- 25 9月, 2013 8 次提交
-
-
由 Thierry Escande 提交于
This implements the mechanism used to send commands to the driver in initiator mode through in_send_cmd(). Commands are serialized and sent to the driver by using a work item on the system workqueue. Responses are handled asynchronously by another work item. Once the digital stack receives the response through the command_complete callback, the next command is sent to the driver. This also implements the polling mechanism. It's handled by a work item cycling on all supported protocols. The start poll command for a given protocol is sent to the driver using the mechanism described above. The process continues until a peer is discovered or stop_poll is called. This patch implements the poll function for NFC-A that sends a SENS_REQ command and waits for the SENS_RES response. Signed-off-by: NThierry Escande <thierry.escande@linux.intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Thierry Escande 提交于
This is the initial commit of the NFC Digital Protocol stack implementation. It offers an interface for devices that don't have an embedded NFC Digital protocol stack. The driver instantiates the digital stack by calling nfc_digital_allocate_device(). Within the nfc_digital_ops structure, the driver specifies a set of function pointers for driver operations. These functions must be implemented by the driver and are: in_configure_hw: Hardware configuration for RF technology and communication framing in initiator mode. This is a synchronous function. in_send_cmd: Initiator mode data exchange using RF technology and framing previously set with in_configure_hw. The peer response is returned through callback cb. If an io error occurs or the peer didn't reply within the specified timeout (ms), the error code is passed back through the resp pointer. This is an asynchronous function. tg_configure_hw: Hardware configuration for RF technology and communication framing in target mode. This is a synchronous function. tg_send_cmd: Target mode data exchange using RF technology and framing previously set with tg_configure_hw. The peer next command is returned through callback cb. If an io error occurs or the peer didn't reply within the specified timeout (ms), the error code is passed back through the resp pointer. This is an asynchronous function. tg_listen: Put the device in listen mode waiting for data from the peer device. This is an asynchronous function. tg_listen_mdaa: If supported, put the device in automatic listen mode with mode detection and automatic anti-collision. In this mode, the device automatically detects the RF technology and executes the anti-collision detection using the command responses specified in mdaa_params. The mdaa_params structure contains SENS_RES, NFCID1, and SEL_RES for 106A RF tech. NFCID2 and system code (sc) for 212F and 424F. The driver returns the NFC-DEP ATR_REQ command through cb. The digital stack deducts the RF tech by analyzing the SoD of the frame containing the ATR_REQ command. This is an asynchronous function. switch_rf: Turns device radio on or off. The stack does not call explicitly switch_rf to turn the radio on. A call to in|tg_configure_hw must turn the device radio on. abort_cmd: Discard the last sent command. Then the driver registers itself against the digital stack by using nfc_digital_register_device() which in turn registers the digital stack against the NFC core layer. The digital stack implements common NFC operations like dev_up(), dev_down(), start_poll(), stop_poll(), etc. This patch is only a skeleton and NFC operations are just stubs. Signed-off-by: NThierry Escande <thierry.escande@linux.intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Eric Lapuyade 提交于
NCI SPI layer should not manage the nci dev, this is the job of the nci chipset driver. This layer should be limited to frame/deframe nci packets, and optionnaly check integrity (crc) and manage the ack/nak protocol. The NCI SPI must not be mixed up with an NCI dev. spi_[dev|device] are therefore renamed to a simple spi for more clarity. The header and crc sizes are moved to nci.h so that drivers can use them to reserve space in outgoing skbs. nci_spi_send() is exported to be accessible by drivers. Signed-off-by: NEric Lapuyade <eric.lapuyade@intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Eric Lapuyade 提交于
struct nfc_phy_ops is not an HCI structure only, it can also be used by NCI or direct NFC Core drivers. Signed-off-by: NEric Lapuyade <eric.lapuyade@intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Eric Lapuyade 提交于
An hci dev is an hdev. An nci dev is an ndev. Calling an nci spi dev an ndev is misleading since it's not the same thing. The nci dev contained in the nci spi dev is also named inconsistently. Signed-off-by: NEric Lapuyade <eric.lapuyade@intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Joe Perches 提交于
Use a more standard kernel style macro logging name. Standardize the spacing of the "NFC: " prefix. Add \n to uses, remove from macro. Fix the defective uses that already had a \n. Signed-off-by: NJoe Perches <joe@perches.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Joe Perches 提交于
Use the generic kernel function instead of a home-grown one that does the same thing. Add \n to uses not at the macro. Don't add \n where the nfc_dev_dbg macro mistakenly had them already. Signed-off-by: NJoe Perches <joe@perches.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Arron Wang 提交于
This will be needed by all NFC driver implementing the SE ops. Signed-off-by: NArron Wang <arron.wang@intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
