- 02 5月, 2018 4 次提交
-
-
由 Peter Zijlstra 提交于
AFAICS the hotplug code no longer uses this function. Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: len.brown@intel.com Cc: rjw@rjwysocki.net Cc: diego.viola@gmail.com Cc: rui.zhang@intel.com Link: https://lkml.kernel.org/r/20180430100344.656525644@infradead.org
-
由 Peter Zijlstra 提交于
When a registered clocksource gets marked unstable the watchdog_kthread will de-rate and re-select the clocksource. Ensure it also de-rates when getting called on an unregistered clocksource. Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: len.brown@intel.com Cc: rjw@rjwysocki.net Cc: diego.viola@gmail.com Cc: rui.zhang@intel.com Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20180430100344.594904898@infradead.org
-
由 Peter Zijlstra 提交于
A number of places relies on list_empty(&cs->wd_list), however the list_head does not get initialized. Do so upon registration, such that thereafter it is possible to rely on list_empty() correctly reflecting the list membership status. Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Tested-by: NDiego Viola <diego.viola@gmail.com> Reviewed-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: stable@vger.kernel.org Cc: len.brown@intel.com Cc: rjw@rjwysocki.net Cc: rui.zhang@intel.com Link: https://lkml.kernel.org/r/20180430100344.472662715@infradead.org
-
由 Peter Zijlstra 提交于
Because of how the code flips between tsc-early and tsc clocksources it might need to mark one or both unstable. The current code in mark_tsc_unstable() only worked because previously it registered the tsc clocksource once and then never touched it. Since it now unregisters the tsc-early clocksource, it needs to know if a clocksource got unregistered and the current cs->mult test doesn't work for that. Instead use list_empty(&cs->list) to test for registration. Furthermore, since clocksource_mark_unstable() needs to place the cs on the wd_list, it links the cs->list and cs->wd_list serialization. It must not see a clocsource registered (!empty cs->list) but already past dequeue_watchdog(). So place {en,de}queue{,_watchdog}() under the same lock. Provided cs->list is initialized to empty, this then allows us to unconditionally use clocksource_mark_unstable(), regardless of the registration state. Fixes: aa83c457 ("x86/tsc: Introduce early tsc clocksource") Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: NDiego Viola <diego.viola@gmail.com> Cc: len.brown@intel.com Cc: rjw@rjwysocki.net Cc: diego.viola@gmail.com Cc: rui.zhang@intel.com Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20180502135312.GS12217@hirez.programming.kicks-ass.net
-
- 26 4月, 2018 2 次提交
-
-
由 Thomas Gleixner 提交于
Revert commits 92af4dcb ("tracing: Unify the "boot" and "mono" tracing clocks") 127bfa5f ("hrtimer: Unify MONOTONIC and BOOTTIME clock behavior") 7250a404 ("posix-timers: Unify MONOTONIC and BOOTTIME clock behavior") d6c7270e ("timekeeping: Remove boot time specific code") f2d6fdbf ("Input: Evdev - unify MONOTONIC and BOOTTIME clock behavior") d6ed449a ("timekeeping: Make the MONOTONIC clock behave like the BOOTTIME clock") 72199320 ("timekeeping: Add the new CLOCK_MONOTONIC_ACTIVE clock") As stated in the pull request for the unification of CLOCK_MONOTONIC and CLOCK_BOOTTIME, it was clear that we might have to revert the change. As reported by several folks systemd and other applications rely on the documented behaviour of CLOCK_MONOTONIC on Linux and break with the above changes. After resume daemons time out and other timeout related issues are observed. Rafael compiled this list: * systemd kills daemons on resume, after >WatchdogSec seconds of suspending (Genki Sky). [Verified that that's because systemd uses CLOCK_MONOTONIC and expects it to not include the suspend time.] * systemd-journald misbehaves after resume: systemd-journald[7266]: File /var/log/journal/016627c3c4784cd4812d4b7e96a34226/system.journal corrupted or uncleanly shut down, renaming and replacing. (Mike Galbraith). * NetworkManager reports "networking disabled" and networking is broken after resume 50% of the time (Pavel). [May be because of systemd.] * MATE desktop dims the display and starts the screensaver right after system resume (Pavel). * Full system hang during resume (me). [May be due to systemd or NM or both.] That happens on debian and open suse systems. It's sad, that these problems were neither catched in -next nor by those folks who expressed interest in this change. Reported-by: NRafael J. Wysocki <rjw@rjwysocki.net> Reported-by: Genki Sky <sky@genki.is>, Reported-by: NPavel Machek <pavel@ucw.cz> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com> Cc: John Stultz <john.stultz@linaro.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kevin Easton <kevin@guarana.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mark Salyzyn <salyzyn@android.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org>
-
由 Thomas Gleixner 提交于
