1. 10 9月, 2011 2 次提交
  2. 16 8月, 2011 1 次提交
  3. 11 8月, 2011 1 次提交
  4. 20 7月, 2011 2 次提交
  5. 19 7月, 2011 1 次提交
    • M
      security: new security_inode_init_security API adds function callback · 9d8f13ba
      Mimi Zohar 提交于
      This patch changes the security_inode_init_security API by adding a
      filesystem specific callback to write security extended attributes.
      This change is in preparation for supporting the initialization of
      multiple LSM xattrs and the EVM xattr.  Initially the callback function
      walks an array of xattrs, writing each xattr separately, but could be
      optimized to write multiple xattrs at once.
      
      For existing security_inode_init_security() calls, which have not yet
      been converted to use the new callback function, such as those in
      reiserfs and ocfs2, this patch defines security_old_inode_init_security().
      Signed-off-by: NMimi Zohar <zohar@us.ibm.com>
      9d8f13ba
  6. 25 4月, 2011 1 次提交
    • A
      SECURITY: Move exec_permission RCU checks into security modules · 1c990429
      Andi Kleen 提交于
      Right now all RCU walks fall back to reference walk when CONFIG_SECURITY
      is enabled, even though just the standard capability module is active.
      This is because security_inode_exec_permission unconditionally fails
      RCU walks.
      
      Move this decision to the low level security module. This requires
      passing the RCU flags down the security hook. This way at least
      the capability module and a few easy cases in selinux/smack work
      with RCU walks with CONFIG_SECURITY=y
      Signed-off-by: NAndi Kleen <ak@linux.intel.com>
      Signed-off-by: NEric Paris <eparis@redhat.com>
      1c990429
  7. 23 4月, 2011 1 次提交
  8. 24 3月, 2011 1 次提交
    • S
      userns: security: make capabilities relative to the user namespace · 3486740a
      Serge E. Hallyn 提交于
      - Introduce ns_capable to test for a capability in a non-default
        user namespace.
      - Teach cap_capable to handle capabilities in a non-default
        user namespace.
      
      The motivation is to get to the unprivileged creation of new
      namespaces.  It looks like this gets us 90% of the way there, with
      only potential uid confusion issues left.
      
      I still need to handle getting all caps after creation but otherwise I
      think I have a good starter patch that achieves all of your goals.
      
      Changelog:
      	11/05/2010: [serge] add apparmor
      	12/14/2010: [serge] fix capabilities to created user namespaces
      	Without this, if user serge creates a user_ns, he won't have
      	capabilities to the user_ns he created.  THis is because we
      	were first checking whether his effective caps had the caps
      	he needed and returning -EPERM if not, and THEN checking whether
      	he was the creator.  Reverse those checks.
      	12/16/2010: [serge] security_real_capable needs ns argument in !security case
      	01/11/2011: [serge] add task_ns_capable helper
      	01/11/2011: [serge] add nsown_capable() helper per Bastian Blank suggestion
      	02/16/2011: [serge] fix a logic bug: the root user is always creator of
      		    init_user_ns, but should not always have capabilities to
      		    it!  Fix the check in cap_capable().
      	02/21/2011: Add the required user_ns parameter to security_capable,
      		    fixing a compile failure.
      	02/23/2011: Convert some macros to functions as per akpm comments.  Some
      		    couldn't be converted because we can't easily forward-declare
      		    them (they are inline if !SECURITY, extern if SECURITY).  Add
      		    a current_user_ns function so we can use it in capability.h
      		    without #including cred.h.  Move all forward declarations
      		    together to the top of the #ifdef __KERNEL__ section, and use
      		    kernel-doc format.
      	02/23/2011: Per dhowells, clean up comment in cap_capable().
      	02/23/2011: Per akpm, remove unreachable 'return -EPERM' in cap_capable.
      
      (Original written and signed off by Eric;  latest, modified version
      acked by him)
      
