- 06 1月, 2016 1 次提交
-
-
由 Sergey Senozhatsky 提交于
Our global init task can have sub-threads, so ->pid check is not reliable enough for is_global_init(), we need to check tgid instead. This has been spotted by Oleg and a fix was proposed by Richard a long time ago (see the link below). Oleg wrote: : Because is_global_init() is only true for the main thread of /sbin/init. : : Just look at oom_unkillable_task(). It tries to not kill init. But, say, : select_bad_process() can happily find a sub-thread of is_global_init() : and still kill it. I recently hit the problem in question; re-sending the patch (to the best of my knowledge it has never been submitted) with updated function comment. Credit goes to Oleg and Richard. Suggested-by: NRichard Guy Briggs <rgb@redhat.com> Reported-by: NOleg Nesterov <oleg@redhat.com> Signed-off-by: NSergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Acked-by: NSerge Hallyn <serge.hallyn@canonical.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Eric W . Biederman <ebiederm@xmission.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Serge E . Hallyn <serge.hallyn@ubuntu.com> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://www.redhat.com/archives/linux-audit/2013-December/msg00086.htmlSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 10 11月, 2015 1 次提交
-
-
由 Ross Zwisler 提交于
Add two new flags to the existing coredump mechanism for ELF files to allow us to explicitly filter DAX mappings. This is desirable because DAX mappings, like hugetlb mappings, have the potential to be very large. Update the coredump_filter documentation in Documentation/filesystems/proc.txt so that it addresses the new DAX coredump flags. Also update the documented default value of coredump_filter to be consistent with the core(5) man page. The documentation being updated talks about bit 4, Dump ELF headers, which is enabled if CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS is turned on in the kernel config. This kernel config option defaults to "y" if both ELF binaries and coredump are enabled. Signed-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Acked-by: NJeff Moyer <jmoyer@redhat.com> Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
- 07 11月, 2015 3 次提交
-
-
由 Oleg Nesterov 提交于
jffs2_garbage_collect_thread() can race with SIGCONT and sleep in TASK_STOPPED state after it was already sent. Add the new helper, kernel_signal_stop(), which does this correctly. Signed-off-by: NOleg Nesterov <oleg@redhat.com> Reviewed-by: NTejun Heo <tj@kernel.org> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Felipe Balbi <balbi@ti.com> Cc: Markus Pargmann <mpa@pengutronix.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Oleg Nesterov 提交于
1. Rename dequeue_signal_lock() to kernel_dequeue_signal(). This matches another "for kthreads only" kernel_sigaction() helper. 2. Remove the "tsk" and "mask" arguments, they are always current and current->blocked. And it is simply wrong if tsk != current. 3. We could also remove the 3rd "siginfo_t *info" arg but it looks potentially useful. However we can simplify the callers if we change kernel_dequeue_signal() to accept info => NULL. 4. Remove _irqsave, it is never called from atomic context. Signed-off-by: NOleg Nesterov <oleg@redhat.com> Reviewed-by: NTejun Heo <tj@kernel.org> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Felipe Balbi <balbi@ti.com> Cc: Markus Pargmann <mpa@pengutronix.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Oleg Nesterov 提交于
It is hardly possible to enumerate all problems with block_all_signals() and unblock_all_signals(). Just for example, 1. block_all_signals(SIGSTOP/etc) simply can't help if the caller is multithreaded. Another thread can dequeue the signal and force the group stop. 2. Even is the caller is single-threaded, it will "stop" anyway. It will not sleep, but it will spin in kernel space until SIGCONT or SIGKILL. And a lot more. In short, this interface doesn't work at all, at least the last 10+ years. Daniel said: Yeah the only times I played around with the DRM_LOCK stuff was when old drivers accidentally deadlocked - my impression is that the entire DRM_LOCK thing was never really tested properly ;-) Hence I'm all for purging where this leaks out of the drm subsystem. Signed-off-by: NOleg Nesterov <oleg@redhat.com> Acked-by: NDaniel Vetter <daniel.vetter@ffwll.ch> Acked-by: NDave Airlie <airlied@redhat.com> Cc: Richard Weinberger <richard@nod.at> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 06 11月, 2015 3 次提交
-
-
由 Tejun Heo 提交于
Currently, try_charge() tries to reclaim memory synchronously when the high limit is breached; however, if the allocation doesn't have __GFP_WAIT, synchronous reclaim is skipped. If a process performs only speculative allocations, it can blow way past the high limit. This is actually easily reproducible by simply doing "find /". slab/slub allocator tries speculative allocations first, so as long as there's memory which can be consumed without blocking, it can keep allocating memory regardless of the high limit. This patch makes try_charge() always punt the over-high reclaim to the return-to-userland path. If try_charge() detects that high limit is breached, it adds the overage to current->memcg_nr_pages_over_high and schedules execution of mem_cgroup_handle_over_high() which performs synchronous reclaim from the return-to-userland path. As long as kernel doesn't have a run-away allocation spree, this should provide enough protection while making kmemcg behave more consistently. It also has the following benefits. - All over-high reclaims can use GFP_KERNEL regardless of the specific gfp mask in use, e.g. GFP_NOFS, when the limit was breached. - It copes with prio inversion. Previously, a low-prio task with small memory.high might perform over-high reclaim with a bunch of locks held. If a higher prio task needed any of these locks, it would have to wait until the low prio task finished reclaim and released the locks. By handing over-high reclaim to the task exit path this issue can be avoided. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NMichal Hocko <mhocko@kernel.org> Reviewed-by: NVladimir Davydov <vdavydov@parallels.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Tejun Heo 提交于