Kaike reported that in tests rdma hrtimers occasionaly stopped working. He did great debugging, which provided enough context to decode the problem. CPU 3 CPU 2 idle start sched_timer expires = 712171000000 queue->next = sched_timer start rdmavt timer. expires = 712172915662 lock(baseof(CPU3)) tick_nohz_stop_tick() tick = 716767000000 timerqueue_add(tmr) hrtimer_set_expires(sched_timer, tick); sched_timer->expires = 716767000000 <---- FAIL if (tmr->expires < queue->next->expires) hrtimer_start(sched_timer) queue->next = tmr; lock(baseof(CPU3)) unlock(baseof(CPU3)) timerqueue_remove() timerqueue_add() ts->sched_timer is queued and queue->next is pointing to it, but then ts->sched_timer.expires is modified. This not only corrupts the ordering of the timerqueue RB tree, it also makes CPU2 see the new expiry time of timerqueue->next->expires when checking whether timerqueue->next needs to be updated. So CPU2 sees that the rdma timer is earlier than timerqueue->next and sets the rdma timer as new next. Depending on whether it had also seen the new time at RB tree enqueue, it might have queued the rdma timer at the wrong place and then after removing the sched_timer the RB tree is completely hosed. The problem was introduced with a commit which tried to solve inconsistency between the hrtimer in the tick_sched data and the underlying hardware clockevent. It split out hrtimer_set_expires() to store the new tick time in both the NOHZ and the NOHZ + HIGHRES case, but missed the fact that in the NOHZ + HIGHRES case the hrtimer might still be queued. Use hrtimer_start(timer, tick...) for the NOHZ + HIGHRES case which sets timer->expires after canceling the timer and move the hrtimer_set_expires() invocation into the NOHZ only code path which is not affected as it merily uses the hrtimer as next event storage so code pathes can be shared with the NOHZ + HIGHRES case. Fixes: d4af6d93 ("nohz: Fix spurious warning when hrtimer and clockevent get out of sync") Reported-by: N"Wan Kaike" <kaike.wan@intel.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Acked-by: NFrederic Weisbecker <frederic@kernel.org> Cc: "Marciniszyn Mike" <mike.marciniszyn@intel.com> Cc: Anna-Maria Gleixner <anna-maria@linutronix.de> Cc: linux-rdma@vger.kernel.org Cc: "Dalessandro Dennis" <dennis.dalessandro@intel.com> Cc: "Fleck John" <john.fleck@intel.com> Cc: stable@vger.kernel.org Cc: Peter Zijlstra <peterz@infradead.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: "Weiny Ira" <ira.weiny@intel.com> Cc: "linux-rdma@vger.kernel.org" Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1804241637390.1679@nanos.tec.linutronix.de Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1804242119210.1597@nanos.tec.linutronix.de
-
- 19 4月, 2018 6 次提交
-
-
由 Deepa Dinamani 提交于
Change over clock_nanosleep syscalls to use y2038 safe __kernel_timespec times. This will enable changing over of these syscalls to use new y2038 safe syscalls when the architectures define the CONFIG_64BIT_TIME. Note that nanosleep syscall is deprecated and does not have a plan for making it y2038 safe. But, the syscall should work as before on 64 bit machines and on 32 bit machines, the syscall works correctly until y2038 as before using the existing compat syscall version. There is no new syscall for supporting 64 bit time_t on 32 bit architectures. Cc: linux-api@vger.kernel.org Signed-off-by: NDeepa Dinamani <deepa.kernel@gmail.com> Signed-off-by: NArnd Bergmann <arnd@arndb.de>
-
由 Deepa Dinamani 提交于
Change over clock_settime, clock_gettime and clock_getres syscalls to use __kernel_timespec times. This will enable changing over of these syscalls to use new y2038 safe syscalls when the architectures define the CONFIG_64BIT_TIME. Cc: linux-api@vger.kernel.org Signed-off-by: NDeepa Dinamani <deepa.kernel@gmail.com> Signed-off-by: NArnd Bergmann <arnd@arndb.de>
-
由 Deepa Dinamani 提交于
get/put_timespec64() interfaces will eventually be used for conversions between the new y2038 safe struct __kernel_timespec and struct timespec64. The new y2038 safe syscalls have a common entry for native and compat interfaces. On compat interfaces, the high order bits of nanoseconds should be zeroed out. This is because the application code or the libc do not guarantee zeroing of these. If used without zeroing, kernel might be at risk of using timespec values incorrectly. Note that clearing of bits is dependent on CONFIG_64BIT_TIME for now. This is until COMPAT_USE_64BIT_TIME has been handled correctly. x86 will be the first architecture that will use the CONFIG_64BIT_TIME. Signed-off-by: NDeepa Dinamani <deepa.kernel@gmail.com> Signed-off-by: NArnd Bergmann <arnd@arndb.de>
-
由 Deepa Dinamani 提交于
clock_gettime, clock_settime, clock_getres and clock_nanosleep compat syscalls are also repurposed to provide backward compatibility to support 32 bit time_t on 32 bit systems. Note that nanosleep compat syscall will also be treated the same way as the above syscalls as it shares common handler functions with clock_nanosleep. But, there is no plan to provide y2038 safe solution for nanosleep. Signed-off-by: NDeepa Dinamani <deepa.kernel@gmail.com> Signed-off-by: NArnd Bergmann <arnd@arndb.de>