- 14 8月, 2013 2 次提交
-
-
由 Eric Lapuyade 提交于
Result is added as an NFC_ATTR_FIRMWARE_DOWNLOAD_STATUS attribute containing the standard errno positive value of the completion result. This event will be sent when the firmare download operation is done and will contain the operation result. Signed-off-by: NEric Lapuyade <eric.lapuyade@intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Eric Lapuyade 提交于
This API must be called by NFC drivers, and its prototype was incorrectly placed. Signed-off-by: NEric Lapuyade <eric.lapuyade@intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
- 31 7月, 2013 1 次提交
-
-
由 Samuel Ortiz 提交于
Loading a firmware into a target is typically called firmware download, not firmware upload. So we rename the netlink API to NFC_CMD_FW_DOWNLOAD in order to avoid any terminology confusion from userspace. Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
- 14 6月, 2013 10 次提交
-
-
由 Samuel Ortiz 提交于
This API will allow NFC drivers to add and remove the secure elements they know about or detect. Typically this should be called (asynchronously or not) from the driver or the host interface stack detect_se hook. Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Samuel Ortiz 提交于
Secure elements need to be discovered after enabling the NFC controller. This is typically done by the NCI core and the HCI drivers (HCI does not specify how to discover SEs, it is left to the specific drivers). Also, the SE enable/disable API explicitely takes a SE index as its argument. Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Samuel Ortiz 提交于
Supported secure elements are typically found during a discovery process initiated when the NFC controller is up and running. For a given NFC chipset there can be many configurations (embedded SE or not, with or without a SIM card wired to the NFC controller SWP interface, etc...) and thus driver code will never know before hand which SEs are available. So we remove this field, it will be replaced by a real SE discovery mechanism. Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Samuel Ortiz 提交于
When using NFC-F we should copy the NFCID2 buffer that we got from SENSF_RES through the ATR_REQ NFCID3 buffer. Not doing so violates NFC Forum digital requirement #189. Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Frederic Danis 提交于
Before any operation, driver interruption is de-asserted to prevent race condition between TX and RX. Transaction starts by emitting "Direct read" and acknowledged mode bytes. Then packet length is read allowing to allocate correct NCI socket buffer. After that payload is retrieved. A delay after the transaction can be added. This delay is determined by the driver during nci_spi_allocate_device() call and can be 0. If acknowledged mode is set: - CRC of header and payload is checked - if frame reception fails (CRC error): NACK is sent - if received frame has ACK or NACK flag: unblock nci_spi_send() Payload is passed to NCI module. At the end, driver interruption is re asserted. Signed-off-by: NFrederic Danis <frederic.danis@linux.intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Frederic Danis 提交于
Before any operation, driver interruption is de-asserted to prevent race condition between TX and RX. The NCI over SPI header is added in front of NCI packet. If acknowledged mode is set, CRC-16-CCITT is added to the packet. Then the packet is forwarded to SPI module to be sent. A delay after the transaction is added. This delay is determined by the driver during nci_spi_allocate_device() call and can be 0. After data has been sent, driver interruption is re-asserted. If acknowledged mode is set, nci_spi_send will block until acknowledgment is received. Signed-off-by: NFrederic Danis <frederic.danis@linux.intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Frederic Danis 提交于
The NFC Forum defines a transport interface based on Serial Peripheral Interface (SPI) for the NFC Controller Interface (NCI). This module implements the SPI transport of NCI, calling SPI module directly to read/write data to NFC controller (NFCC). NFCC driver should provide functions performing device open and close. It should also provide functions asserting/de-asserting interruption to prevent TX/RX race conditions. NFCC driver can also fix a delay between transactions if needed by the hardware. Signed-off-by: NFrederic Danis <frederic.danis@linux.intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Eric Lapuyade 提交于
This is a simple forward to the HCI driver. When driver is done with the operation, it shall directly notify NFC Core by calling nfc_fw_upload_done(). Signed-off-by: NEric Lapuyade <eric.lapuyade@intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Eric Lapuyade 提交于
As several NFC chipsets can have their firmwares upgraded and reflashed, this patchset adds a new netlink command to trigger that the driver loads or flashes a new firmware. This will allows userspace triggered firmware upgrade through netlink. The firmware name or hint is passed as a parameter, and the driver will eventually fetch the firmware binary through the request_firmware API. The cmd can only be executed when the nfc dev is not in use. Actual firmware loading/flashing is an asynchronous operation. Result of the operation shall send a new event up to user space through the nfc dev multicast socket. During operation, the nfc dev is not openable and thus not usable. Signed-off-by: NEric Lapuyade <eric.lapuyade@intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Frederic Danis 提交于
