- 03 3月, 2017 1 次提交
-
-
由 Chris Wilson 提交于
During reset_all_global_seqno() on seqno rollover, we have to update the HWS. This causes all in flight requests to be completed, so first we wait. However, we were only waiting for the requests themselves to be completed and clearing out the waiter rbtrees - what I had missed was the extra reference in execlists->port[]. Since commit fe9ae7a3 ("drm/i915/execlists: Detect an out-of-order context switch") we can detect when the request is retired before the context switch interrupt is completed. The impact should be neglible outside of debugging. Testcase: igt/gem_exec_whisper Signed-off-by: NChris Wilson <chris@chris-wilson.co.uk> Cc: Mika Kuoppala <mika.kuoppala@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20170303121947.20482-1-chris@chris-wilson.co.ukReviewed-by: NMika Kuoppala <mika.kuoppala@intel.com>
-
- 28 2月, 2017 3 次提交
-
-
由 Chris Wilson 提交于
A significant cost in setting up a wait is the overhead of enabling the interrupt. As we disable the interrupt whenever the queue of waiters is empty, if we are frequently waiting on alternating batches, we end up re-enabling the interrupt on a frequent basis. We do want to disable the interrupt during normal operations as under high load it may add several thousand interrupts/s - we have been known in the past to occupy whole cores with our interrupt handler after accidentally leaving user interrupts enabled. As a compromise, leave the interrupt enabled until the next IRQ, or the system is idle. This gives a small window for a waiter to keep the interrupt active and not be delayed by having to re-enable the interrupt. v2: Restore hangcheck/missed-irq detection for continuations v3: Be more careful restoring the hangcheck timer after reset v4: Be more careful restoring the fake irq after reset (if required!) v5: Redo changes to intel_engine_wakeup() v6: Factor out __intel_engine_wakeup() v7: Improve commentary for declaring a missed wakeup Signed-off-by: NChris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com> Reviewed-by: NTvrtko Ursulin <tvrtko.ursulin@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20170227205850.2828-4-chris@chris-wilson.co.uk
-
由 Chris Wilson 提交于
As execlists and other non-semaphore multi-engine devices coordinate between engines using interrupts, we can shave off a few 10s of microsecond of scheduling latency by doing the fence signaling from the interrupt as opposed to a RT kthread. (Realistically the delay adds about 1% to an individual cross-engine workload.) We only signal the first fence in order to limit the amount of work we move into the interrupt handler. We also have to remember that our breadcrumbs may be unordered with respect to the interrupt and so we still require the waiter process to perform some heavyweight coherency fixups, as well as traversing the tree of waiters. v2: No need for early exit in irq handler - it breaks the flow between patches and prevents the tracepoint v3: Restore rcu hold across irq signaling of request Signed-off-by: NChris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com> Reviewed-by: NTvrtko Ursulin <tvrtko.ursulin@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20170227205850.2828-2-chris@chris-wilson.co.uk
-
由 Chris Wilson 提交于
The two users of the return value from intel_engine_wakeup() are expecting different results. In the breadcrumbs hangcheck, we are using it to determine whether wake_up_process() detected the waiter was currently running (and if so we presume that it hasn't yet missed the interrupt). However, in the fake_irq path, we are using the return value as a check as to whether there are any waiters, and so we may incorrectly stop the fake-irq if that waiter was currently running. To handle the two different needs, return both bits of information! We uninline it from the irq path in preparation for the next patch which makes the irq hotpath special and relegates intel_engine_wakeup() to the slow fixup paths. v2: s/ret/result/ Signed-off-by: NChris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com> Reviewed-by: NTvrtko Ursulin <tvrtko.ursulin@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20170227205850.2828-1-chris@chris-wilson.co.uk
-
- 23 2月, 2017 4 次提交
-
-
由 Chris Wilson 提交于
If we preempt a request and remove it from the execution queue, we need to undo its global seqno and restart any waiters. Signed-off-by: NChris Wilson <chris@chris-wilson.co.uk> Reviewed-by: NTvrtko Ursulin <tvrtko.ursulin@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20170223074422.4125-11-chris@chris-wilson.co.uk
-
由 Chris Wilson 提交于
The plan in the near-future is to allow requests to be removed from the signaler. We can no longer then rely on holding a reference to the request for the duration it is in the signaling tree, and instead must obtain a reference to the request for the current operation using RCU. Signed-off-by: NChris Wilson <chris@chris-wilson.co.uk> Reviewed-by: NTvrtko Ursulin <tvrtko.ursulin@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20170223074422.4125-10-chris@chris-wilson.co.uk
-
由 Chris Wilson 提交于