task_struct->memcg_oom is a sub-struct containing fields which are used for async memcg oom handling. Most task_struct fields aren't packaged this way and it can lead to unnecessary alignment paddings. This patch flattens it. * task.memcg_oom.memcg -> task.memcg_in_oom * task.memcg_oom.gfp_mask -> task.memcg_oom_gfp_mask * task.memcg_oom.order -> task.memcg_oom_order * task.memcg_oom.may_oom -> task.memcg_may_oom In addition, task.memcg_may_oom is relocated to where other bitfields are which reduces the size of task_struct. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NMichal Hocko <mhocko@suse.com> Reviewed-by: NVladimir Davydov <vdavydov@parallels.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Don Zickus 提交于
The only way to enable a hardlockup to panic the machine is to set 'nmi_watchdog=panic' on the kernel command line. This makes it awkward for end users and folks who want to run automate tests (like myself). Mimic the softlockup_panic knob and create a /proc/sys/kernel/hardlockup_panic knob. Signed-off-by: NDon Zickus <dzickus@redhat.com> Cc: Ulrich Obergfell <uobergfe@redhat.com> Acked-by: NJiri Kosina <jkosina@suse.cz> Reviewed-by: NAaron Tomlin <atomlin@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 15 10月, 2015 2 次提交
-
-
由 Jason Low 提交于
It was found while running a database workload on large systems that significant time was spent trying to acquire the sighand lock. The issue was that whenever an itimer expired, many threads ended up simultaneously trying to send the signal. Most of the time, nothing happened after acquiring the sighand lock because another thread had just already sent the signal and updated the "next expire" time. The fastpath_timer_check() didn't help much since the "next expire" time was updated after the threads exit fastpath_timer_check(). This patch addresses this by having the thread_group_cputimer structure maintain a boolean to signify when a thread in the group is already checking for process wide timers, and adds extra logic in the fastpath to check the boolean. Signed-off-by: NJason Low <jason.low2@hp.com> Reviewed-by: NOleg Nesterov <oleg@redhat.com> Reviewed-by: NGeorge Spelvin <linux@horizon.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: hideaki.kimura@hpe.com Cc: terry.rudd@hpe.com Cc: scott.norton@hpe.com Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1444849677-29330-5-git-send-email-jason.low2@hp.comSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
由 Jason Low 提交于
In the next patch in this series, a new field 'checking_timer' will be added to 'struct thread_group_cputimer'. Both this and the existing 'running' integer field are just used as boolean values. To save space in the structure, we can make both of these fields booleans. This is a preparatory patch to convert the existing running integer field to a boolean. Suggested-by: NGeorge Spelvin <linux@horizon.com> Signed-off-by: NJason Low <jason.low2@hp.com> Reviewed: George Spelvin <linux@horizon.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: hideaki.kimura@hpe.com Cc: terry.rudd@hpe.com Cc: scott.norton@hpe.com Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1444849677-29330-4-git-send-email-jason.low2@hp.comSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 13 10月, 2015 1 次提交
-
-
由 Alexei Starovoitov 提交于
since eBPF programs and maps use kernel memory consider it 'locked' memory from user accounting point of view and charge it against RLIMIT_MEMLOCK limit. This limit is typically set to 64Kbytes by distros, so almost all bpf+tracing programs would need to increase it, since they use maps, but kernel charges maximum map size upfront. For example the hash map of 1024 elements will be charged as 64Kbyte. It's inconvenient for current users and changes current behavior for root, but probably worth doing to be consistent root vs non-root. Similar accounting logic is done by mmap of perf_event. Signed-off-by: NAlexei Starovoitov <ast@plumgrid.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 06 10月, 2015 2 次提交
-
-
由 Peter Zijlstra 提交于
Assuming units of PREEMPT_DISABLE_OFFSET for preempt_count() numbers. Now that TASK_DEAD no longer results in preempt_count() == 3 during scheduling, we will always call context_switch() with preempt_count() == 2. However, we don't always end up with preempt_count() == 2 in finish_task_switch() because new tasks get created with preempt_count() == 1. Create FORK_PREEMPT_COUNT and set it to 2 and use that in the right places. Note that we cannot use INIT_PREEMPT_COUNT as that serves another purpose (boot). After this, preempt_count() is invariant across the context switch, with exception of PREEMPT_ACTIVE. Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
As per the following commit: d86ee480 ("sched: optimize cond_resched()") we need PREEMPT_ACTIVE to avoid cond_resched() from working before the scheduler is set up. However, keeping preemption disabled should do the same thing already, making the PREEMPT_ACTIVE part entirely redundant. The only complication is !PREEMPT_COUNT kernels, where PREEMPT_DISABLED ends up being 0. Instead we use an unconditional PREEMPT_OFFSET to set preempt_count() even on !PREEMPT_COUNT kernels. Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: NSteven Rostedt <rostedt@goodmis.org> Reviewed-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: linux-kernel@vger.kernel.org Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 23 9月, 2015 1 次提交