-
由 Deepa Dinamani 提交于
These functions are used in the repurposed compat syscalls to provide backward compatibility for using 32 bit time_t on 32 bit systems. Signed-off-by: NDeepa Dinamani <deepa.kernel@gmail.com> Signed-off-by: NArnd Bergmann <arnd@arndb.de>
-
由 Laura Abbott 提交于
Commit a9445e47 ("posix-cpu-timers: Make set_process_cpu_timer() more robust") moved the check into the 'if' statement. Unfortunately, it did so on the right side of an && which means that it may get short circuited and never evaluated. This is easily reproduced with: $ cat loop.c void main() { struct rlimit res; /* set the CPU time limit */ getrlimit(RLIMIT_CPU,&res); res.rlim_cur = 2; res.rlim_max = 2; setrlimit(RLIMIT_CPU,&res); while (1); } Which will hang forever instead of being killed. Fix this by pulling the evaluation out of the if statement but checking the return value instead. Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1568337 Fixes: a9445e47 ("posix-cpu-timers: Make set_process_cpu_timer() more robust") Signed-off-by: NLaura Abbott <labbott@redhat.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Cc: "Max R . P . Grossmann" <m@max.pm> Cc: John Stultz <john.stultz@linaro.org> Link: https://lkml.kernel.org/r/20180417215742.2521-1-labbott@redhat.com
-
- 17 4月, 2018 2 次提交
-
-
由 Baolin Wang 提交于
The __current_kernel_time() function based on 'struct timespec' is no longer recommended for new code, and the only user of this function has been replaced by commit 6909e29f ("kdb: use __ktime_get_real_seconds instead of __current_kernel_time"). Remove the obsolete interface. Signed-off-by: NBaolin Wang <baolin.wang@linaro.org> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: arnd@arndb.de Cc: sboyd@kernel.org Cc: broonie@kernel.org Cc: john.stultz@linaro.org Link: https://lkml.kernel.org/r/1a9dbea7ee2cda7efe9ed330874075cf17fdbff6.1523596316.git.baolin.wang@linaro.org
-
由 Geert Uytterhoeven 提交于
Convert the clockevents driver from old-style printk() to pr_info() and pr_cont(), to fix split kernel messages like below: Clockevents: could not switch to one-shot mode: dummy_timer is not functional. Signed-off-by: NGeert Uytterhoeven <geert+renesas@glider.be> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Frederic Weisbecker <fweisbec@gmail.com> Link: https://lkml.kernel.org/r/1522942018-14471-1-git-send-email-geert%2Brenesas@glider.be
-
- 10 4月, 2018 1 次提交
-
-
由 Arnd Bergmann 提交于
The use of bitfields seems to confuse gcc, leading to a false-positive warning in all compiler versions: kernel/time/tick-sched.c: In function 'tick_nohz_idle_exit': kernel/time/tick-sched.c:538:2: error: 'now' may be used uninitialized in this function [-Werror=maybe-uninitialized] This introduces a temporary variable to track the flags so gcc doesn't have to evaluate twice, eliminating the code path that leads to the warning. Link: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85301 Fixes: 1cae544d42d2 ("nohz: Gather tick_sched booleans under a common flag field") Signed-off-by: NArnd Bergmann <arnd@arndb.de> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 09 4月, 2018 5 次提交
-
-
由 Rafael J. Wysocki 提交于
Use timerqueue_iterate_next() to get to the next timer in __hrtimer_next_event_base() without browsing the timerqueue details diredctly. No intentional changes in functionality. Suggested-by: NFrederic Weisbecker <frederic@kernel.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Rafael J. Wysocki 提交于
Move the code setting ts->got_idle_tick into tick_sched_do_timer() to avoid code duplication. No intentional changes in functionality. Suggested-by: NFrederic Weisbecker <frederic@kernel.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: NFrederic Weisbecker <frederic@kernel.org>
-
由 Frederic Weisbecker 提交于
Optimize the space and leave plenty of room for further flags. Signed-off-by: NFrederic Weisbecker <frederic@kernel.org> [ rjw: Do not use __this_cpu_read() to access tick_stopped and add got_idle_tick to avoid overloading inidle ] Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Rafael J. Wysocki 提交于
If the tick isn't stopped, the target residency of the state selected by the menu governor may be greater than the actual time to the next tick and that means lost energy. To avoid that, make tick_nohz_get_sleep_length() return the current time to the next event (before stopping the tick) in addition to the estimated one via an extra pointer argument and make menu_select() use that value to refine the state selection when necessary. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
-
由 Rafael J. Wysocki 提交于