A request is assigned a global seqno only when it is on the hardware execution queue. The global seqno can be used to maintain a list of requests on the same engine in retirement order, for example for constructing a priority queue for waiting. Prior to its execution, or if it is subsequently removed in the event of preemption, its global seqno is zero. As both insertion and removal from the execution queue may operate in IRQ context, it is not guarded by the usual struct_mutex BKL. Instead those relying on the global seqno must be prepared for its value to change between reads. Only when the request is complete can the global seqno be stable (due to the memory barriers on submitting the commands to the hardware to write the breadcrumb, if the HWS shows that it has passed the global seqno and the global seqno is unchanged after the read, it is indeed complete). Signed-off-by: NChris Wilson <chris@chris-wilson.co.uk> Reviewed-by: NTvrtko Ursulin <tvrtko.ursulin@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20170223074422.4125-9-chris@chris-wilson.co.uk
-
由 Chris Wilson 提交于
Replace the global device seqno with one for each engine, and account for in-flight seqno on each separately. This is consistent with dma-fence as each timeline has separate fence-contexts for each engine and a seqno is only ordered within a fence-context (i.e. seqno do not need to be ordered wrt to other engines, just ordered within a single engine). This is required to enable request rewinding for preemption on individual engines (we have to rewind the global seqno to avoid overflow, and we do not have to rewind all engines just to preempt one.) v2: Rename active_seqno to inflight_seqnos to more clearly indicate that it is a counter and not equivalent to the existing seqno. Update functions that operated on active_seqno similarly. Signed-off-by: NChris Wilson <chris@chris-wilson.co.uk> Reviewed-by: NJoonas Lahtinen <joonas.lahtinen@linux.intel.com> Reviewed-by: NTvrtko Ursulin <tvrtko.ursulin@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20170223074422.4125-3-chris@chris-wilson.co.uk
-
- 17 2月, 2017 3 次提交
-
-
由 Chris Wilson 提交于
When the timer expires for checking on interrupt processing, check to see if any interrupts arrived within the last time period. If real interrupts are still being delivered, we can be reassured that we haven't missed the final interrupt as the waiter will still be woken. Only once all activity ceases, do we have to worry about the waiter never being woken and so need to install a timer to kick the waiter for a slow arrival of a seqno. Signed-off-by: NChris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: NTvrtko Ursulin <tvrtko.ursulin@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20170217151304.16665-2-chris@chris-wilson.co.uk
-
由 Tvrtko Ursulin 提交于
We have a few open coded instances in the execlists code and an almost suitable helper in intel_ringbuf.c We can consolidate to a single helper if we change the existing helper to emit directly to ring buffer memory and move the space reservation outside it. v2: Drop memcpy for memset. (Chris Wilson) Signed-off-by: NTvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: NChris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/20170216122325.31391-2-tvrtko.ursulin@linux.intel.com
-
由 Tvrtko Ursulin 提交于
It is only used within intel_ringbuffer.c Signed-off-by: NTvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: NChris Wilson <chris@chris-wilson.oc.uk>
-
- 15 2月, 2017 1 次提交
-
-
由 Tvrtko Ursulin 提交于
intel_ring_workarounds_emit is exactly the same code. Signed-off-by: NTvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: NMika Kuoppala <mika.kuoppala@intel.com> Reviewed-by: NChris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/20170214150017.16058-1-tvrtko.ursulin@linux.intel.com
-
- 14 2月, 2017 2 次提交
-
-
由 Tvrtko Ursulin 提交于
This removes the usage of intel_ring_emit in favour of directly writing to the ring buffer. intel_ring_emit was preventing the compiler for optimising fetch and increment of the current ring buffer pointer and therefore generating very verbose code for every write. It had no useful purpose since all ringbuffer operations are started and ended with intel_ring_begin and intel_ring_advance respectively, with no bail out in the middle possible, so it is fine to increment the tail in intel_ring_begin and let the code manage the pointer itself. Useless instruction removal amounts to approximately two and half kilobytes of saved text on my build. Not sure if this has any measurable performance implications but executing a ton of useless instructions on fast paths cannot be good. v2: * Change return from intel_ring_begin to error pointer by popular demand. * Move tail increment to intel_ring_advance to enable some error checking. v3: * Move tail advance back into intel_ring_begin. * Rebase and tidy. v4: * Complete rebase after a few months since v3. v5: * Remove unecessary cast and fix !debug compile. (Chris Wilson) v6: * Make intel_ring_offset take request as well. * Fix recording of request postfix plus a sprinkle of asserts. (Chris Wilson) v7: * Use intel_ring_offset to get the postfix. (Chris Wilson) * Convert GVT code as well. v8: * Rename *out++ to *cs++. v9: * Fix GVT out to cs conversion in GVT. v10: * Rebase for new intel_ring_begin in selftests. Signed-off-by: NTvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Zhi Wang <zhi.a.wang@intel.com> Reviewed-by: NChris Wilson <chris@chris-wilson.co.uk> Acked-by: NJoonas Lahtinen <joonas.lahtinen@linux.intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20170214113242.29241-1-tvrtko.ursulin@linux.intel.com