-
-
由 Juergen Gross 提交于
The 'sched_domain_topology' variable is only used within kernel/sched/core.c. Make it static. Signed-off-by: NJuergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1442918939-9907-1-git-send-email-jgross@suse.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 21 9月, 2015 1 次提交
-
-
由 Paul E. McKenney 提交于
The current preemptible-RCU expedited grace-period algorithm invokes synchronize_sched_expedited() to enqueue all tasks currently running in a preemptible-RCU read-side critical section, then waits for all the ->blkd_tasks lists to drain. This works, but results in both an IPI and a double context switch even on CPUs that do not happen to be running in a preemptible RCU read-side critical section. This commit implements a new algorithm that causes less OS jitter. This new algorithm IPIs all online CPUs that are not idle (from an RCU perspective), but refrains from self-IPIs. If a CPU receiving this IPI is not in a preemptible RCU read-side critical section (or is just now exiting one), it pushes quiescence up the rcu_node tree, otherwise, it sets a flag that will be handled by the upcoming outermost rcu_read_unlock(), which will then push quiescence up the tree. The expedited grace period must of course wait on any pre-existing blocked readers, and newly blocked readers must be queued carefully based on the state of both the normal and the expedited grace periods. This new queueing approach also avoids the need to update boost state, courtesy of the fact that blocked tasks are no longer ever migrated to the root rcu_node structure. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
- 17 9月, 2015 1 次提交
-
-
由 Tejun Heo 提交于
Note: This commit was originally committed as d59cfc09 but got reverted by 0c986253 due to the performance regression from the percpu_rwsem write down/up operations added to cgroup task migration path. percpu_rwsem changes which alleviate the performance issue are pending for v4.4-rc1 merge window. Re-apply. The cgroup side of threadgroup locking uses signal_struct->group_rwsem to synchronize against threadgroup changes. This per-process rwsem adds small overhead to thread creation, exit and exec paths, forces cgroup code paths to do lock-verify-unlock-retry dance in a couple places and makes it impossible to atomically perform operations across multiple processes. This patch replaces signal_struct->group_rwsem with a global percpu_rwsem cgroup_threadgroup_rwsem which is cheaper on the reader side and contained in cgroups proper. This patch converts one-to-one. This does make writer side heavier and lower the granularity; however, cgroup process migration is a fairly cold path, we do want to optimize thread operations over it and cgroup migration operations don't take enough time for the lower granularity to matter. Signed-off-by: NTejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/g/55F8097A.7000206@de.ibm.com Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org>
-
- 16 9月, 2015 1 次提交
-
-
由 Tejun Heo 提交于
This reverts commit d59cfc09. d59cfc09 ("sched, cgroup: replace signal_struct->group_rwsem with a global percpu_rwsem") and b5ba75b5 ("cgroup: simplify threadgroup locking") changed how cgroup synchronizes against task fork and exits so that it uses global percpu_rwsem instead of per-process rwsem; unfortunately, the write [un]lock paths of percpu_rwsem always involve synchronize_rcu_expedited() which turned out to be too expensive. Improvements for percpu_rwsem are scheduled to be merged in the coming v4.4-rc1 merge window which alleviates this issue. For now, revert the two commits to restore per-process rwsem. They will be re-applied for the v4.4-rc1 merge window. Signed-off-by: NTejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/g/55F8097A.7000206@de.ibm.comReported-by: NChristian Borntraeger <borntraeger@de.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: stable@vger.kernel.org # v4.2+
-
- 13 9月, 2015 2 次提交
-
-
由 Dietmar Eggemann 提交于
Besides the existing frequency scale-invariance correction factor, apply CPU scale-invariance correction factor to utilization tracking to compensate for any differences in compute capacity. This could be due to micro-architectural differences (i.e. instructions per seconds) between cpus in HMP systems (e.g. big.LITTLE), and/or differences in the current maximum frequency supported by individual cpus in SMP systems. In the existing implementation utilization isn't comparable between cpus as it is relative to the capacity of each individual CPU. Each segment of the sched_avg.util_sum geometric series is now scaled by the CPU performance factor too so the sched_avg.util_avg of each sched entity will be invariant from the particular CPU of the HMP/SMP system on which the sched entity is scheduled. With this patch, the utilization of a CPU stays relative to the max CPU performance of the fastest CPU in the system. In contrast to utilization (sched_avg.util_sum), load (sched_avg.load_sum) should not be scaled by compute capacity. The utilization metric is based on running time which only makes sense when cpus are _not_ fully utilized (utilization cannot go beyond 100% even if more tasks are added), where load is runnable time which isn't limited by the capacity of the CPU and therefore is a better metric for overloaded scenarios. If we run two nice-0 busy loops on two cpus with different compute capacity their load should be similar since their compute demands are the same. We have to assume that the compute demand of any task running on a fully utilized CPU (no spare cycles = 100% utilization) is high and the same no matter of the compute capacity of its current CPU, hence we shouldn't scale load by CPU capacity. Signed-off-by: NDietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: NMorten Rasmussen <morten.rasmussen@arm.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/55CE7409.1000700@arm.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Dietmar Eggemann 提交于