In order to address the issue with short idle duration predictions by the idle governor after the scheduler tick has been stopped, reorder the code in cpuidle_idle_call() so that the governor idle state selection runs before tick_nohz_idle_go_idle() and use the "nohz" hint returned by cpuidle_select() to decide whether or not to stop the tick. This isn't straightforward, because menu_select() invokes tick_nohz_get_sleep_length() to get the time to the next timer event and the number returned by the latter comes from __tick_nohz_idle_stop_tick(). Fortunately, however, it is possible to compute that number without actually stopping the tick and with the help of the existing code. Namely, tick_nohz_get_sleep_length() can be made call tick_nohz_next_event(), introduced earlier, to get the time to the next non-highres timer event. If that happens, tick_nohz_next_event() need not be called by __tick_nohz_idle_stop_tick() again. If it turns out that the scheduler tick cannot be stopped going forward or the next timer event is too close for the tick to be stopped, tick_nohz_get_sleep_length() can simply return the time to the next event currently programmed into the corresponding clock event device. In addition to knowing the return value of tick_nohz_next_event(), however, tick_nohz_get_sleep_length() needs to know the time to the next highres timer event, but with the scheduler tick timer excluded, which can be computed with the help of hrtimer_get_next_event(). That minimum of that number and the tick_nohz_next_event() return value is the total time to the next timer event with the assumption that the tick will be stopped. It can be returned to the idle governor which can use it for predicting idle duration (under the assumption that the tick will be stopped) and deciding whether or not it makes sense to stop the tick before putting the CPU into the selected idle state. With the above, the sleep_length field in struct tick_sched is not necessary any more, so drop it. Link: https://bugzilla.kernel.org/show_bug.cgi?id=199227Reported-by: NDoug Smythies <dsmythies@telus.net> Reported-by: NThomas Ilsche <thomas.ilsche@tu-dresden.de> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: NFrederic Weisbecker <frederic@kernel.org>
-
- 08 4月, 2018 2 次提交
-
-
由 Rafael J. Wysocki 提交于
The next set of changes will need to compute the time to the next hrtimer event over all hrtimers except for the scheduler tick one. To that end introduce a new helper function, hrtimer_next_event_without(), for computing the time until the next hrtimer event over all timers except for one and modify the underlying code in __hrtimer_next_event_base() to prepare it for being called by that new function. No intentional changes in functionality. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: NFrederic Weisbecker <frederic@kernel.org>
-
由 Rafael J. Wysocki 提交于
In order to address the issue with short idle duration predictions by the idle governor after the scheduler tick has been stopped, split tick_nohz_stop_sched_tick() into two separate routines, one computing the time to the next timer event and the other simply stopping the tick when the time to the next timer event is known. Prepare these two routines to be called separately, as one of them will be called by the idle governor in the cpuidle_select() code path after subsequent changes. Update the former callers of tick_nohz_stop_sched_tick() to use the new routines, tick_nohz_next_event() and tick_nohz_stop_tick(), instead of it and move the updates of the sleep_length field in struct tick_sched into __tick_nohz_idle_stop_tick() as it doesn't need to be updated anywhere else. There should be no intentional visible changes in functionality resulting from this change. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: NFrederic Weisbecker <frederic@kernel.org>
-
- 06 4月, 2018 4 次提交
-
-
由 Rafael J. Wysocki 提交于
Add a new pointer argument to cpuidle_select() and to the ->select cpuidle governor callback to allow a boolean value indicating whether or not the tick should be stopped before entering the selected state to be returned from there. Make the ladder governor ignore that pointer (to preserve its current behavior) and make the menu governor return 'false" through it if: (1) the idle exit latency is constrained at 0, or (2) the selected state is a polling one, or (3) the expected idle period duration is within the tick period range. In addition to that, the correction factor computations in the menu governor need to take the possibility that the tick may not be stopped into account to avoid artificially small correction factor values. To that end, add a mechanism to record tick wakeups, as suggested by Peter Zijlstra, and use it to modify the menu_update() behavior when tick wakeup occurs. Namely, if the CPU is woken up by the tick and the return value of tick_nohz_get_sleep_length() is not within the tick boundary, the predicted idle duration is likely too short, so make menu_update() try to compensate for that by updating the governor statistics as though the CPU was idle for a long time. Since the value returned through the new argument pointer of cpuidle_select() is not used by its caller yet, this change by itself is not expected to alter the functionality of the code. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