-
由 Chris Wilson 提交于
First retroactive test, make sure that the waiters are in global seqno order after random inserts and removals. Signed-off-by: NChris Wilson <chris@chris-wilson.co.uk> Reviewed-by: NTvrtko Ursulin <tvrtko.ursulin@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20170213171558.20942-3-chris@chris-wilson.co.uk
-
- 11 2月, 2017 1 次提交
-
-
由 Chris Wilson 提交于
After a brief discussion, we settled on a naming convention for the conditional GEM debugging data that should be clearer to the casual user: GEM_DEBUG Signed-off-by: NChris Wilson <chris@chris-wilson.co.uk> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Mika Kuoppala <mika.kuoppala@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20170207102319.10910-1-chris@chris-wilson.co.ukReviewed-by: NJoonas Lahtinen <joonas.lahtinen@linux.intel.com>
-
- 07 2月, 2017 2 次提交
-
-
由 Chris Wilson 提交于
In commit 86aa7e76 ("drm/i915: Assert that the context-switch completion matches our context") I added a read to the irq tasklet handler that compared the on-chip status with that of our sw tracking, using an unguarded read of the request pointer to get the context and beyond. Whilst we hold a reference to the request, we do not hold anything on the context and if we are unlucky it may be reaped from a second thread retiring the request (since it may retire the request as soon as the breadcrumb is complete, even before we finish processing the context switch) as we try to read from the context pointer. Avoid the racy read from underneath the request by storing the expected result in the execlist_port[]. v2: Include commentary about port[].request being unprotected. Fixes: 86aa7e76 ("drm/i915: Assert that the context-switch completion matches our context") Reported-by: NMika Kuoppala <mika.kuoppala@intel.com> Testcase: igt/gem_ctx_create Signed-off-by: NChris Wilson <chris@chris-wilson.co.uk> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Mika Kuoppala <mika.kuoppala@intel.com> Reviewed-by: NMika Kuoppala <mika.kuoppala@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20170206170502.30944-2-chris@chris-wilson.co.uk
-
由 Chris Wilson 提交于
It is required that the caller declare the exact number of dwords they wish to write into the ring. This is required for two reasons, we need to allocate sufficient space for the entire command packet and we need to be sure that the contents are completely written to avoid executing stale data. The current interface requires for any bug to be caught in review, the reader has to carefully count the number of intel_ring_emit() between intel_ring_begin() and intel_ring_advance(). If we record the end of the packet of each intel_ring_begin() we can also have CI check for us. Signed-off-by: NChris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Reviewed-by: NMika Kuoppala <mika.kuoppala@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20170206170502.30944-1-chris@chris-wilson.co.uk
-
- 30 1月, 2017 1 次提交
-
-
由 Mika Kuoppala 提交于
Move the invariant parts of context desc setup from execlist init to context creation. This is advantageous when we need to create different templates based on the context parametrization, ie. for svm capable contexts. v2: s/create/default, remove engine->ctx_desc_template Cc: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: NMika Kuoppala <mika.kuoppala@intel.com> Reviewed-by: NChris Wilson <chris@chris-wilson.co.uk> Signed-off-by: NMika Kuoppala <mika.kuoppala@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/1485522189-31984-1-git-send-email-mika.kuoppala@intel.com
-
- 24 1月, 2017 3 次提交
-
-
由 Chris Wilson 提交于
Mark when we run the execlist tasklet following the interrupt, so we don't probe a potentially uninitialised register when submitting the contexts multiple times before the hardware responds. v2: Use a shared engine->irq_posted v3: Always use locked bitops to be sure of atomicity wrt to other bits in the mask. Signed-off-by: NChris Wilson <chris@chris-wilson.co.uk> Cc: Mika Kuoppala <mika.kuoppala@intel.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20170124152021.26587-1-chris@chris-wilson.co.ukReviewed-by: NMika Kuoppala <mika.kuoppala@intel.com>
-
由 Chris Wilson 提交于
In the next patch, we will use the irq_posted technique for another engine interrupt, rather than use two members for the atomic updates, we can use two bits of one instead. First, we need to update the breadcrumbs to use the new common engine->irq_posted. v2: Use set_bit() rather than __set_bit() to ensure atomicity with respect to other bits in the mask Signed-off-by: NChris Wilson <chris@chris-wilson.co.uk> Cc: Mika Kuoppala <mika.kuoppala@intel.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20170124151805.26146-1-chris@chris-wilson.co.ukReviewed-by: NMika Kuoppala <mika.kuoppala@intel.com>
-
由 Chris Wilson 提交于
We need to prevent resubmission of the context immediately following an initial resubmit (which does a lite-restore preemption). Currently we do this by disabling all submission whilst the context is still active, but we can improve this by limiting the restriction to only until we receive notification from the context-switch interrupt that the lite-restore preemption is complete. Signed-off-by: NChris Wilson <chris@chris-wilson.co.uk> Reviewed-by: NMika Kuoppala <mika.kuoppala@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20170124110009.28947-2-chris@chris-wilson.co.uk