Apply frequency scaling correction factor to per-entity load tracking to make it frequency invariant. Currently, load appears bigger when the CPU is running slower which affects load-balancing decisions. Each segment of the sched_avg.load_sum geometric series is now scaled by the current frequency so that the sched_avg.load_avg of each sched entity will be invariant from frequency scaling. Moreover, cfs_rq.runnable_load_sum is scaled by the current frequency as well. Signed-off-by: NDietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: NMorten Rasmussen <morten.rasmussen@arm.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Acked-by: NVincent Guittot <vincent.guittot@linaro.org> Cc: Dietmar Eggemann <Dietmar.Eggemann@arm.com> Cc: Juri Lelli <Juri.Lelli@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: daniel.lezcano@linaro.org Cc: mturquette@baylibre.com Cc: pang.xunlei@zte.com.cn Cc: rjw@rjwysocki.net Cc: sgurrappadi@nvidia.com Cc: yuyang.du@intel.com Link: http://lkml.kernel.org/r/1439569394-11974-2-git-send-email-morten.rasmussen@arm.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 05 9月, 2015 2 次提交
-
-
由 Mel Gorman 提交于
If a PTE is unmapped and it's dirty then it was writable recently. Due to deferred TLB flushing, it's best to assume a writable TLB cache entry exists. With that assumption, the TLB must be flushed before any IO can start or the page is freed to avoid lost writes or data corruption. This patch defers flushing of potentially writable TLBs as long as possible. Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Dave Hansen <dave.hansen@intel.com> Acked-by: NIngo Molnar <mingo@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
An IPI is sent to flush remote TLBs when a page is unmapped that was potentially accesssed by other CPUs. There are many circumstances where this happens but the obvious one is kswapd reclaiming pages belonging to a running process as kswapd and the task are likely running on separate CPUs. On small machines, this is not a significant problem but as machine gets larger with more cores and more memory, the cost of these IPIs can be high. This patch uses a simple structure that tracks CPUs that potentially have TLB entries for pages being unmapped. When the unmapping is complete, the full TLB is flushed on the assumption that a refill cost is lower than flushing individual entries. Architectures wishing to do this must give the following guarantee. If a clean page is unmapped and not immediately flushed, the architecture must guarantee that a write to that linear address from a CPU with a cached TLB entry will trap a page fault. This is essentially what the kernel already depends on but the window is much larger with this patch applied and is worth highlighting. The architecture should consider whether the cost of the full TLB flush is higher than sending an IPI to flush each individual entry. An additional architecture helper called flush_tlb_local is required. It's a trivial wrapper with some accounting in the x86 case. The impact of this patch depends on the workload as measuring any benefit requires both mapped pages co-located on the LRU and memory pressure. The case with the biggest impact is multiple processes reading mapped pages taken from the vm-scalability test suite. The test case uses NR_CPU readers of mapped files that consume 10*RAM. Linear mapped reader on a 4-node machine with 64G RAM and 48 CPUs 4.2.0-rc1 4.2.0-rc1 vanilla flushfull-v7 Ops lru-file-mmap-read-elapsed 159.62 ( 0.00%) 120.68 ( 24.40%) Ops lru-file-mmap-read-time_range 30.59 ( 0.00%) 2.80 ( 90.85%) Ops lru-file-mmap-read-time_stddv 6.70 ( 0.00%) 0.64 ( 90.38%) 4.2.0-rc1 4.2.0-rc1 vanilla flushfull-v7 User 581.00 611.43 System 5804.93 4111.76 Elapsed 161.03 122.12 This is showing that the readers completed 24.40% faster with 29% less system CPU time. From vmstats, it is known that the vanilla kernel was interrupted roughly 900K times per second during the steady phase of the test and the patched kernel was interrupts 180K times per second. The impact is lower on a single socket machine. 4.2.0-rc1 4.2.0-rc1 vanilla flushfull-v7 Ops lru-file-mmap-read-elapsed 25.33 ( 0.00%) 20.38 ( 19.54%) Ops lru-file-mmap-read-time_range 0.91 ( 0.00%) 1.44 (-58.24%) Ops lru-file-mmap-read-time_stddv 0.28 ( 0.00%) 0.47 (-65.34%) 4.2.0-rc1 4.2.0-rc1 vanilla flushfull-v7 User 58.09 57.64 System 111.82 76.56 Elapsed 27.29 22.55 It's still a noticeable improvement with vmstat showing interrupts went from roughly 500K per second to 45K per second. The patch will have no impact on workloads with no memory pressure or have relatively few mapped pages. It will have an unpredictable impact on the workload running on the CPU being flushed as it'll depend on how many TLB entries need to be refilled and how long that takes. Worst case, the TLB will be completely cleared of active entries when the target PFNs were not resident at all. [sasha.levin@oracle.com: trace tlb flush after disabling preemption in try_to_unmap_flush] Signed-off-by: NMel Gorman <mgorman@suse.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Dave Hansen <dave.hansen@intel.com> Acked-by: NIngo Molnar <mingo@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NSasha Levin <sasha.levin@oracle.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 12 8月, 2015 1 次提交
