- 29 7月, 2016 9 次提交
-
-
由 Mel Gorman 提交于
Reclaim makes decisions based on the number of pages that are mapped but it's mixing node and zone information. Account NR_FILE_MAPPED and NR_ANON_PAGES pages on the node. Link: http://lkml.kernel.org/r/1467970510-21195-18-git-send-email-mgorman@techsingularity.netSigned-off-by: NMel Gorman <mgorman@techsingularity.net> Acked-by: NVlastimil Babka <vbabka@suse.cz> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
Historically dirty pages were spread among zones but now that LRUs are per-node it is more appropriate to consider dirty pages in a node. Link: http://lkml.kernel.org/r/1467970510-21195-17-git-send-email-mgorman@techsingularity.netSigned-off-by: NMel Gorman <mgorman@techsingularity.net> Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NVlastimil Babka <vbabka@suse.cz> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
Working set and refault detection is still zone-based, fix it. Link: http://lkml.kernel.org/r/1467970510-21195-16-git-send-email-mgorman@techsingularity.netSigned-off-by: NMel Gorman <mgorman@techsingularity.net> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
Earlier patches focused on having direct reclaim and kswapd use data that is node-centric for reclaiming but shrink_node() itself still uses too much zone information. This patch removes unnecessary zone-based information with the most important decision being whether to continue reclaim or not. Some memcg APIs are adjusted as a result even though memcg itself still uses some zone information. [mgorman@techsingularity.net: optimization] Link: http://lkml.kernel.org/r/1468588165-12461-2-git-send-email-mgorman@techsingularity.net Link: http://lkml.kernel.org/r/1467970510-21195-14-git-send-email-mgorman@techsingularity.netSigned-off-by: NMel Gorman <mgorman@techsingularity.net> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
kswapd goes through some complex steps trying to figure out if it should stay awake based on the classzone_idx and the requested order. It is unnecessarily complex and passes in an invalid classzone_idx to balance_pgdat(). What matters most of all is whether a larger order has been requsted and whether kswapd successfully reclaimed at the previous order. This patch irons out the logic to check just that and the end result is less headache inducing. Link: http://lkml.kernel.org/r/1467970510-21195-10-git-send-email-mgorman@techsingularity.netSigned-off-by: NMel Gorman <mgorman@techsingularity.net> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
Zone padding separates write-intensive fields used by page allocation, compaction and vmstats but the comments are a little misleading and need clarification. Link: http://lkml.kernel.org/r/1467970510-21195-5-git-send-email-mgorman@techsingularity.netSigned-off-by: NMel Gorman <mgorman@techsingularity.net> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
This moves the LRU lists from the zone to the node and related data such as counters, tracing, congestion tracking and writeback tracking. Unfortunately, due to reclaim and compaction retry logic, it is necessary to account for the number of LRU pages on both zone and node logic. Most reclaim logic is based on the node counters but the retry logic uses the zone counters which do not distinguish inactive and active sizes. It would be possible to leave the LRU counters on a per-zone basis but it's a heavier calculation across multiple cache lines that is much more frequent than the retry checks. Other than the LRU counters, this is mostly a mechanical patch but note that it introduces a number of anomalies. For example, the scans are per-zone but using per-node counters. We also mark a node as congested when a zone is congested. This causes weird problems that are fixed later but is easier to review. In the event that there is excessive overhead on 32-bit systems due to the nodes being on