-
- 23 1月, 2017 1 次提交
-
-
由 Chris Wilson 提交于
This w/a (WaEnableForceRestoreInCtxtDescForVCS) was only used for preproduction hw, which is no longer in use. Remove the workaround to simplify the code. Signed-off-by: NChris Wilson <chris@chris-wilson.co.uk> Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20170123130601.2281-1-chris@chris-wilson.co.ukReviewed-by: NJoonas Lahtinen <joonas.lahtinen@linux.intel.com>
-
- 24 12月, 2016 1 次提交
-
-
由 Daniele Ceraolo Spurio 提交于
GuC will validate the ring offset and fail if it is in the [0, GUC_WOPCM_TOP) range. The bias is conditionally applied only if GuC loading is enabled (we can't check for guc submission enabled as in other cases because HuC loading requires this fix). Note that the default context is processed before enable_guc_loading is sanitized, so we might still apply the bias to its ring even if it is not needed. v2: compute the value during ctx init and pass it to intel_ring_pin (Chris), updated commit message Signed-off-by: NDaniele Ceraolo Spurio <daniele.ceraolospurio@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Michal Wajdeczko <michal.wajdeczko@intel.com> Cc: Arkadiusz Hiler <arkadiusz.hiler@intel.com> Cc: Anusha Srivatsa <anusha.srivatsa@intel.com> Cc: Michał Winiarski <michal.winiarski@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/1482537382-28584-1-git-send-email-daniele.ceraolospurio@intel.comReviewed-by: NChris Wilson <chris@chris-wilson.co.uk> Signed-off-by: NChris Wilson <chris@chris-wilson.co.uk>
-
- 19 12月, 2016 2 次提交
-
-
由 Chris Wilson 提交于
A fairly trivial move of a matching pair of routines (for preparing a request for construction) onto an engine vfunc. The ulterior motive is to be able to create a mock request implementation. Signed-off-by: NChris Wilson <chris@chris-wilson.co.uk> Reviewed-by: NTvrtko Ursulin <tvrtko.ursulin@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20161218153724.8439-7-chris@chris-wilson.co.uk
-
由 Chris Wilson 提交于
The requests conversion introduced a nasty bug where we could generate a new request in the middle of constructing a request if we needed to idle the system in order to evict space for a context. The request to idle would be executed (and waited upon) before the current one, creating a minor havoc in the seqno accounting, as we will consider the current request to already be completed (prior to deferred seqno assignment) but ring->last_retired_head would have been updated and still could allow us to overwrite the current request before execution. We also employed two different mechanisms to track the active context until it was switched out. The legacy method allowed for waiting upon an active context (it could forcibly evict any vma, including context's), but the execlists method took a step backwards by pinning the vma for the entire active lifespan of the context (the only way to evict was to idle the entire GPU, not individual contexts). However, to circumvent the tricky issue of locking (i.e. we cannot take struct_mutex at the time of i915_gem_request_submit(), where we would want to move the previous context onto the active tracker and unpin it), we take the execlists approach and keep the contexts pinned until retirement. The benefit of the execlists approach, more important for execlists than legacy, was the reduction in work in pinning the context for each request - as the context was kept pinned until idle, it could short circuit the pinning for all active contexts. We introduce new engine vfuncs to pin and unpin the context respectively. The context is pinned at the start of the request, and only unpinned when the following request is retired (this ensures that the context is idle and coherent in main memory before we unpin it). We move the engine->last_context tracking into the retirement itself (rather than during request submission) in order to allow the submission to be reordered or unwound without undue difficultly. And finally an ulterior motive for unifying context handling was to prepare for mock requests. v2: Rename to last_retired_context, split out legacy_context tracking for MI_SET_CONTEXT. Signed-off-by: NChris Wilson <chris@chris-wilson.co.uk> Reviewed-by: NTvrtko Ursulin <tvrtko.ursulin@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20161218153724.8439-3-chris@chris-wilson.co.uk
-
- 21 11月, 2016 2 次提交
-
-
由 Mika Kuoppala 提交于
Hangcheck state accumulation has gained more steps along the years, like head movement and more recently the subunit inactivity check. As the subunit sampling is only done if the previous state check showed inactivity, we have added more stages (and time) to reach a hang verdict. Asymmetric engine states led to different actual weight of 'one hangcheck unit' and it was demonstrated in some hangs that due to difference in stages, simpler engines were accused falsely of a hang as their scoring was much more quicker to accumulate above the hang treshold. To completely decouple the hangcheck guilty score from the hangcheck period, convert hangcheck score to a rough period of inactivity measurement. As these are tracked as jiffies, they are meaningful also across reset boundaries. This makes finding a guilty engine more accurate across multi engine activity scenarios, especially across asymmetric engines. We lose the ability to detect cross batch malicious attempts to hinder the progress. Plan is to move this functionality to be part of context banning which is more natural fit, later in the series. v2: use time_before macros (Chris) reinstate the pardoning of moving engine after hc (Chris) v3: avoid global state for per engine stall detection (Chris) v4: take timeline last retirement into account (Chris) v5: do debug print on pardoning, split out retirement timestamp (Chris) Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: NChris Wilson <chris@chris-wilson.co.uk> Signed-off-by: NMika Kuoppala <mika.kuoppala@intel.com>