skb->dev is used for carrying a net_device pointer and not an nci_dev pointer. Remove usage of skb-dev to carry nci_dev and replace it by parameter in nci_recv_frame(), nci_send_frame() and driver send() functions. NfcWilink driver is also updated to use those functions. Signed-off-by: NFrederic Danis <frederic.danis@linux.intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
- 12 4月, 2013 1 次提交
-
-
由 Samuel Ortiz 提交于
All NFC devices will now get proper RFKILL support as long as they provide some dev_up and dev_down hooks. Rfkilling an NFC device will bring it down while it is left to userspace to bring it back up when being rfkill unblocked. This is very similar to what Bluetooth does. Acked-by: NMarcel Holtmann <marcel@holtmann.org> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
- 10 1月, 2013 4 次提交
-
-
由 Samuel Ortiz 提交于
Each NFC adapter can have several links to different secure elements and that property needs to be exported by the drivers. A secure element link can be enabled and disabled, and card emulation will be handled by the currently active one. Otherwise card emulation will be host implemented. Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Eric Lapuyade 提交于
Some chips diverge from the HCI spec in their implementation of standard features. This adds a new quirks parameter to nfc_hci_allocate_device() to let the driver indicate its divergence. Signed-off-by: NEric Lapuyade <eric.lapuyade@intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Eric Lapuyade 提交于
There is no use to return an error if the caller doesn't get it. Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Eric Lapuyade 提交于
When an adapter is removed, it will unregister itself from hci and/or nfc core. In order to do that safely, work tasks must first be canceled and prevented to be scheduled again, before the hci or nfc device can be destroyed. Signed-off-by: NEric Lapuyade <eric.lapuyade@intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
- 20 11月, 2012 2 次提交
-
-
由 Eric Lapuyade 提交于
Some HCI drivers will need it. Signed-off-by: NEric Lapuyade <eric.lapuyade@intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Eric Lapuyade 提交于
Signed-off-by: NEric Lapuyade <eric.lapuyade@intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
- 27 10月, 2012 6 次提交
-
-
由 Samuel Ortiz 提交于
As a consequence the NFC device IDs won't be increasing all the time, as IDR provides the first available ID. Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Eric Lapuyade 提交于
The driver now has all HCI stuff isolated in one file, and all the hardware link specifics in another. Writing a pn544 driver on top of another hardware link is now just a matter of adding a new file for that new hardware specifics. Signed-off-by: NEric Lapuyade <eric.lapuyade@intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Arron Wang 提交于
And implement the corresponding hooks for pn544. Signed-off-by: NArron Wang <arron.wang@intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Arron Wang 提交于
And implement the corresponding hooks for pn544. Signed-off-by: NArron Wang <arron.wang@intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Arron Wang 提交于
Signed-off-by: NArron Wang <arron.wang@intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Arron Wang 提交于
Set the local general bytes and default value for NFCIP1 Target/Initiator registries if the protocol is NFC-DEP Signed-off-by: NArron Wang <arron.wang@intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
- 25 9月, 2012 6 次提交
-
-
由 Waldemar Rymarkiewicz 提交于
xmit callback provided by a driver encapsulates upper layers data and sends it to the hardware. So, HCI does not know the exact amount of data being sent and thus can't handle partially sent frames properly. Therefore, the driver must return 0 for completely sent frame or negative for failure. Signed-off-by: NWaldemar Rymarkiewicz <waldemar.rymarkiewicz@tieto.com> Acked-by: NEric Lapuyade <eric.lapuyade@intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Eric Lapuyade 提交于
The previous shdlc HCI driver and its header are removed from the tree. PN544 now registers directly with HCI and passes the name of the llc it requires (shdlc). HCI instantiation now allocates the required llc instance. The llc is started when the HCI device is brought up. Signed-off-by: NEric Lapuyade <eric.lapuyade@intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Eric Lapuyade 提交于
This is used by HCI drivers such as the one for the pn544 which require communications between HCI and the chip to use shdlc. Signed-off-by: NEric Lapuyade <eric.lapuyade@intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Eric Lapuyade 提交于
This is a passthrough llc. It can be used by HCI drivers that don't need link layer control. HCI will then write directly to the driver, and driver will deliver incoming frames directly to HCI without any processing. Signed-off-by: NEric Lapuyade <eric.lapuyade@intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Eric Lapuyade 提交于
The LLC layer manages modules that control the link layer protocol (such as shdlc) between HCI and an HCI driver. The driver must simply specify the required llc when it registers with HCI. Signed-off-by: NEric Lapuyade <eric.lapuyade@intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Eric Lapuyade 提交于
This enables the completion callback to be called from a different context, preventing a possible deadlock if the callback resulted in the invocation of a nested call to the currently locked nfc_dev. This is also more in line with the im_transceive nfc_ops for NFC Core or NCI drivers which already behave asynchronously. Signed-off-by: NEric Lapuyade <eric.lapuyade@intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-