LRU then there are two potential solutions 1. Long-term isolation of highmem pages when reclaim is lowmem When pages are skipped, they are immediately added back onto the LRU list. If lowmem reclaim persisted for long periods of time, the same highmem pages get continually scanned. The idea would be that lowmem keeps those pages on a separate list until a reclaim for highmem pages arrives that splices the highmem pages back onto the LRU. It potentially could be implemented similar to the UNEVICTABLE list. That would reduce the skip rate with the potential corner case is that highmem pages have to be scanned and reclaimed to free lowmem slab pages. 2. Linear scan lowmem pages if the initial LRU shrink fails This will break LRU ordering but may be preferable and faster during memory pressure than skipping LRU pages. Link: http://lkml.kernel.org/r/1467970510-21195-4-git-send-email-mgorman@techsingularity.netSigned-off-by: NMel Gorman <mgorman@techsingularity.net> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
Node-based reclaim requires node-based LRUs and locking. This is a preparation patch that just moves the lru_lock to the node so later patches are easier to review. It is a mechanical change but note this patch makes contention worse because the LRU lock is hotter and direct reclaim and kswapd can contend on the same lock even when reclaiming from different zones. Link: http://lkml.kernel.org/r/1467970510-21195-3-git-send-email-mgorman@techsingularity.netSigned-off-by: NMel Gorman <mgorman@techsingularity.net> Reviewed-by: NMinchan Kim <minchan@kernel.org> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
Patchset: "Move LRU page reclaim from zones to nodes v9" This series moves LRUs from the zones to the node. While this is a current rebase, the test results were based on mmotm as of June 23rd. Conceptually, this series is simple but there are a lot of details. Some of the broad motivations for this are; 1. The residency of a page partially depends on what zone the page was allocated from. This is partially combatted by the fair zone allocation policy but that is a partial solution that introduces overhead in the page allocator paths. 2. Currently, reclaim on node 0 behaves slightly different to node 1. For example, direct reclaim scans in zonelist order and reclaims even if the zone is over the high watermark regardless of the age of pages in that LRU. Kswapd on the other hand starts reclaim on the highest unbalanced zone. A difference in distribution of file/anon pages due to when they were allocated results can result in a difference in again. While the fair zone allocation policy mitigates some of the problems here, the page reclaim results on a multi-zone node will always be different to a single-zone node. it was scheduled on as a result. 3. kswapd and the page allocator scan zones in the opposite order to avoid interfering with each other but it's sensitive to timing. This mitigates the page allocator using pages that were allocated very recently in the ideal case but it's sensitive to timing. When kswapd is allocating from lower zones then it's great but during the rebalancing of the highest zone, the page allocator and kswapd interfere with each other. It's worse if the highest zone is small and difficult to balance. 4. slab shrinkers are node-based which makes it harder to identify the exact relationship between slab reclaim and LRU reclaim. The reason we have zone-based reclaim is that we used to have large highmem zones in common configurations and it was necessary to quickly find ZONE_NORMAL pages for reclaim. Today, this is much less of a concern as machines with lots of memory will (or should) use 64-bit kernels. Combinations of 32-bit hardware and 64-bit hardware are rare. Machines that do use highmem should have relatively low highmem:lowmem ratios than we worried about in the past. Conceptually, moving to node LRUs should be easier to understand. The page allocator plays fewer tricks to game reclaim and reclaim behaves similarly on all nodes. The series has been tested on a 16 core UMA machine and a 2-socket 48 core NUMA machine. The UMA results are presented in most cases as the NUMA machine behaved similarly. pagealloc --------- This is a microbenchmark that shows the benefit of removing the fair zone allocation policy. It was tested uip to order-4 but only orders 0 and 1 are shown as the other orders were comparable. 