      [akpm@linux-foundation.org: fix build]
      [akpm@linux-foundation.org: export current_user_ns() for ecryptfs]
      [serge.hallyn@canonical.com: remove unneeded extra argument in selinux's task_has_capability]
      Signed-off-by: NEric W. Biederman <ebiederm@xmission.com>
      Signed-off-by: NSerge E. Hallyn <serge.hallyn@canonical.com>
      Acked-by: N"Eric W. Biederman" <ebiederm@xmission.com>
      Acked-by: NDaniel Lezcano <daniel.lezcano@free.fr>
      Acked-by: NDavid Howells <dhowells@redhat.com>
      Cc: James Morris <jmorris@namei.org>
      Signed-off-by: NSerge E. Hallyn <serge.hallyn@canonical.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      3486740a
  9. 04 3月, 2011 1 次提交
    • E
      LSM: Pass -o remount options to the LSM · ff36fe2c
      Eric Paris 提交于
      The VFS mount code passes the mount options to the LSM.  The LSM will remove
      options it understands from the data and the VFS will then pass the remaining
      options onto the underlying filesystem.  This is how options like the
      SELinux context= work.  The problem comes in that -o remount never calls
      into LSM code.  So if you include an LSM specific option it will get passed
      to the filesystem and will cause the remount to fail.  An example of where
      this is a problem is the 'seclabel' option.  The SELinux LSM hook will
      print this word in /proc/mounts if the filesystem is being labeled using
      xattrs.  If you pass this word on mount it will be silently stripped and
      ignored.  But if you pass this word on remount the LSM never gets called
      and it will be passed to the FS.  The FS doesn't know what seclabel means
      and thus should fail the mount.  For example an ext3 fs mounted over loop
      
      # mount -o loop /tmp/fs /mnt/tmp
      # cat /proc/mounts | grep /mnt/tmp
      /dev/loop0 /mnt/tmp ext3 rw,seclabel,relatime,errors=continue,barrier=0,data=ordered 0 0
      # mount -o remount /mnt/tmp
      mount: /mnt/tmp not mounted already, or bad option
      # dmesg
      EXT3-fs (loop0): error: unrecognized mount option "seclabel" or missing value
      
      This patch passes the remount mount options to an new LSM hook.
      Signed-off-by: NEric Paris <eparis@redhat.com>
      Reviewed-by: NJames Morris <jmorris@namei.org>
      ff36fe2c
  10. 23 2月, 2011 1 次提交
  11. 11 2月, 2011 1 次提交
  12. 02 2月, 2011 3 次提交
  13. 07 1月, 2011 1 次提交
    • N
      fs: rcu-walk for path lookup · 31e6b01f
      Nick Piggin 提交于
      Perform common cases of path lookups without any stores or locking in the
      ancestor dentry elements. This is called rcu-walk, as opposed to the current
      algorithm which is a refcount based walk, or ref-walk.
      
      This results in far fewer atomic operations on every path element,
      significantly improving path lookup performance. It also avoids cacheline
      bouncing on common dentries, significantly improving scalability.
      
      The overall design is like this:
      * LOOKUP_RCU is set in nd->flags, which distinguishes rcu-walk from ref-walk.
      * Take the RCU lock for the entire path walk, starting with the acquiring
        of the starting path (eg. root/cwd/fd-path). So now dentry refcounts are
        not required for dentry persistence.
      * synchronize_rcu is called when unregistering a filesystem, so we can
        access d_ops and i_ops during rcu-walk.
      * Similarly take the vfsmount lock for the entire path walk. So now mnt
        refcounts are not required for persistence. Also we are free to perform mount
        lookups, and to assume dentry mount points and mount roots are stable up and
        down the path.
      * Have a per-dentry seqlock to protect the dentry name, parent, and inode,
        so we can load this tuple atomically, and also check whether any of its
        members have changed.
      * Dentry lookups (based on parent, candidate string tuple) recheck the parent
        sequence after the child is found in case anything changed in the parent
        during the path walk.
      * inode is also RCU protected so we can load d_inode and use the inode for
        limited things.
      * i_mode, i_uid, i_gid can be tested for exec permissions during path walk.
      * i_op can be loaded.
      
      When we reach the destination dentry, we lock it, recheck lookup sequence,
      and increment its refcount and mountpoint refcount. RCU and vfsmount locks
      are dropped. This is termed "dropping rcu-walk". If the dentry refcount does
      not match, we can not drop rcu-walk gracefully at the current point in the
      lokup, so instead return -ECHILD (for want of a better errno). This signals the
      path walking code to re-do the entire lookup with a ref-walk.
      
      Aside from the final dentry, there are other situations that may be encounted
      where we cannot continue rcu-walk. In that case, we drop rcu-walk (ie. take
      a reference on the last good dentry) and continue with a ref-walk. Again, if
      we can drop rcu-walk gracefully, we return -ECHILD and do the whole lookup
      using ref-walk. But it is very important that we can continue with ref-walk
      for most cases, particularly to avoid the overhead of double lookups, and to
      gain the scalability advantages on common path elements (like cwd and root).
      