-
由 Mika Kuoppala 提交于
In order to simplify hangcheck state keeping, split hangcheck per engine loop in three phases: state load, action, state save. Add few more hangcheck actions to separate between seqno, head and subunit movements. This helps to gather all the hangcheck actions under a single switch umbrella. Cc: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: NMika Kuoppala <mika.kuoppala@intel.com> Reviewed-by: NChris Wilson <chris@chris-wilson.co.uk> Signed-off-by: NMika Kuoppala <mika.kuoppala@intel.com>
-
- 15 11月, 2016 3 次提交
-
-
由 Chris Wilson 提交于
Track the priority of each request and use it to determine the order in which we submit requests to the hardware via execlists. The priority of the request is determined by the user (eventually via the context) but may be overridden at any time by the driver. When we set the priority of the request, we bump the priority of all of its dependencies to match - so that a high priority drawing operation is not stuck behind a background task. When the request is ready to execute (i.e. we have signaled the submit fence following completion of all its dependencies, including third party fences), we put the request into a priority sorted rbtree to be submitted to the hardware. If the request is higher priority than all pending requests, it will be submitted on the next context-switch interrupt as soon as the hardware has completed the current request. We do not currently preempt any current execution to immediately run a very high priority request, at least not yet. One more limitation, is that this is first implementation is for execlists only so currently limited to gen8/gen9. v2: Replace recursive priority inheritance bumping with an iterative depth-first search list. v3: list_next_entry() for walking lists v4: Explain how the dfs solves the recursion problem with PI. Signed-off-by: NChris Wilson <chris@chris-wilson.co.uk> Reviewed-by: NTvrtko Ursulin <tvrtko.ursulin@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20161114204105.29171-8-chris@chris-wilson.co.uk
-
由 Chris Wilson 提交于
The start of the scheduler, add a hook into request submission for the scheduler to see the arrival of new requests and prepare its runqueues. Signed-off-by: NChris Wilson <chris@chris-wilson.co.uk> Reviewed-by: NTvrtko Ursulin <tvrtko.ursulin@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20161114204105.29171-6-chris@chris-wilson.co.uk
-
由 Chris Wilson 提交于
The execlist_lock is now completely subsumed by the engine->timeline->lock, and so we can remove the redundant layer of locking. Signed-off-by: NChris Wilson <chris@chris-wilson.co.uk> Reviewed-by: NTvrtko Ursulin <tvrtko.ursulin@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20161114204105.29171-5-chris@chris-wilson.co.uk
-
- 09 11月, 2016 1 次提交
-
-
由 Chris Wilson 提交于
When we need to reset the global seqno on wraparound, we have to wait until the current rbtrees are drained (or otherwise the next waiter will be out of sequence). The current mechanism to kick and spin until complete, may exit too early as it would break if the target thread was currently running. Instead, we must wake up the threads, but keep spinning until the trees have been deleted. In order to appease Tvrtko, busy spin rather than yield(). Signed-off-by: NChris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20161108143719.32215-1-chris@chris-wilson.co.ukReviewed-by: NTvrtko Ursulin <tvrtko.ursulin@intel.com>
-
- 01 11月, 2016 1 次提交
-
-
由 Chris Wilson 提交于
Whilst waiting on a request, we may do so without holding any locks or any guards beyond a reference to the request. In order to avoid taking locks within request deallocation, we drop references to its timeline (via the context and ppgtt) upon retirement. We should avoid chasing such pointers outside of their control, in particular we inspect the request->timeline to see if we may restore the RPS waitboost for a client. If we instead look at the engine->timeline, we will have similar behaviour on both full-ppgtt and !full-ppgtt systems and reduce the amount of reward we give towards stalling clients (i.e. only if the client stalls and the GPU is uncontended does it reclaim its boost). This restores behaviour back to pre-timelines, whilst fixing: [ 645.078485] BUG: KASAN: use-after-free in i915_gem_object_wait_fence+0x1ee/0x2e0 at addr ffff8802335643a0 [ 645.078577] Read of size 4 by task gem_exec_schedu/28408 [ 645.078638] CPU: 1 PID: 28408 Comm: gem_exec_schedu Not tainted 4.9.0-rc2+ #64 [ 645.078724] Hardware name: / , BIOS PYBSWCEL.86A.0027.2015.0507.1758 05/07/2015 [ 645.078816] ffff88022daef9a0 