-
-
由 Peter Zijlstra 提交于
Because sched_setscheduler() checks p->flags & PF_NO_SETAFFINITY without locks, a caller might observe an old value and race with the set_cpus_allowed_ptr() call from __kthread_bind() and effectively undo it: __kthread_bind() do_set_cpus_allowed() <SYSCALL> sched_setaffinity() if (p->flags & PF_NO_SETAFFINITIY) set_cpus_allowed_ptr() p->flags |= PF_NO_SETAFFINITY Fix the bug by putting everything under the regular scheduler locks. This also closes a hole in the serialization of task_struct::{nr_,}cpus_allowed. Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Acked-by: NTejun Heo <tj@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dedekind1@gmail.com Cc: juri.lelli@arm.com Cc: mgorman@suse.de Cc: riel@redhat.com Cc: rostedt@goodmis.org Link: http://lkml.kernel.org/r/20150515154833.545640346@infradead.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 03 8月, 2015 4 次提交
-
-
由 Yuyang Du 提交于
The idea of runnable load average (let runnable time contribute to weight) was proposed by Paul Turner and Ben Segall, and it is still followed by this rewrite. This rewrite aims to solve the following issues: 1. cfs_rq's load average (namely runnable_load_avg and blocked_load_avg) is updated at the granularity of an entity at a time, which results in the cfs_rq's load average is stale or partially updated: at any time, only one entity is up to date, all other entities are effectively lagging behind. This is undesirable. To illustrate, if we have n runnable entities in the cfs_rq, as time elapses, they certainly become outdated: t0: cfs_rq { e1_old, e2_old, ..., en_old } and when we update: t1: update e1, then we have cfs_rq { e1_new, e2_old, ..., en_old } t2: update e2, then we have cfs_rq { e1_old, e2_new, ..., en_old } ... We solve this by combining all runnable entities' load averages together in cfs_rq's avg, and update the cfs_rq's avg as a whole. This is based on the fact that if we regard the update as a function, then: w * update(e) = update(w * e) and update(e1) + update(e2) = update(e1 + e2), then w1 * update(e1) + w2 * update(e2) = update(w1 * e1 + w2 * e2) therefore, by this rewrite, we have an entirely updated cfs_rq at the time we update it: t1: update cfs_rq { e1_new, e2_new, ..., en_new } t2: update cfs_rq { e1_new, e2_new, ..., en_new } ... 2. cfs_rq's load average is different between top rq->cfs_rq and other task_group's per CPU cfs_rqs in whether or not blocked_load_average contributes to the load. The basic idea behind runnable load average (the same for utilization) is that the blocked state is taken into account as opposed to only accounting for the currently runnable state. Therefore, the average should include both the runnable/running and blocked load averages. This rewrite does that. In addition, we also combine runnable/running and blocked averages of all entities into the cfs_rq's average, and update it together at once. This is based on the fact that: update(runnable) + update(blocked) = update(runnable + blocked) This significantly reduces the code as we don't need to separately maintain/update runnable/running load and blocked load. 3. How task_group entities' share is calculated is complex and imprecise. We reduce the complexity in this rewrite to allow a very simple rule: the task_group's load_avg is aggregated from its per CPU cfs_rqs's load_avgs. Then group entity's weight is simply proportional to its own cfs_rq's load_avg / task_group's load_avg. To illustrate, if a task_group has { cfs_rq1, cfs_rq2, ..., cfs_rqn }, then, task_group_avg = cfs_rq1_avg + cfs_rq2_avg + ... + cfs_rqn_avg, then cfs_rqx's entity's share = cfs_rqx_avg / task_group_avg * task_group's share To sum up, this rewrite in principle is equivalent to the current one, but fixes the issues described above. Turns out, it significantly reduces the code complexity and hence increases clarity and efficiency. In addition, the new averages are more smooth/continuous (no spurious spikes and valleys) and updated more consistently and quickly to reflect the load dynamics. As a result, we have less load tracking overhead, better performance, and especially better power efficiency due to more balanced load. Signed-off-by: NYuyang Du <yuyang.du@intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: arjan@linux.intel.com Cc: bsegall@google.com Cc: dietmar.eggemann@arm.com Cc: fengguang.wu@intel.com Cc: len.brown@intel.com Cc: morten.rasmussen@arm.com Cc: pjt@google.com Cc: rafael.j.wysocki@intel.com Cc: umgwanakikbuti@gmail.com Cc: vincent.guittot@linaro.org Link: http://lkml.kernel.org/r/1436918682-4971-3-git-send-email-yuyang.du@intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Konstantin Khlebnikov 提交于
These functions check should_resched() before unlocking spinlock/bh-enable: preempt_count always non-zero => should_resched() always returns false. cond_resched_lock() worked iff spin_needbreak is set. This patch adds argument "preempt_offset" to should_resched(). preempt_count offset constants for that: PREEMPT_DISABLE_OFFSET - offset after preempt_disable() PREEMPT_LOCK_OFFSET - offset after spin_lock() SOFTIRQ_DISABLE_OFFSET - offset after local_bh_distable() SOFTIRQ_LOCK_OFFSET - offset after spin_lock_bh() Signed-off-by: NKonstantin Khlebnikov <khlebnikov@yandex-team.ru> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Graf <agraf@suse.de> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: David Vrabel <david.vrabel@citrix.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: bdb43806 ("sched: Extract the basic add/sub preempt_count modifiers") Link: http://lkml.kernel.org/r/20150715095204.12246.98268.stgit@buzzSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Mike Galbraith 提交于