4.7.0-rc4 4.7.0-rc4 mmotm-20160623 nodelru-v9 Min total-odr0-1 490.00 ( 0.00%) 457.00 ( 6.73%) Min total-odr0-2 347.00 ( 0.00%) 329.00 ( 5.19%) Min total-odr0-4 288.00 ( 0.00%) 273.00 ( 5.21%) Min total-odr0-8 251.00 ( 0.00%) 239.00 ( 4.78%) Min total-odr0-16 234.00 ( 0.00%) 222.00 ( 5.13%) Min total-odr0-32 223.00 ( 0.00%) 211.00 ( 5.38%) Min total-odr0-64 217.00 ( 0.00%) 208.00 ( 4.15%) Min total-odr0-128 214.00 ( 0.00%) 204.00 ( 4.67%) Min total-odr0-256 250.00 ( 0.00%) 230.00 ( 8.00%) Min total-odr0-512 271.00 ( 0.00%) 269.00 ( 0.74%) Min total-odr0-1024 291.00 ( 0.00%) 282.00 ( 3.09%) Min total-odr0-2048 303.00 ( 0.00%) 296.00 ( 2.31%) Min total-odr0-4096 311.00 ( 0.00%) 309.00 ( 0.64%) Min total-odr0-8192 316.00 ( 0.00%) 314.00 ( 0.63%) Min total-odr0-16384 317.00 ( 0.00%) 315.00 ( 0.63%) Min total-odr1-1 742.00 ( 0.00%) 712.00 ( 4.04%) Min total-odr1-2 562.00 ( 0.00%) 530.00 ( 5.69%) Min total-odr1-4 457.00 ( 0.00%) 433.00 ( 5.25%) Min total-odr1-8 411.00 ( 0.00%) 381.00 ( 7.30%) Min total-odr1-16 381.00 ( 0.00%) 356.00 ( 6.56%) Min total-odr1-32 372.00 ( 0.00%) 346.00 ( 6.99%) Min total-odr1-64 372.00 ( 0.00%) 343.00 ( 7.80%) Min total-odr1-128 375.00 ( 0.00%) 351.00 ( 6.40%) Min total-odr1-256 379.00 ( 0.00%) 351.00 ( 7.39%) Min total-odr1-512 385.00 ( 0.00%) 355.00 ( 7.79%) Min total-odr1-1024 386.00 ( 0.00%) 358.00 ( 7.25%) Min total-odr1-2048 390.00 ( 0.00%) 362.00 ( 7.18%) Min total-odr1-4096 390.00 ( 0.00%) 362.00 ( 7.18%) Min total-odr1-8192 388.00 ( 0.00%) 363.00 ( 6.44%) This shows a steady improvement throughout. The primary benefit is from reduced system CPU usage which is obvious from the overall times; 4.7.0-rc4 4.7.0-rc4 mmotm-20160623nodelru-v8 User 189.19 191.80 System 2604.45 2533.56 Elapsed 2855.30 2786.39 The vmstats also showed that the fair zone allocation policy was definitely removed as can be seen here; 4.7.0-rc3 4.7.0-rc3 mmotm-20160623 nodelru-v8 DMA32 allocs 28794729769 0 Normal allocs 48432501431 77227309877 Movable allocs 0 0 tiobench on ext4 ---------------- tiobench is a benchmark that artifically benefits if old pages remain resident while new pages get reclaimed. The fair zone allocation policy mitigates this problem so pages age fairly. While the benchmark has problems, it is important that tiobench performance remains constant as it implies that page aging problems that the fair zone allocation policy fixes are not re-introduced. 4.7.0-rc4 4.7.0-rc4 mmotm-20160623 nodelru-v9 Min PotentialReadSpeed 89.65 ( 0.00%) 90.21 ( 0.62%) Min SeqRead-MB/sec-1 82.68 ( 0.00%) 82.01 ( -0.81%) Min SeqRead-MB/sec-2 72.76 ( 0.00%) 72.07 ( -0.95%) Min SeqRead-MB/sec-4 75.13 ( 0.00%) 74.92 ( -0.28%) Min SeqRead-MB/sec-8 64.91 ( 0.00%) 65.19 ( 0.43%) Min SeqRead-MB/sec-16 62.24 ( 0.00%) 62.22 ( -0.03%) Min RandRead-MB/sec-1 0.88 ( 0.00%) 0.88 ( 0.00%) Min RandRead-MB/sec-2 0.95 ( 0.00%) 0.92 ( -3.16%) Min RandRead-MB/sec-4 1.43 ( 0.00%) 1.34 ( -6.29%) Min RandRead-MB/sec-8 1.61 ( 0.00%) 1.60 ( -0.62%) Min RandRead-MB/sec-16 1.80 ( 0.00%) 1.90 ( 5.56%) Min SeqWrite-MB/sec-1 76.41 ( 0.00%) 76.85 ( 0.58%) Min SeqWrite-MB/sec-2 74.11 ( 0.00%) 73.54 ( -0.77%) Min SeqWrite-MB/sec-4 80.05 ( 0.00%) 80.13 ( 0.10%) Min SeqWrite-MB/sec-8 72.88 ( 0.00%) 73.20 ( 0.44%) Min SeqWrite-MB/sec-16 75.91 ( 0.00%) 76.44 ( 0.70%) Min RandWrite-MB/sec-1 1.18 ( 0.00%) 1.14 ( -3.39%) Min RandWrite-MB/sec-2 1.02 ( 0.00%) 1.03 ( 