ffffffff8143d059 ffff880235402a80 ffff880233564200 [ 645.078998] ffff88022daef9c8 ffffffff81229c5c ffff88022daefa48 ffff880233564200 [ 645.079172] ffff880235402a80 ffff88022daefa38 ffffffff81229ef0 000000008110a796 [ 645.079345] Call Trace: [ 645.079404] [<ffffffff8143d059>] dump_stack+0x68/0x9f [ 645.079467] [<ffffffff81229c5c>] kasan_object_err+0x1c/0x70 [ 645.079534] [<ffffffff81229ef0>] kasan_report_error+0x1f0/0x4b0 [ 645.079601] [<ffffffff8122a244>] kasan_report+0x34/0x40 [ 645.079676] [<ffffffff81634f5e>] ? i915_gem_object_wait_fence+0x1ee/0x2e0 [ 645.079741] [<ffffffff81229951>] __asan_load4+0x61/0x80 [ 645.079807] [<ffffffff81634f5e>] i915_gem_object_wait_fence+0x1ee/0x2e0 [ 645.079876] [<ffffffff816364bf>] i915_gem_object_wait+0x19f/0x590 [ 645.079944] [<ffffffff81636320>] ? i915_gem_object_wait_priority+0x500/0x500 [ 645.080016] [<ffffffff8110fb30>] ? debug_show_all_locks+0x1e0/0x1e0 [ 645.080084] [<ffffffff8110abdc>] ? check_chain_key+0x14c/0x210 [ 645.080157] [<ffffffff8110a796>] ? __lock_is_held+0x46/0xc0 [ 645.080226] [<ffffffff8163bc61>] ? i915_gem_set_domain_ioctl+0x141/0x690 [ 645.080296] [<ffffffff8163bcc2>] i915_gem_set_domain_ioctl+0x1a2/0x690 [ 645.080366] [<ffffffff811f8f85>] ? __might_fault+0x75/0xe0 [ 645.080433] [<ffffffff815a55f7>] drm_ioctl+0x327/0x640 [ 645.080508] [<ffffffff8163bb20>] ? i915_gem_obj_prepare_shmem_write+0x3a0/0x3a0 [ 645.080603] [<ffffffff815a52d0>] ? drm_ioctl_permit+0x120/0x120 [ 645.080670] [<ffffffff8110abdc>] ? check_chain_key+0x14c/0x210 [ 645.080738] [<ffffffff81275717>] do_vfs_ioctl+0x127/0xa20 [ 645.080804] [<ffffffff8120268c>] ? do_mmap+0x47c/0x580 [ 645.080871] [<ffffffff811da567>] ? vm_mmap_pgoff+0x117/0x140 [ 645.080938] [<ffffffff812755f0>] ? ioctl_preallocate+0x150/0x150 [ 645.081011] [<ffffffff81108c53>] ? up_write+0x23/0x50 [ 645.081078] [<ffffffff811da567>] ? vm_mmap_pgoff+0x117/0x140 [ 645.081145] [<ffffffff811da450>] ? vma_is_stack_for_current+0x90/0x90 [ 645.081214] [<ffffffff8110d853>] ? mark_held_locks+0x23/0xc0 [ 645.082030] [<ffffffff81288408>] ? __fget+0x168/0x250 [ 645.082106] [<ffffffff819ad517>] ? entry_SYSCALL_64_fastpath+0x5/0xb1 [ 645.082176] [<ffffffff81288592>] ? __fget_light+0xa2/0xc0 [ 645.082242] [<ffffffff8127604c>] SyS_ioctl+0x3c/0x70 [ 645.082309] [<ffffffff819ad52e>] entry_SYSCALL_64_fastpath+0x1c/0xb1 [ 645.082374] Object at ffff880233564200, in cache kmalloc-8192 size: 8192 [ 645.082431] Allocated: [ 645.082480] PID = 28408 [ 645.082535] [ 645.082566] [<ffffffff8103ae66>] save_stack_trace+0x16/0x20 [ 645.082623] [ 645.082656] [<ffffffff81228b06>] save_stack+0x46/0xd0 [ 645.082716] [ 645.082756] [<ffffffff812292fd>] kasan_kmalloc+0xad/0xe0 [ 645.082817] [ 645.082848] [<ffffffff81631752>] i915_ppgtt_create+0x52/0x220 [ 645.082908] [ 645.082941] [<ffffffff8161db96>] i915_gem_create_context+0x396/0x560 [ 645.083027] [ 645.083059] [<ffffffff8161f857>] i915_gem_context_create_ioctl+0x97/0xf0 [ 645.083152] [ 645.083183] [<ffffffff815a55f7>] drm_ioctl+0x327/0x640 [ 645.083243] [ 645.083274] [<ffffffff81275717>] do_vfs_ioctl+0x127/0xa20 [ 645.083334] [ 645.083372] [<ffffffff8127604c>] SyS_ioctl+0x3c/0x70 [ 645.083432] [ 645.083464] [<ffffffff819ad52e>] entry_SYSCALL_64_fastpath+0x1c/0xb1 [ 645.083551] Freed: [ 645.083599] PID = 27629 [ 645.083648] [ 645.083676] [<ffffffff8103ae66>] save_stack_trace+0x16/0x20 [ 645.083738] [ 645.083770] [<ffffffff81228b06>] save_stack+0x46/0xd0 [ 645.083830] [ 645.083862] [<ffffffff81229203>] kasan_slab_free+0x73/0xc0 [ 645.083922] [ 645.083961] [<ffffffff812279c9>] kfree+0xa9/0x170 [ 645.084021] [ 645.084053] [<ffffffff81629f60>] i915_ppgtt_release+0x100/0x180 [ 645.084139] [ 645.084171] [<ffffffff8161d414>] i915_gem_context_free+0x1b4/0x230 [ 645.084257] [ 645.084288] [<ffffffff816537b2>] intel_lr_context_unpin+0x192/0x230 [ 645.084380] [ 645.084413] [<ffffffff81645250>] i915_gem_request_retire+0x620/0x630 [ 645.084500] [ 645.085226] [<ffffffff816473d1>] i915_gem_retire_requests+0x181/0x280 [ 645.085313] [ 645.085352] [<ffffffff816352ba>] i915_gem_retire_work_handler+0xca/0xe0 [ 645.085440] [ 645.085471] [<ffffffff810c725b>] process_one_work+0x4fb/0x920 [ 645.085532] [ 645.085562] [<ffffffff810c770d>] worker_thread+0x8d/0x840 [ 645.085622] [ 645.085653] [<ffffffff810d21e5>] kthread+0x185/0x1b0 [ 645.085718] [ 645.085750] [<ffffffff819ad7a7>] ret_from_fork+0x27/0x40 [ 645.085811] Memory state around the buggy address: [ 645.085869] ffff880233564280: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [ 645.085956] ffff880233564300: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [ 645.086053] >ffff880233564380: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [ 645.086138] ^ [ 645.086193] ffff880233564400: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [ 645.086283] ffff880233564480: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb v2: Add a comment to document the hint like nature of intel_engine_last_submit() Fixes: 73cb9701 ("drm/i915: Combine seqno + tracking into a global timeline struct") Fixes: 80b204bc ("drm/i915: Enable multiple timelines") Signed-off-by: NChris Wilson <chris@chris-wilson.co.uk> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Reviewed-by: NTvrtko Ursulin <tvrtko.ursulin@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20161101100317.11129-1-chris@chris-wilson.co.uk
-