Josef Bacik reported that Facebook sees better performance with their 1:N load (1 dispatch/node, N workers/node) when carrying an old patch to try very hard to wake to an idle CPU. While looking at wake_wide(), I noticed that it doesn't pay attention to the wakeup of a many partner waker, returning 1 only when waking one of its many partners. Correct that, letting explicit domain flags override the heuristic. While at it, adjust task_struct bits, we don't need a 64-bit counter. Tested-by: NJosef Bacik <jbacik@fb.com> Signed-off-by: NMike Galbraith <umgwanakikbuti@gmail.com> [ Tidy things up. ] Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: kernel-team<Kernel-team@fb.com> Cc: morten.rasmussen@arm.com Cc: riel@redhat.com Link: http://lkml.kernel.org/r/1436888390.7983.49.camel@gmail.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
While the current code guarantees monotonicity for stime and utime independently of one another, it does not guarantee that the sum of both is equal to the total time we started out with. This confuses things (and peoples) who look at this sum, like top, and will report >100% usage followed by a matching period of 0%. Rework the code to provide both individual monotonicity and a coherent sum. Suggested-by: NFredrik Markstrom <fredrik.markstrom@gmail.com> Reported-by: NFredrik Markstrom <fredrik.markstrom@gmail.com> Tested-by: NFredrik Markstrom <fredrik.markstrom@gmail.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Stanislaw Gruszka <sgruszka@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: jason.low2@hp.com Cc: linux-kernel@vger.kernel.org Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 18 7月, 2015 2 次提交
-
-
由 Ingo Molnar 提交于
Don't burden architectures without dynamic task_struct sizing with the overhead of dynamic sizing. Also optimize the x86 code a bit by caching task_struct_size. Acked-and-Tested-by: NDave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave@sr71.net> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1437128892-9831-3-git-send-email-mingo@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Dave Hansen 提交于
The FPU rewrite removed the dynamic allocations of 'struct fpu'. But, this potentially wastes massive amounts of memory (2k per task on systems that do not have AVX-512 for instance). Instead of having a separate slab, this patch just appends the space that we need to the 'task_struct' which we dynamically allocate already. This saves from doing an extra slab allocation at fork(). The only real downside here is that we have to stick everything and the end of the task_struct. But, I think the BUILD_BUG_ON()s I stuck in there should keep that from being too fragile. Signed-off-by: NDave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave@sr71.net> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1437128892-9831-2-git-send-email-mingo@kernel.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 04 7月, 2015 2 次提交
-
-
由 Srikar Dronamraju 提交于
Currently print_cfs_rq() is declared in include/linux/sched.h. However it's not used outside kernel/sched. Hence move the declaration to kernel/sched/sched.h Also some functions are only available for CONFIG_SCHED_DEBUG=y. Hence move the declarations to within the #ifdef. Signed-off-by: NSrikar Dronamraju <srikar@linux.vnet.ibm.com> Acked-by: NRik van Riel <riel@redhat.com> Cc: Iulia Manda <iulia.manda21@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1435252903-1081-2-git-send-email-srikar@linux.vnet.ibm.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Naveen N. Rao 提交于
Both CONFIG_SCHEDSTATS=y and CONFIG_TASK_DELAY_ACCT=y track task sched_info, which results in ugly #if clauses. Simplify the code by introducing a synthethic CONFIG_SCHED_INFO switch, selected by both. Signed-off-by: NNaveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: a.p.zijlstra@chello.nl Cc: ricklind@us.ibm.com Link: http://lkml.kernel.org/r/8d19eef800811a94b0f91bcbeb27430a884d7433.1435255405.git.naveen.n.rao@linux.vnet.ibm.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 26 6月, 2015 1 次提交
-
-
由 Josh Triplett 提交于
clone has some of the quirkiest syscall handling in the kernel, with a pile of special cases, historical curiosities, and architecture-specific calling conventions. In particular, clone with CLONE_SETTLS accepts a parameter "tls" that the C entry point completely ignores and some assembly entry points overwrite; instead, the low-level arch-specific code pulls the tls parameter out of the arch-specific register captured as part of pt_regs on entry to the kernel. That's a massive hack, and it makes the arch-specific code only work when called via the specific existing syscall entry points; because of this hack, any new clone-like system call would have to accept an identical tls argument in exactly the same arch-specific position, rather than providing a unified system call entry point across architectures. The first patch allows architectures to handle the tls argument via normal C parameter passing, if they opt in by selecting HAVE_COPY_THREAD_TLS. The second patch makes 32-bit and 64-bit x86 opt into this. These two patches came out of the clone4 series, which isn't ready for this merge window, but these first two cleanup patches were entirely uncontroversial and have acks. I'd like to go ahead and submit