-
由 Rafael J. Wysocki 提交于
Since the subsequent changes will need a TICK_USEC definition analogous to TICK_NSEC, rename the existing TICK_USEC as USER_TICK_USEC, update its users and redefine TICK_USEC accordingly. Suggested-by: NPeter Zijlstra <peterz@infradead.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: NFrederic Weisbecker <frederic@kernel.org>
-
由 Rafael J. Wysocki 提交于
Push the decision whether or not to stop the tick somewhat deeper into the idle loop. Stopping the tick upfront leads to unpleasant outcomes in case the idle governor doesn't agree with the nohz code on the duration of the upcoming idle period. Specifically, if the tick has been stopped and the idle governor predicts short idle, the situation is bad regardless of whether or not the prediction is accurate. If it is accurate, the tick has been stopped unnecessarily which means excessive overhead. If it is not accurate, the CPU is likely to spend too much time in the (shallow, because short idle has been predicted) idle state selected by the governor [1]. As the first step towards addressing this problem, change the code to make the tick stopping decision inside of the loop in do_idle(). In particular, do not stop the tick in the cpu_idle_poll() code path. Also don't do that in tick_nohz_irq_exit() which doesn't really have enough information on whether or not to stop the tick. Link: https://marc.info/?l=linux-pm&m=150116085925208&w=2 # [1] Link: https://tu-dresden.de/zih/forschung/ressourcen/dateien/projekte/haec/powernightmares.pdfSuggested-by: NFrederic Weisbecker <frederic@kernel.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: NFrederic Weisbecker <frederic@kernel.org> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
-
由 Rafael J. Wysocki 提交于
Prepare the scheduler tick code for reworking the idle loop to avoid stopping the tick in some cases. The idea is to split the nohz idle entry call to decouple the idle time stats accounting and preparatory work from the actual tick stop code, in order to later be able to delay the tick stop once we reach more power-knowledgeable callers. Move away the tick_nohz_start_idle() invocation from __tick_nohz_idle_enter(), rename the latter to __tick_nohz_idle_stop_tick() and define tick_nohz_idle_stop_tick() as a wrapper around it for calling it from the outside. Make tick_nohz_idle_enter() only call tick_nohz_start_idle() instead of calling the entire __tick_nohz_idle_enter(), add another wrapper disabling and enabling interrupts around tick_nohz_idle_stop_tick() and make the current callers of tick_nohz_idle_enter() call it too to retain their current functionality. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: NFrederic Weisbecker <frederic@kernel.org> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
-
- 05 4月, 2018 1 次提交
-
-
由 Dominik Brodowski 提交于
It may be useful for an architecture to override the definitions of the COMPAT_SYSCALL_DEFINE0() and __COMPAT_SYSCALL_DEFINEx() macros in <linux/compat.h>, in particular to use a different calling convention for syscalls. This patch provides a mechanism to do so, based on the previously introduced CONFIG_ARCH_HAS_SYSCALL_WRAPPER. If it is enabled, <asm/sycall_wrapper.h> is included in <linux/compat.h> and may be used to define the macros mentioned above. Moreover, as the syscall calling convention may be different if CONFIG_ARCH_HAS_SYSCALL_WRAPPER is set, the compat syscall function prototypes in <linux/compat.h> are #ifndef'd out in that case. As some of the syscalls and/or compat syscalls may not be present, the COND_SYSCALL() and COND_SYSCALL_COMPAT() macros in kernel/sys_ni.c as well as the SYS_NI() and COMPAT_SYS_NI() macros in kernel/time/posix-stubs.c can be re-defined in <asm/syscall_wrapper.h> iff CONFIG_ARCH_HAS_SYSCALL_WRAPPER is enabled. Signed-off-by: NDominik Brodowski <linux@dominikbrodowski.net> Acked-by: NLinus Torvalds <torvalds@linux-foundation.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20180405095307.3730-5-linux@dominikbrodowski.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 29 3月, 2018 1 次提交
-
-
由 Thomas Gleixner 提交于
syszbot reported the following debugobjects splat: ODEBUG: object is on stack, but not annotated WARNING: CPU: 0 PID: 4185 at lib/debugobjects.c:328 RIP: 0010:debug_object_is_on_stack lib/debugobjects.c:327 [inline] debug_object_init+0x17/0x20 lib/debugobjects.c:391 debug_hrtimer_init kernel/time/hrtimer.c:410 [inline] debug_init kernel/time/hrtimer.c:458 [inline] hrtimer_init+0x8c/0x410 kernel/time/hrtimer.c:1259 alarm_init kernel/time/alarmtimer.c:339 [inline] alarm_timer_nsleep+0x164/0x4d0 kernel/time/alarmtimer.c:787 SYSC_clock_nanosleep kernel/time/posix-timers.c:1226 [inline] SyS_clock_nanosleep+0x235/0x330 kernel/time/posix-timers.c:1204 do_syscall_64+0x281/0x940 arch/x86/entry/common.c:287 entry_SYSCALL_64_after_hwframe+0x42/0xb7 This happens because the hrtimer for the alarm nanosleep is on stack, but the code does not use the proper debug objects initialization. Split out the code for the allocated use cases and invoke hrtimer_init_on_stack() for the nanosleep related functions. Reported-by: syzbot+a3e0726462b2e346a31d@syzkaller.appspotmail.com Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: John Stultz <john.stultz@linaro.org> Cc: syzkaller-bugs@googlegroups.com Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1803261528270.1585@nanos.tec.linutronix.de