      The cases where rcu-walk cannot continue are:
      * NULL dentry (ie. any uncached path element)
      * parent with d_inode->i_op->permission or ACLs
      * dentries with d_revalidate
      * Following links
      
      In future patches, permission checks and d_revalidate become rcu-walk aware. It
      may be possible eventually to make following links rcu-walk aware.
      
      Uncached path elements will always require dropping to ref-walk mode, at the
      very least because i_mutex needs to be grabbed, and objects allocated.
      Signed-off-by: NNick Piggin <npiggin@kernel.dk>
      31e6b01f
  14. 06 1月, 2011 1 次提交
  15. 01 12月, 2010 1 次提交
  16. 16 11月, 2010 1 次提交
  17. 21 10月, 2010 3 次提交
  18. 02 8月, 2010 1 次提交
  19. 28 7月, 2010 1 次提交
  20. 16 7月, 2010 1 次提交
  21. 12 4月, 2010 13 次提交
  22. 30 3月, 2010 1 次提交
    • T
      include cleanup: Update gfp.h and slab.h includes to prepare for breaking... · 5a0e3ad6
      Tejun Heo 提交于
      include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
      
      percpu.h is included by sched.h and module.h and thus ends up being
      included when building most .c files.  percpu.h includes slab.h which
      in turn includes gfp.h making everything defined by the two files
      universally available and complicating inclusion dependencies.
      
      percpu.h -> slab.h dependency is about to be removed.  Prepare for
      this change by updating users of gfp and slab facilities include those
      headers directly instead of assuming availability.  As this conversion
      needs to touch large number of source files, the following script is
      used as the basis of conversion.
      
        http://userweb.kernel.org/~tj/misc/slabh-sweep.py
      
      The script does the followings.
      
      * Scan files for gfp and slab usages and update includes such that
        only the necessary includes are there.  ie. if only gfp is used,
        gfp.h, if slab is used, slab.h.
      
      * When the script inserts a new include, it looks at the include
        blocks and try to put the new include such that its order conforms
        to its surrounding.  It's put in the include block which contains
        core kernel includes, in the same order that the rest are ordered -
        alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
        doesn't seem to be any matching order.
      
      * If the script can't find a place to put a new include (mostly
        because the file doesn't have fitting include block), it prints out
        an error message indicating which .h file needs to be added to the
        file.
      
      The conversion was done in the following steps.
      
      1. The initial automatic conversion of all .c files updated slightly
         over 4000 files, deleting around 700 includes and adding ~480 gfp.h
         and ~3000 slab.h inclusions.  The script emitted errors for ~400
         files.
      
      2. Each error was manually checked.  Some didn't need the inclusion,
         some needed manual addition while adding it to implementation .h or
         embedding .c file was more appropriate for others.  This step added
         inclusions to around 150 files.
      
      3. The script was run again and the output was compared to the edits
         from #2 to make sure no file was left behind.
      
      4. Several build tests were done and a couple of problems were fixed.
         e.g. lib/decompress_*.c used malloc/free() wrappers around slab
         APIs requiring slab.h to be added manually.
      
      5. The script was run on all .h files but without automatically
         editing them as sprinkling gfp.h and slab.h inclusions around .h
         files could easily lead to inclusion dependency hell.  Most gfp.h
         inclusion directives were ignored as stuff from gfp.h was usually
         wildly available and often used in preprocessor macros.  Each
         slab.h inclusion directive was examined and added manually as
         necessary.
      
      6. percpu.h was updated not to include slab.h.
      
      7. Build test were done on the following configurations and failures
         were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
         distributed build env didn't work with gcov compiles) and a few
         more options had to be turned off depending on archs to make things
         build (like ipr on powerpc/64 which failed due to missing writeq).
      
         * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
         * powerpc and powerpc64 SMP allmodconfig
         * sparc and sparc64 SMP allmodconfig
         * ia64 SMP allmodconfig
         * s390 SMP allmodconfig
         * alpha SMP allmodconfig
         * um on x86_64 SMP allmodconfig
      
      8. percpu.h modifications were reverted so that it could be applied as
         a separate patch and serve as bisection point.
      
      Given the fact that I had only a couple of failures from tests on step
      6, I'm fairly confident about the coverage of this conversion patch.
      If there is a breakage, it's likely to be something in one of the arch
      headers which should be easily discoverable easily on most builds of
      the specific arch.
      Signed-off-by: NTejun Heo <tj@kernel.org>
      Guess-its-ok-by: NChristoph Lameter <cl@linux-foundation.org>
      Cc: Ingo Molnar <mingo@redhat.com>
      Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
      5a0e3ad6