these two so that other architectures can begin building on top of this and opting into HAVE_COPY_THREAD_TLS. However, I'm also happy to wait and send these through the next merge window (along with v3 of clone4) if anyone would prefer that. This patch (of 2): clone with CLONE_SETTLS accepts an argument to set the thread-local storage area for the new thread. sys_clone declares an int argument tls_val in the appropriate point in the argument list (based on the various CLONE_BACKWARDS variants), but doesn't actually use or pass along that argument. Instead, sys_clone calls do_fork, which calls copy_process, which calls the arch-specific copy_thread, and copy_thread pulls the corresponding syscall argument out of the pt_regs captured at kernel entry (knowing what argument of clone that architecture passes tls in). Apart from being awful and inscrutable, that also only works because only one code path into copy_thread can pass the CLONE_SETTLS flag, and that code path comes from sys_clone with its architecture-specific argument-passing order. This prevents introducing a new version of the clone system call without propagating the same architecture-specific position of the tls argument. However, there's no reason to pull the argument out of pt_regs when sys_clone could just pass it down via C function call arguments. Introduce a new CONFIG_HAVE_COPY_THREAD_TLS for architectures to opt into, and a new copy_thread_tls that accepts the tls parameter as an additional unsigned long (syscall-argument-sized) argument. Change sys_clone's tls argument to an unsigned long (which does not change the ABI), and pass that down to copy_thread_tls. Architectures that don't opt into copy_thread_tls will continue to ignore the C argument to sys_clone in favor of the pt_regs captured at kernel entry, and thus will be unable to introduce new versions of the clone syscall. Patch co-authored by Josh Triplett and Thiago Macieira. Signed-off-by: NJosh Triplett <josh@joshtriplett.org> Acked-by: NAndy Lutomirski <luto@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Thiago Macieira <thiago.macieira@intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 19 6月, 2015 1 次提交
-
-
由 Thomas Gleixner 提交于
Eric reported that the timer_migration sysctl is not really nice performance wise as it needs to check at every timer insertion whether the feature is enabled or not. Further the check does not live in the timer code, so we have an extra function call which checks an extra cache line to figure out that it is disabled. We can do better and store that information in the per cpu (hr)timer bases. I pondered to use a static key, but that's a nightmare to update from the nohz code and the timer base cache line is hot anyway when we select a timer base. The old logic enabled the timer migration unconditionally if CONFIG_NO_HZ was set even if nohz was disabled on the kernel command line. With this modification, we start off with migration disabled. The user visible sysctl is still set to enabled. If the kernel switches to NOHZ migration is enabled, if the user did not disable it via the sysctl prior to the switch. If nohz=off is on the kernel command line, migration stays disabled no matter what. Before: 47.76% hog [.] main 14.84% [kernel] [k] _raw_spin_lock_irqsave 9.55% [kernel] [k] _raw_spin_unlock_irqrestore 6.71% [kernel] [k] mod_timer 6.24% [kernel] [k] lock_timer_base.isra.38 3.76% [kernel] [k] detach_if_pending 3.71% [kernel] [k] del_timer 2.50% [kernel] [k] internal_add_timer 1.51% [kernel] [k] get_nohz_timer_target 1.28% [kernel] [k] __internal_add_timer 0.78% [kernel] [k] timerfn 0.48% [kernel] [k] wake_up_nohz_cpu After: 48.10% hog [.] main 15.25% [kernel] [k] _raw_spin_lock_irqsave 9.76% [kernel] [k] _raw_spin_unlock_irqrestore 6.50% [kernel] [k] mod_timer 6.44% [kernel] [k] lock_timer_base.isra.38 3.87% [kernel] [k] detach_if_pending 3.80% [kernel] [k] del_timer 2.67% [kernel] [k] internal_add_timer 1.33% [kernel] [k] __internal_add_timer 0.73% [kernel] [k] timerfn 0.54% [kernel] [k] wake_up_nohz_cpu Reported-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Paul McKenney <paulmck@linux.vnet.ibm.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Viresh Kumar <viresh.kumar@linaro.org> Cc: John Stultz <john.stultz@linaro.org> Cc: Joonwoo Park <joonwoop@codeaurora.org> Cc: Wenbo Wang <wenbo.wang@memblaze.com> Link: http://lkml.kernel.org/r/20150526224512.127050787@linutronix.deSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
- 05 6月, 2015 1 次提交
-
-
由 Oleg Nesterov 提交于
selinux_bprm_committed_creds()->__flush_signals() is not right, we shouldn't clear TIF_SIGPENDING unconditionally. There can be other reasons for signal_pending(): freezing(), JOBCTL_PENDING_MASK, and potentially more. Also change this code to check fatal_signal_pending() rather than SIGNAL_GROUP_EXIT, it looks a bit better. Now we can kill __flush_signals() before it finds another buggy user. Note: this code looks racy, we can flush a signal which was sent after the task SID has been updated. Signed-off-by: NOleg Nesterov <oleg@redhat.com> Signed-off-by: NPaul Moore <pmoore@redhat.com>
-
- 27 5月, 2015 2 次提交
-
-
由 Tejun Heo 提交于
The cgroup side of threadgroup locking uses signal_struct->group_rwsem to synchronize against threadgroup changes. This per-process rwsem adds small overhead to thread creation, exit and exec paths, forces cgroup code paths to do lock-verify-unlock-retry dance in a couple places and makes it impossible to atomically perform operations across multiple processes. This patch replaces signal_struct->group_rwsem with a global percpu_rwsem cgroup_threadgroup_rwsem which is cheaper on the reader side and contained in cgroups proper. This patch converts one-to-one. This does make writer side heavier and lower the granularity; however, cgroup process migration is a fairly cold path, we do want to optimize thread operations over it and cgroup migration operations don't take enough time for the lower granularity to matter. Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org>