- 29 10月, 2016 8 次提交
-
-
由 Chris Wilson 提交于
With the infrastructure converted over to tracking multiple timelines in the GEM API whilst preserving the efficiency of using a single execution timeline internally, we can now assign a separate timeline to every context with full-ppgtt. v2: Add a comment to indicate the xfer between timelines upon submission. Signed-off-by: NChris Wilson <chris@chris-wilson.co.uk> Reviewed-by: NJoonas Lahtinen <joonas.lahtinen@linux.intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20161028125858.23563-35-chris@chris-wilson.co.uk
-
由 Chris Wilson 提交于
The breadcrumbs are about to be used from within IRQ context sections (e.g. nouveau signals a fence from an interrupt handler causing us to submit a new request) and/or from bottom-half tasklets (i.e. intel_lrc_irq_handler), therefore we need to employ the irqsafe spinlock variants. For example, deferring the request submission to the intel_lrc_irq_handler generates this trace: [ 66.388639] ================================= [ 66.388650] [ INFO: inconsistent lock state ] [ 66.388663] 4.9.0-rc2+ #56 Not tainted [ 66.388672] --------------------------------- [ 66.388682] inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W} usage. [ 66.388695] swapper/1/0 [HC0[0]:SC1[1]:HE0:SE0] takes: [ 66.388706] (&(&b->lock)->rlock){+.?...} , at: [<ffffffff81401c88>] intel_engine_enable_signaling+0x78/0x150 [ 66.388761] {SOFTIRQ-ON-W} state was registered at: [ 66.388772] [ 66.388783] [<ffffffff810bd842>] __lock_acquire+0x682/0x1870 [ 66.388795] [ 66.388803] [<ffffffff810bedbc>] lock_acquire+0x6c/0xb0 [ 66.388814] [ 66.388824] [<ffffffff8161753a>] _raw_spin_lock+0x2a/0x40 [ 66.388835] [ 66.388845] [<ffffffff81401e41>] intel_engine_reset_breadcrumbs+0x21/0xb0 [ 66.388857] [ 66.388866] [<ffffffff81403ae7>] gen8_init_common_ring+0x67/0x100 [ 66.388878] [ 66.388887] [<ffffffff81403b92>] gen8_init_render_ring+0x12/0x60 [ 66.388903] [ 66.388912] [<ffffffff813f8707>] i915_gem_init_hw+0xf7/0x2a0 [ 66.388927] [ 66.388936] [<ffffffff813f899b>] i915_gem_init+0xbb/0xf0 [ 66.388950] [ 66.388959] [<ffffffff813b4980>] i915_driver_load+0x7e0/0x1330 [ 66.388978] [ 66.388988] [<ffffffff813c09d8>] i915_pci_probe+0x28/0x40 [ 66.389003] [ 66.389013] [<ffffffff812fa0db>] pci_device_probe+0x8b/0xf0 [ 66.389028] [ 66.389037] [<ffffffff8147737e>] driver_probe_device+0x21e/0x430 [ 66.389056] [ 66.389065] [<ffffffff8147766e>] __driver_attach+0xde/0xe0 [ 66.389080] [ 66.389090] [<ffffffff814751ad>] bus_for_each_dev+0x5d/0x90 [ 66.389105] [ 66.389113] [<ffffffff81477799>] driver_attach+0x19/0x20 [ 66.389134] [ 66.389144] [<ffffffff81475ced>] bus_add_driver+0x15d/0x260 [ 66.389159] [ 66.389168] [<ffffffff81477e3b>] driver_register+0x5b/0xd0 [ 66.389183] [ 66.389281] [<ffffffff812fa19b>] __pci_register_driver+0x5b/0x60 [ 66.389301] [ 66.389312] [<ffffffff81aed333>] i915_init+0x3e/0x45 [ 66.389326] [ 66.389336] [<ffffffff81ac2ffa>] do_one_initcall+0x8b/0x118 [ 66.389350] [ 66.389359] [<ffffffff81ac323a>] kernel_init_freeable+0x1b3/0x23b [ 66.389378] [ 66.389387] [<ffffffff8160fc39>] kernel_init+0x9/0x100 [ 66.389402] [ 66.389411] [<ffffffff816180e7>] ret_from_fork+0x27/0x40 [ 66.389426] irq event stamp: 315865 [ 66.389438] hardirqs last enabled at (315864): [<ffffffff816178f1>] _raw_spin_unlock_irqrestore+0x31/0x50 [ 66.389469] hardirqs last disabled at (315865): [<ffffffff816176b3>] _raw_spin_lock_irqsave+0x13/0x50 [ 66.389499] softirqs last enabled at (315818): [<ffffffff8107a04c>] _local_bh_enable+0x1c/0x50 [ 66.389530] softirqs last disabled at (315819): [<ffffffff8107a50e>] irq_exit+0xbe/0xd0 [ 66.389559] [ 66.389559] other info that might help us debug this: [ 66.389580] Possible unsafe locking scenario: [ 66.389580] [ 66.389598] CPU0 [ 66.389609] ---- [ 66.389620] lock(&(&b->lock)->rlock); [ 66.389650] <Interrupt> [ 66.389661] lock(&(&b->lock)->rlock); [ 66.389690] [ 66.389690] *** DEADLOCK *** [ 66.389690] [ 66.389715] 2 locks held by swapper/1/0: [ 66.389728] #0: (&(&tl->lock)->rlock){..-...}, at: [<ffffffff81403e01>] intel_lrc_irq_handler+0x201/0x3c0 [ 66.389785] #1: (&(&req->lock)->rlock/1){..-...}, at: [<ffffffff813fc0af>] __i915_gem_request_submit+0x8f/0x170 [ 66.389854] [ 66.389854] stack backtrace: [ 66.389959] CPU: 1 PID: 0 Comm: swapper/1 Not tainted 4.9.0-rc2+ #56 [ 66.389976] Hardware name: / , BIOS PYBSWCEL.86A.0027.2015.0507.1758 05/07/2015 [ 66.389999] ffff88027fd03c58 ffffffff812beae5 ffff88027696e680 ffffffff822afe20 [ 66.390036] ffff88027fd03ca8 ffffffff810bb420 0000000000000001 0000000000000000 [ 66.390070] 0000000000000000 0000000000000006 0000000000000004 ffff88027696ee10 [ 66.390104] Call Trace: [ 66.390117] <IRQ> [ 66.390128] [<ffffffff812beae5>] dump_stack+0x68/0x93 [ 66.390147] [<ffffffff810bb420>] print_usage_bug+0x1d0/0x1e0 [ 66.390164] [<ffffffff810bb8a0>] mark_lock+0x470/0x4f0 [ 66.390181] [<ffffffff810ba9d0>] ? print_shortest_lock_dependencies+0x1b0/0x1b0 [ 66.390203] [<ffffffff810bd75d>] __lock_acquire+0x59d/0x1870 [ 66.390221] [<ffffffff810bedbc>] lock_acquire+0x6c/0xb0 [ 66.390237] [<ffffffff810bedbc>] ? lock_acquire+0x6c/0xb0 [ 66.390255] [<ffffffff81401c88>] ? intel_engine_enable_signaling+0x78/0x150 [ 66.390273] [<ffffffff8161753a>] _raw_spin_lock+0x2a/0x40 [ 66.390291] [<ffffffff81401c88>] ? intel_engine_enable_signaling+0x78/0x150 [ 