1. 06 2月, 2008 1 次提交
    • S
      capabilities: introduce per-process capability bounding set · 3b7391de
      Serge E. Hallyn 提交于
      The capability bounding set is a set beyond which capabilities cannot grow.
       Currently cap_bset is per-system.  It can be manipulated through sysctl,
      but only init can add capabilities.  Root can remove capabilities.  By
      default it includes all caps except CAP_SETPCAP.
      
      This patch makes the bounding set per-process when file capabilities are
      enabled.  It is inherited at fork from parent.  Noone can add elements,
      CAP_SETPCAP is required to remove them.
      
      One example use of this is to start a safer container.  For instance, until
      device namespaces or per-container device whitelists are introduced, it is
      best to take CAP_MKNOD away from a container.
      
      The bounding set will not affect pP and pE immediately.  It will only
      affect pP' and pE' after subsequent exec()s.  It also does not affect pI,
      and exec() does not constrain pI'.  So to really start a shell with no way
      of regain CAP_MKNOD, you would do
      
      	prctl(PR_CAPBSET_DROP, CAP_MKNOD);
      	cap_t cap = cap_get_proc();
      	cap_value_t caparray[1];
      	caparray[0] = CAP_MKNOD;
      	cap_set_flag(cap, CAP_INHERITABLE, 1, caparray, CAP_DROP);
      	cap_set_proc(cap);
      	cap_free(cap);
      
      The following test program will get and set the bounding
      set (but not pI).  For instance
      
      	./bset get
      		(lists capabilities in bset)
      	./bset drop cap_net_raw
      		(starts shell with new bset)
      		(use capset, setuid binary, or binary with
      		file capabilities to try to increase caps)
      
      ************************************************************
      cap_bound.c
      ************************************************************
       #include <sys/prctl.h>
       #include <linux/capability.h>
       #include <sys/types.h>
       #include <unistd.h>
       #include <stdio.h>
       #include <stdlib.h>
       #include <string.h>
      
       #ifndef PR_CAPBSET_READ
       #define PR_CAPBSET_READ 23
       #endif
      
       #ifndef PR_CAPBSET_DROP
       #define PR_CAPBSET_DROP 24
       #endif
      
      int usage(char *me)
      {
      	printf("Usage: %s get\n", me);
      	printf("       %s drop <capability>\n", me);
      	return 1;
      }
      
       #define numcaps 32
      char *captable[numcaps] = {
      	"cap_chown",
      	"cap_dac_override",
      	"cap_dac_read_search",
      	"cap_fowner",
      	"cap_fsetid",
      	"cap_kill",
      	"cap_setgid",
      	"cap_setuid",
      	"cap_setpcap",
      	"cap_linux_immutable",
      	"cap_net_bind_service",
      	"cap_net_broadcast",
      	"cap_net_admin",
      	"cap_net_raw",
      	"cap_ipc_lock",
      	"cap_ipc_owner",
      	"cap_sys_module",
      	"cap_sys_rawio",
      	"cap_sys_chroot",
      	"cap_sys_ptrace",
      	"cap_sys_pacct",
      	"cap_sys_admin",
      	"cap_sys_boot",
      	"cap_sys_nice",
      	"cap_sys_resource",
      	"cap_sys_time",
      	"cap_sys_tty_config",
      	"cap_mknod",
      	"cap_lease",
      	"cap_audit_write",
      	"cap_audit_control",
      	"cap_setfcap"
      };
      
      int getbcap(void)
      {
      	int comma=0;
      	unsigned long i;
      	int ret;
      
      	printf("i know of %d capabilities\n", numcaps);
      	printf("capability bounding set:");
      	for (i=0; i<numcaps; i++) {
      		ret = prctl(PR_CAPBSET_READ, i);
      		if (ret < 0)
      			perror("prctl");
      		else if (ret==1)
      			printf("%s%s", (comma++) ? ", " : " ", captable[i]);
      	}
      	printf("\n");
      	return 0;
      }
      
      int capdrop(char *str)
      {
      	unsigned long i;
      
      	int found=0;
      	for (i=0; i<numcaps; i++) {
      		if (strcmp(captable[i], str) == 0) {
      			found=1;
      			break;
      		}
      	}
      	if (!found)
      		return 1;
      	if (prctl(PR_CAPBSET_DROP, i)) {
      		perror("prctl");
      		return 1;
      	}
      	return 0;
      }
      
      int main(int argc, char *argv[])
      {
      	if (argc<2)
      		return usage(argv[0]);
      	if (strcmp(argv[1], "get")==0)
      		return getbcap();
      	if (strcmp(argv[1], "drop")!=0 || argc<3)
      		return usage(argv[0]);
      	if (capdrop(argv[2])) {
      		printf("unknown capability\n");
      		return 1;
      	}
      	return execl("/bin/bash", "/bin/bash", NULL);
      }
      ************************************************************
      
      [serue@us.ibm.com: fix typo]
      Signed-off-by: NSerge E. Hallyn <serue@us.ibm.com>
      Signed-off-by: NAndrew G. Morgan <morgan@kernel.org>
      Cc: Stephen Smalley <sds@tycho.nsa.gov>
      Cc: James Morris <jmorris@namei.org>
      Cc: Chris Wright <chrisw@sous-sol.org>
      Cc: Casey Schaufler <casey@schaufler-ca.com>a
      Signed-off-by: N"Serge E. Hallyn" <serue@us.ibm.com>
      Tested-by: NJiri Slaby <jirislaby@gmail.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      3b7391de
  2. 17 7月, 2007 1 次提交
  3. 09 6月, 2006 1 次提交
    • A
      [PATCH] Add a prctl to change the endianness of a process. · 651d765d
      Anton Blanchard 提交于
      This new prctl is intended for changing the execution mode of the
      processor, on processors that support both a little-endian mode and a
      big-endian mode.  It is intended for use by programs such as
      instruction set emulators (for example an x86 emulator on PowerPC),
      which may find it convenient to use the processor in an alternate
      endianness mode when executing translated instructions.
      
      Note that this does not imply the existence of a fully-fledged ABI for
      both endiannesses, or of compatibility code for converting system
      calls done in the non-native endianness mode.  The program is expected
      to arrange for all of its system call arguments to be presented in the
      native endianness.
      
      Switching between big and little-endian mode will require some care in
      constructing the instruction sequence for the switch.  Generally the
      instructions up to the instruction that invokes the prctl system call
      will have to be in the old endianness, and subsequent instructions
      will have to be in the new endianness.
      Signed-off-by: NAnton Blanchard <anton@samba.org>
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      651d765d
  4. 17 4月, 2005 1 次提交
    • L
      Linux-2.6.12-rc2 · 1da177e4
      Linus Torvalds 提交于
      Initial git repository build. I'm not bothering with the full history,
      even though we have it. We can create a separate "historical" git
      archive of that later if we want to, and in the meantime it's about
      3.2GB when imported into git - space that would just make the early
      git days unnecessarily complicated, when we don't have a lot of good
      infrastructure for it.
      
      Let it rip!
      1da177e4