-
- 22 3月, 2018 1 次提交
-
-
由 Thomas Gleixner 提交于
The clockid argument of clockid_to_kclock() comes straight from user space via various syscalls and is used as index into the posix_clocks array. Protect it against spectre v1 array out of bounds speculation. Remove the redundant check for !posix_clock[id] as this is another source for speculation and does not provide any advantage over the return posix_clock[id] path which returns NULL in that case anyway. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Acked-by: NDan Williams <dan.j.williams@intel.com> Cc: Rasmus Villemoes <rasmus.villemoes@prevas.dk> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: stable@vger.kernel.org Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David Woodhouse <dwmw@amazon.co.uk> Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1802151718320.1296@nanos.tec.linutronix.de
-
- 19 3月, 2018 1 次提交
-
-
由 Arnd Bergmann 提交于
Dealing with 'struct timeval' users in the y2038 series is a bit tricky: We have two definitions of timeval that are visible to user space, one comes from glibc (or some other C library), the other comes from linux/time.h. The kernel copy is what we want to be used for a number of structures defined by the kernel itself, e.g. elf_prstatus (used it core dumps), sysinfo and rusage (used in system calls). These generally tend to be used for passing time intervals rather than absolute (epoch-based) times, so they do not suffer from the y2038 overflow. Some of them could be changed to use 64-bit timestamps by creating new system calls, others like the core files cannot easily be changed. An application using these interfaces likely also uses gettimeofday() or other interfaces that use absolute times, and pass 'struct timeval' pointers directly into kernel interfaces, so glibc must redefine their timeval based on a 64-bit time_t when they introduce their y2038-safe interfaces. The only reasonable way forward I see is to remove the 'timeval' definion from the kernel's uapi headers, and change the interfaces that we do not want to (or cannot) duplicate for 64-bit times to use a new __kernel_old_timeval definition instead. This type should be avoided for all new interfaces (those can use 64-bit nanoseconds, or the 64-bit version of timespec instead), and should be used with great care when converting existing interfaces from timeval, to be sure they don't suffer from the y2038 overflow, and only with consensus for the particular user that using __kernel_old_timeval is better than moving to a 64-bit based interface. The structure name is intentionally chosen to not conflict with user space types, and to be ugly enough to discourage its use. Note that ioctl based interfaces that pass a bare 'timeval' pointer cannot change to '__kernel_old_timeval' because the user space source code refers to 'timeval' instead, and we don't want to modify the user space sources if possible. However, any application that relies on a structure to contain an embedded 'timeval' (e.g. by passing a pointer to the member into a function call that expects a timeval pointer) is broken when that structure gets converted to __kernel_old_timeval. I don't see any way around that, and we have to rely on the compiler to produce a warning or compile failure that will alert users when they recompile their sources against a new libc. Signed-off-by: NArnd Bergmann <arnd@arndb.de> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Stephen Boyd <sboyd@kernel.org> Cc: John Stultz <john.stultz@linaro.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Link: https://lkml.kernel.org/r/20180315161739.576085-1-arnd@arndb.de
-
- 13 3月, 2018 5 次提交
-
-
由 Thomas Gleixner 提交于
Now that th MONOTONIC and BOOTTIME clocks are indentical remove all the special casing. The user space visible interfaces still support both clocks, but their behavior is identical. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com> Cc: John Stultz <john.stultz@linaro.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kevin Easton <kevin@guarana.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mark Salyzyn <salyzyn@android.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Link: http://lkml.kernel.org/r/20180301165150.410218515@linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Thomas Gleixner 提交于