-
由 Tejun Heo 提交于
threadgroup_change_begin/end() are used to mark the beginning and end of threadgroup modifying operations to allow code paths which require a threadgroup to stay stable across blocking operations to synchronize against those sections using threadgroup_lock/unlock(). It's currently implemented as a general mechanism in sched.h using per-signal_struct rwsem; however, this never grew non-cgroup use cases and becomes noop if !CONFIG_CGROUPS. It turns out that cgroups is gonna be better served with a different sycnrhonization scheme and is a bit silly to keep cgroups specific details as a general mechanism. What's general here is identifying the places where threadgroups are modified. This patch restructures threadgroup locking so that threadgroup_change_begin/end() become a place where subsystems which need to sycnhronize against threadgroup changes can hook into. cgroup_threadgroup_change_begin/end() which operate on the per-signal_struct rwsem are created and threadgroup_lock/unlock() are moved to cgroup.c and made static. This is pure reorganization which doesn't cause any functional changes. Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org>
-
- 19 5月, 2015 4 次提交
-
-
由 Peter Zijlstra 提交于
Currently people use TASK_INTERRUPTIBLE to idle kthreads and wait for 'work' because TASK_UNINTERRUPTIBLE contributes to the loadavg. Having all idle kthreads contribute to the loadavg is somewhat silly. Now mostly this works OK, because kthreads have all their signals masked. However there's a few sites where this is causing problems and TASK_UNINTERRUPTIBLE should be used, except for that loadavg issue. This patch adds TASK_NOLOAD which, when combined with TASK_UNINTERRUPTIBLE avoids the loadavg accounting. As most of imagined usage sites are loops where a thread wants to idle, waiting for work, a helper TASK_IDLE is introduced. Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Julian Anastasov <ja@ssi.bg> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: NeilBrown <neilb@suse.de> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 David Hildenbrand 提交于
Until now, pagefault_disable()/pagefault_enabled() used the preempt count to track whether in an environment with pagefaults disabled (can be queried via in_atomic()). This patch introduces a separate counter in task_struct to count the level of pagefault_disable() calls. We'll keep manipulating the preempt count to retain compatibility to existing pagefault handlers. It is now possible to verify whether in a pagefault_disable() envionment by calling pagefault_disabled(). In contrast to in_atomic() it will not be influenced by preempt_enable()/preempt_disable(). This patch is based on a patch from Ingo Molnar. Reviewed-and-tested-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: David.Laight@ACULAB.COM Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: airlied@linux.ie Cc: akpm@linux-foundation.org Cc: benh@kernel.crashing.org Cc: bigeasy@linutronix.de Cc: borntraeger@de.ibm.com Cc: daniel.vetter@intel.com Cc: heiko.carstens@de.ibm.com Cc: herbert@gondor.apana.org.au Cc: hocko@suse.cz Cc: hughd@google.com Cc: mst@redhat.com Cc: paulus@samba.org Cc: ralf@linux-mips.org Cc: schwidefsky@de.ibm.com Cc: yang.shi@windriver.com Link: http://lkml.kernel.org/r/1431359540-32227-2-git-send-email-dahi@linux.vnet.ibm.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Frederic Weisbecker 提交于
preempt_mask.h defines all the preempt_count semantics and related symbols: preempt, softirq, hardirq, nmi, preempt active, need resched, etc... preempt.h defines the accessors and mutators of preempt_count. But there is a messy dependency game around those two header files: * preempt_mask.h includes preempt.h in order to access preempt_count() * preempt_mask.h defines all preempt_count semantic and symbols except PREEMPT_NEED_RESCHED that is needed by asm/preempt.h Thus we need to define it from preempt.h, right before including asm/preempt.h, instead of defining it to preempt_mask.h with the other preempt_count symbols. Therefore the preempt_count semantics happen to be spread out. * We plan to introduce preempt_active_[enter,exit]() to consolidate preempt_schedule*() code. But we'll need to access both preempt_count mutators (preempt_count_add()) and preempt_count symbols (PREEMPT_ACTIVE, PREEMPT_OFFSET). The usual place to define preempt operations is in preempt.h but then we'll need symbols in preempt_mask.h which already includes preempt.h. So we end up with a ressource circle dependency. Lets merge preempt_mask.h into preempt.h to solve these dependency issues. This way we gather semantic symbols and operation definition of preempt_count in a single file. This is a dumb copy-paste merge. Further merge re-arrangments are performed in a subsequent patch to ease review. Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1431441711-29753-2-git-send-email-fweisbec@gmail.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
Since set_mb() is really about an smp_mb() -- not a IO/DMA barrier like mb() rename it to match the recent smp_load_acquire() and smp_store_release(). Suggested-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 15 5月, 2015 1 次提交
-
-
由 Al Viro 提交于
pointless forward declarations, stale comments Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-