other threads exit the guest unnecessarily, we add a real-mode implementation of H_CONFER that checks whether the other threads are doing anything. If all the other threads are idle (i.e. in H_CEDE) or trying to confer (i.e. in H_CONFER), it returns H_TOO_HARD which causes a guest exit and allows the H_CONFER to be handled in virtual mode. Otherwise it spins for a short time (up to 10 microseconds) to give other threads the chance to observe that this thread is trying to confer. The spin loop also terminates when any thread exits the guest or when all other threads are idle or trying to confer. If the timeout is reached, the H_CONFER returns H_SUCCESS. In this case the guest VCPU will recheck the spinlock word and most likely call H_CONFER again. This also improves the implementation of the H_CONFER virtual mode handler. If the VCPU is part of a virtual core (vcore) which is runnable, there will be a 'runner' VCPU which has taken responsibility for running the vcore. In this case we yield to the runner VCPU rather than the target VCPU. We also introduce a check on the target VCPU's yield count: if it differs from the yield count passed to H_CONFER, the target VCPU has run since H_CONFER was called and may have already released the lock. This check is required by PAPR. Signed-off-by: NSam Bobroff <sam.bobroff@au1.ibm.com> Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
There are two ways in which a guest instruction can be obtained from the guest in the guest exit code in book3s_hv_rmhandlers.S. If the exit was caused by a Hypervisor Emulation interrupt (i.e. an illegal instruction), the offending instruction is in the HEIR register (Hypervisor Emulation Instruction Register). If the exit was caused by a load or store to an emulated MMIO device, we load the instruction from the guest by turning data relocation on and loading the instruction with an lwz instruction. Unfortunately, in the case where the guest has opposite endianness to the host, these two methods give results of different endianness, but both get put into vcpu->arch.last_inst. The HEIR value has been loaded using guest endianness, whereas the lwz will load the instruction using host endianness. The rest of the code that uses vcpu->arch.last_inst assumes it was loaded using host endianness. To fix this, we define a new vcpu field to store the HEIR value. Then, in kvmppc_handle_exit_hv(), we transfer the value from this new field to vcpu->arch.last_inst, doing a byte-swap if the guest and host endianness differ. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
This removes the code that was added to enable HV KVM to work on PPC970 processors. The PPC970 is an old CPU that doesn't support virtualizing guest memory. Removing PPC970 support also lets us remove the code for allocating and managing contiguous real-mode areas, the code for the !kvm->arch.using_mmu_notifiers case, the code for pinning pages of guest memory when first accessed and keeping track of which pages have been pinned, and the code for handling H_ENTER hypercalls in virtual mode. Book3S HV KVM is now supported only on POWER7 and POWER8 processors. The KVM_CAP_PPC_RMA capability now always returns 0. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Suresh E. Warrier 提交于
This patch adds trace points in the guest entry and exit code and also for exceptions handled by the host in kernel mode - hypercalls and page faults. The new events are added to /sys/kernel/debug/tracing/events under a new subsystem called kvm_hv. Acked-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NSuresh Warrier <warrier@linux.vnet.ibm.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Paul Mackerras 提交于
Currently the calculations of stolen time for PPC Book3S HV guests uses fields in both the vcpu struct and the kvmppc_vcore struct. The fields in the kvmppc_vcore struct are protected by the vcpu->arch.tbacct_lock of the vcpu that has taken responsibility for running the virtual core. This works correctly but confuses lockdep, because it sees that the code takes the tbacct_lock for a vcpu in kvmppc_remove_runnable() and then takes another vcpu's tbacct_lock in vcore_stolen_time(), and it thinks there is a possibility of deadlock, causing it to print reports like this: ============================================= [ INFO: possible recursive locking detected ] 3.18.0-rc7-kvm-00016-g8db4bc6 #89 Not tainted --------------------------------------------- qemu-system-ppc/6188 is trying to acquire lock: (&(&vcpu->arch.tbacct_lock)->rlock){......}, at: [<d00000000ecb1fe8>] .vcore_stolen_time+0x48/0xd0 [kvm_hv] but task is already holding lock: (&(&vcpu->arch.tbacct_lock)->rlock){......}, at: [<d00000000ecb25a0>] .kvmppc_remove_runnable.part.3+0x30/0xd0 [kvm_hv] other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&(&vcpu->arch.tbacct_lock)->rlock); lock(&(&vcpu->arch.tbacct_lock)->rlock); *** DEADLOCK *** May be due to missing lock nesting notation 3 locks held by qemu-system-ppc/6188: #0: (&vcpu->mutex){+.+.+.}, at: [<d00000000eb93f98>] .vcpu_load+0x28/0xe0 [kvm] #1: (&(&vcore->lock)->rlock){+.+...}, at: [<d00000000ecb41b0>] .kvmppc_vcpu_run_hv+0x530/0x1530 [kvm_hv] #2: (&(&vcpu->arch.tbacct_lock)->rlock){......}, at: [<d00000000ecb25a0>] .kvmppc_remove_runnable.part.3+0x30/0xd0 [kvm_hv] stack backtrace: CPU: 40 PID: 6188 Comm: qemu-system-ppc Not tainted 3.18.0-rc7-kvm-00016-g8db4bc6 #89 Call Trace: [c000000b2754f3f0] [c000000000b31b6c] .dump_stack+0x88/0xb4 (unreliable) [c000000b2754f470] [c0000000000faeb8] .__lock_acquire+0x1878/0x2190 [c000000b2754f600] [c0000000000fbf0c] .lock_acquire+0xcc/0x1a0 [c000000b2754f6d0] [c000000000b2954c] ._raw_spin_lock_irq+0x4c/0x70 [c000000b2754f760] [d00000000ecb1fe8] .vcore_stolen_time+0x48/0xd0 [kvm_hv] [c000000b2754f7f0] [d00000000ecb25b4] .kvmppc_remove_runnable.part.3+0x44/0xd0 [kvm_hv] [c000000b2754f880] [d00000000ecb43ec] .kvmppc_vcpu_run_hv+0x76c/0x1530 [kvm_hv] [c000000b2754f9f0] [d00000000eb9f46c] .kvmppc_vcpu_run+0x2c/0x40 [kvm] [c000000b2754fa60] [d00000000eb9c9a4] .kvm_arch_vcpu_ioctl_run+0x54/0x160 [kvm] [c000000b2754faf0] [d00000000eb94538] .kvm_vcpu_ioctl+0x498/0x760 [kvm] [c000000b2754fcb0] [c000000000267eb4] .do_vfs_ioctl+0x444/0x770 [c000000b2754fd90] [c0000000002682a4] .SyS_ioctl+0xc4/0xe0 [c000000b2754fe30] [c0000000000092e4] syscall_exit+0x0/0x98 In order to make the locking easier to analyse, we change the code to use a spinlock in the kvmppc_vcore struct to protect the stolen_tb and preempt_tb fields. This lock needs to be an irq-safe lock since it is used in the kvmppc_core_vcpu_load_hv() and kvmppc_core_vcpu_put_hv() functions, which are called with the scheduler rq lock held, which is an irq-safe lock. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Rickard Strandqvist 提交于
Remove the function inst_set_field() that is not used anywhere. This was partially found by using a static code analysis program called cppcheck. Signed-off-by: NRickard Strandqvist <rickard_strandqvist@spectrumdigital.se> Signed-off-by: NAlexander Graf <agraf@suse.de>
-