Now that the MONOTONIC and BOOTTIME clocks are indentical remove all the special casing. The user space visible interfaces still support both clocks, but their behavior is identical. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com> Cc: John Stultz <john.stultz@linaro.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kevin Easton <kevin@guarana.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mark Salyzyn <salyzyn@android.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Link: http://lkml.kernel.org/r/20180301165150.315745557@linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Thomas Gleixner 提交于
Now that the MONOTONIC and BOOTTIME clocks are the same, remove all the special handling from timekeeping. Keep wrappers for the existing users of the *boot* timekeeper interfaces. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com> Cc: John Stultz <john.stultz@linaro.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kevin Easton <kevin@guarana.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mark Salyzyn <salyzyn@android.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Link: http://lkml.kernel.org/r/20180301165150.236279497@linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Thomas Gleixner 提交于
The MONOTONIC clock is not fast forwarded by the time spent in suspend on resume. This is only done for the BOOTTIME clock. The reason why the MONOTONIC clock is not forwarded is historical: the original Linux implementation was using jiffies as a base for the MONOTONIC clock and jiffies have never been advanced after resume. At some point when timekeeping was unified in the core code, the MONONOTIC clock was advanced after resume which also advanced jiffies causing interesting side effects. As a consequence the the MONOTONIC clock forwarding was disabled again and the BOOTTIME clock was introduced, which allows to read time since boot. Back then it was not possible to completely distangle the MONOTONIC clock and jiffies because there were still interfaces which exposed the MONOTONIC clock behaviour based on the timer wheel and therefore jiffies. As of today none of the MONOTONIC clock facilities depends on jiffies anymore so the forwarding can be done seperately. This is achieved by forwarding the variables which are used for the jiffies update after resume before the tick is restarted, In timekeeping resume, the change is rather simple. Instead of updating the offset between the MONOTONIC clock and the REALTIME/BOOTTIME clocks, advance the time keeper base for the MONOTONIC and the MONOTONIC_RAW clocks by the time spent in suspend. The MONOTONIC clock is now the same as the BOOTTIME clock and the offset between the REALTIME and the MONOTONIC clocks is the same as before suspend. There might be side effects in applications, which rely on the (unfortunately) well documented behaviour of the MONOTONIC clock, but the downsides of the existing behaviour are probably worse. There is one obvious issue. Up to now it was possible to retrieve the time spent in suspend by observing the delta between the MONOTONIC clock and the BOOTTIME clock. This is not longer available, but the previously introduced mechanism to read the active non-suspended monotonic time can mitigate that in a detectable fashion. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com> Cc: John Stultz <john.stultz@linaro.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kevin Easton <kevin@guarana.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mark Salyzyn <salyzyn@android.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Link: http://lkml.kernel.org/r/20180301165150.062975504@linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Thomas Gleixner 提交于
The planned change to unify the behaviour of the MONOTONIC and BOOTTIME clocks vs. suspend removes the ability to retrieve the active non-suspended time of a system. Provide a new CLOCK_MONOTONIC_ACTIVE clock which returns the active non-suspended time of the system via clock_gettime(). This preserves the old behaviour of CLOCK_MONOTONIC before the BOOTTIME/MONOTONIC unification. This new clock also allows applications to detect programmatically that the MONOTONIC and BOOTTIME clocks are identical. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com> Cc: John Stultz <john.stultz@linaro.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kevin Easton <kevin@guarana.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mark Salyzyn <salyzyn@android.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Link: http://lkml.kernel.org/r/20180301165149.965235774@linutronix.deSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 10 3月, 2018 2 次提交
-
-
由 Miroslav Lichvar 提交于