66.390309] [<ffffffff81401c88>] intel_engine_enable_signaling+0x78/0x150 [ 66.390327] [<ffffffff813fc170>] __i915_gem_request_submit+0x150/0x170 [ 66.390345] [<ffffffff81403e8b>] intel_lrc_irq_handler+0x28b/0x3c0 [ 66.390363] [<ffffffff81079d97>] tasklet_action+0x57/0xc0 [ 66.390380] [<ffffffff8107a249>] __do_softirq+0x119/0x240 [ 66.390396] [<ffffffff8107a50e>] irq_exit+0xbe/0xd0 [ 66.390414] [<ffffffff8101afd5>] do_IRQ+0x65/0x110 [ 66.390431] [<ffffffff81618806>] common_interrupt+0x86/0x86 [ 66.390446] <EOI> [ 66.390457] [<ffffffff814ec6d1>] ? cpuidle_enter_state+0x151/0x200 [ 66.390480] [<ffffffff814ec7a2>] cpuidle_enter+0x12/0x20 [ 66.390498] [<ffffffff810b639e>] call_cpuidle+0x1e/0x40 [ 66.390516] [<ffffffff810b65ae>] cpu_startup_entry+0x10e/0x1f0 [ 66.390534] [<ffffffff81036133>] start_secondary+0x103/0x130 (This is split out of the defer global seqno allocation patch due to realisation that we need a more complete conversion if we want to defer request submission even further.) v2: lockdep was warning about mixed SOFTIRQ contexts not HARDIRQ contexts so we only need to use spin_lock_bh and not disable interrupts. v3: We need full irq protection as we may be called from a third party interrupt handler (via fences). Signed-off-by: NChris Wilson <chris@chris-wilson.co.uk> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: NJoonas Lahtinen <joonas.lahtinen@linux.intel.com> Reviewed-by: NTvrtko Ursulin <tvrtko.ursulin@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20161028125858.23563-32-chris@chris-wilson.co.uk
-
由 Chris Wilson 提交于
Currently we try to reduce the number of synchronisations (now the number of requests we need to wait upon) by noting that if we have earlier waited upon a request, all subsequent requests in the timeline will be after the wait. This only applies to requests in this timeline, as other timelines will not be ordered by that waiter. Signed-off-by: NChris Wilson <chris@chris-wilson.co.uk> Reviewed-by: NJoonas Lahtinen <joonas.lahtinen@linux.intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20161028125858.23563-30-chris@chris-wilson.co.uk
-
由 Chris Wilson 提交于
Move the actual emission of the breadcrumb for closing the request from i915_add_request() to the submit callback. (It can be moved later when required.) This allows us to defer the allocation of the global_seqno from request construction to actual submission, allowing us to emit the requests out of order (wrt to the order of their construction, they still will only be executed one all of their dependencies are resolved including that all earlier requests on their timeline have been submitted.) We have to specialise how we then emit the request in order to write into the preallocated space, rather than at the tail of the ringbuffer (which will have been advanced by the addition of new requests). Signed-off-by: NChris Wilson <chris@chris-wilson.co.uk> Reviewed-by: NJoonas Lahtinen <joonas.lahtinen@linux.intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20161028125858.23563-29-chris@chris-wilson.co.uk
-
由 Chris Wilson 提交于
In the next patch, we will use deferred breadcrumb emission. That requires reserving sufficient space in the ringbuffer to emit the breadcrumb, which first requires us to know how large the breadcrumb is. Signed-off-by: NChris Wilson <chris@chris-wilson.co.uk> Reviewed-by: NJoonas Lahtinen <joonas.lahtinen@linux.intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20161028125858.23563-28-chris@chris-wilson.co.uk
-
由 Chris Wilson 提交于
Now that the emission of the request tail and its submission to hardware are two separate steps, engine->emit_request() is confusing. engine->emit_request() is called to emit the breadcrumb commands for the request into the ring, name it such (engine->emit_breadcrumb). Signed-off-by: NChris Wilson <chris@chris-wilson.co.uk> Reviewed-by: NJoonas Lahtinen <joonas.lahtinen@linux.intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20161028125858.23563-27-chris@chris-wilson.co.uk
-
由 Chris Wilson 提交于
Our timelines are more than just a seqno. They also provide an ordered list of requests to be executed. Due to the restriction of handling individual address spaces, we are limited to a timeline per address space but we use a fence context per engine within. Our first step to introducing independent timelines per context (i.e. to allow each context to have a queue of requests to execute that have a defined set of dependencies on other requests) is to provide a timeline abstraction for the global execution queue. Signed-off-by: NChris Wilson <chris@chris-wilson.co.uk> Reviewed-by: NJoonas Lahtinen <joonas.lahtinen@linux.intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20161028125858.23563-23-chris@chris-wilson.co.uk
-
由 Chris Wilson 提交于
The golden render state is constant, but we recreate the batch setting it up for every new context. If we keep that batch in a volatile cache we can safely reuse it whenever we need to initialise a new context. We mark the pages as purgeable and use the shrinker to recover pages from the batch whenever we face memory pressues, recreating that batch afresh on the next new context. Signed-off-by: NChris Wilson <chris@chris-wilson.co.uk> Reviewed-by: NJoonas Lahtinen <joonas.lahtien@linux.intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20161028125858.23563-8-chris@chris-wilson.co.uk
-