When the length of the NTP tick changes significantly, e.g. when an NTP/PTP application is correcting the initial offset of the clock, a large value may accumulate in the NTP error before the multiplier converges to the correct value. It may then take a very long time (hours or even days) before the error is corrected. This causes the clock to have an unstable frequency offset, which has a negative impact on the stability of synchronization with precise time sources (e.g. NTP/PTP using hardware timestamping or the PTP KVM clock). Use division to determine the correct multiplier directly from the NTP tick length and replace the iterative approach. This removes the last major source of the NTP error. The only remaining source is now limited resolution of the multiplier, which is corrected by adding 1 to the multiplier when the system clock is behind the NTP time. Signed-off-by: NMiroslav Lichvar <mlichvar@redhat.com> Signed-off-by: NJohn Stultz <john.stultz@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Stephen Boyd <stephen.boyd@linaro.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1520620971-9567-3-git-send-email-john.stultz@linaro.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Miroslav Lichvar 提交于
When the timekeeping multiplier is changed, the NTP error is updated to correct the clock for the delay between the tick and the update of the clock. This error is corrected in later updates and the clock appears as if the frequency was changed exactly on the tick. Remove this correction to keep the point where the frequency is effectively changed at the time of the update. This removes a major source of the NTP error. Signed-off-by: NMiroslav Lichvar <mlichvar@redhat.com> Signed-off-by: NJohn Stultz <john.stultz@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Stephen Boyd <stephen.boyd@linaro.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1520620971-9567-2-git-send-email-john.stultz@linaro.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 09 3月, 2018 1 次提交
-
-
由 Peter Zijlstra 提交于
The primary observation is that nohz enter/exit is always from the current CPU, therefore NOHZ_TICK_STOPPED does not in fact need to be an atomic. Secondary is that we appear to have 2 nearly identical hooks in the nohz enter code, set_cpu_sd_state_idle() and nohz_balance_enter_idle(). Fold the whole set_cpu_sd_state thing into nohz_balance_{enter,exit}_idle. Removes an atomic op from both enter and exit paths. Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 01 3月, 2018 1 次提交
-
-
由 Lingutla Chandrasekhar 提交于
On CPU hotunplug the enqueued timers of the unplugged CPU are migrated to a live CPU. This happens from the control thread which initiated the unplug. If the CPU on which the control thread runs came out from a longer idle period then the base clock of that CPU might be stale because the control thread runs prior to any event which forwards the clock. In such a case the timers from the unplugged CPU are queued on the live CPU based on the stale clock which can cause large delays due to increased granularity of the outer timer wheels which are far away from base:;clock. But there is a worse problem than that. The following sequence of events illustrates it: - CPU0 timer1 is queued expires = 59969 and base->clk = 59131. The timer is queued at wheel level 2, with resulting expiry time = 60032 (due to level granularity). - CPU1 enters idle @60007, with next timer expiry @60020. - CPU0 is hotplugged at @60009 - CPU1 exits idle and runs the control thread which migrates the timers from CPU0 timer1 is now queued in level 0 for immediate handling in the next softirq because the requested expiry time 59969 is before CPU1 base->clk 60007 - CPU1 runs code which forwards the base clock which succeeds because the next expiring timer. which was collected at idle entry time is still set to 60020. So it forwards beyond 60007 and therefore misses to expire the migrated timer1. That timer gets expired when the wheel wraps around again, which takes between 63 and 630ms depending on the HZ setting. Address both problems by invoking forward_timer_base() for the control CPUs timer base. All other places, which might run into a similar problem (mod_timer()/add_timer_on()) already invoke forward_timer_base() to avoid that. [ tglx: Massaged comment and changelog ] Fixes: a683f390 ("timers: Forward the wheel clock whenever possible") Co-developed-by: NNeeraj Upadhyay <neeraju@codeaurora.org> Signed-off-by: NNeeraj Upadhyay <neeraju@codeaurora.org> Signed-off-by: NLingutla Chandrasekhar <clingutla@codeaurora.org> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Anna-Maria Gleixner <anna-maria@linutronix.de> Cc: linux-arm-msm@vger.kernel.org Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20180118115022.6368-1-clingutla@codeaurora.org
-
- 28 2月, 2018 1 次提交
-
-
由 Baolin Wang 提交于
Use ATTRIBUTE_GROUPS instead of manually creating the individual device files. Signed-off-by: NBaolin Wang <baolin.wang@linaro.org> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: arnd@arndb.de Cc: sboyd@codeaurora.org Cc: broonie@kernel.org Cc: john.stultz@linaro.org Link: https://lkml.kernel.org/r/d80dccb981dc2461781ebb8d71a32ccdc1b0e6f9.1516167691.git.baolin.wang@linaro.org
-