0.98%) Min RandWrite-MB/sec-4 1.05 ( 0.00%) 0.98 ( -6.67%) Min RandWrite-MB/sec-8 0.89 ( 0.00%) 0.92 ( 3.37%) Min RandWrite-MB/sec-16 0.92 ( 0.00%) 0.93 ( 1.09%) 4.7.0-rc4 4.7.0-rc4 mmotm-20160623 approx-v9 User 645.72 525.90 System 403.85 331.75 Elapsed 6795.36 6783.67 This shows that the series has little or not impact on tiobench which is desirable and a reduction in system CPU usage. It indicates that the fair zone allocation policy was removed in a manner that didn't reintroduce one class of page aging bug. There were only minor differences in overall reclaim activity 4.7.0-rc4 4.7.0-rc4 mmotm-20160623nodelru-v8 Minor Faults 645838 647465 Major Faults 573 640 Swap Ins 0 0 Swap Outs 0 0 DMA allocs 0 0 DMA32 allocs 46041453 44190646 Normal allocs 78053072 79887245 Movable allocs 0 0 Allocation stalls 24 67 Stall zone DMA 0 0 Stall zone DMA32 0 0 Stall zone Normal 0 2 Stall zone HighMem 0 0 Stall zone Movable 0 65 Direct pages scanned 10969 30609 Kswapd pages scanned 93375144 93492094 Kswapd pages reclaimed 93372243 93489370 Direct pages reclaimed 10969 30609 Kswapd efficiency 99% 99% Kswapd velocity 13741.015 13781.934 Direct efficiency 100% 100% Direct velocity 1.614 4.512 Percentage direct scans 0% 0% kswapd activity was roughly comparable. There were differences in direct reclaim activity but negligible in the context of the overall workload (velocity of 4 pages per second with the patches applied, 1.6 pages per second in the baseline kernel). pgbench read-only large configuration on ext4 --------------------------------------------- pgbench is a database benchmark that can be sensitive to page reclaim decisions. This also checks if removing the fair zone allocation policy is safe pgbench Transactions 4.7.0-rc4 4.7.0-rc4 mmotm-20160623 nodelru-v8 Hmean 1 188.26 ( 0.00%) 189.78 ( 0.81%) Hmean 5 330.66 ( 0.00%) 328.69 ( -0.59%) Hmean 12 370.32 ( 0.00%) 380.72 ( 2.81%) Hmean 21 368.89 ( 0.00%) 369.00 ( 0.03%) Hmean 30 382.14 ( 0.00%) 360.89 ( -5.56%) Hmean 32 428.87 ( 0.00%) 432.96 ( 0.95%) Negligible differences again. As with tiobench, overall reclaim activity was comparable. bonnie++ on ext4 ---------------- No interesting performance difference, negligible differences on reclaim stats. paralleldd on ext4 ------------------ This workload uses varying numbers of dd instances to read large amounts of data from disk. 4.7.0-rc3 4.7.0-rc3 mmotm-20160623 nodelru-v9 Amean Elapsd-1 186.04 ( 0.00%) 189.41 ( -1.82%) Amean Elapsd-3 192.27 ( 0.00%) 191.38 ( 0.46%) Amean Elapsd-5 185.21 ( 0.00%) 182.75 ( 1.33%) Amean Elapsd-7 183.71 ( 0.00%) 182.11 ( 0.87%) Amean Elapsd-12 180.96 ( 0.00%) 181.58 ( -0.35%) Amean Elapsd-16 181.36 ( 0.00%) 183.72 ( -1.30%) 4.7.0-rc4 4.7.0-rc4 mmotm-20160623 nodelru-v9 User 1548.01 1552.44 System 8609.71 8515.08 Elapsed 3587.10 3594.54 There is little or no change in performance but some drop in system CPU usage. 4.7.0-rc3 4.7.0-rc3 mmotm-20160623 nodelru-v9 Minor Faults 362662 367360 Major Faults 1204 1143 Swap Ins 22 0 Swap Outs 2855 1029 DMA allocs 0 0 DMA32 allocs 31409797 28837521 Normal allocs 46611853 49231282 Movable allocs 0 0 Direct pages scanned 0 0 Kswapd pages scanned 40845270 40869088 Kswapd pages reclaimed 40830976 40855294 Direct pages reclaimed 0 0 Kswapd efficiency 99% 99% Kswapd velocity 11386.711 11369.769 Direct efficiency 100% 100% Direct velocity 0.000 0.000 Percentage direct scans 0% 0% Page writes by reclaim 2855 1029 Page writes file 0 0 Page writes anon 2855 1029 Page reclaim immediate 771 1628 Sector Reads 293312636 293536360 Sector Writes 18213568 18186480 Page rescued immediate 0 0 Slabs scanned 128257 132747 Direct inode steals 181 56 Kswapd inode steals 59 1131 It basically shows that kswapd was active at roughly the same rate in both kernels. There was also comparable slab scanning activity and direct reclaim was avoided in both cases. There appears to be a large difference in numbers of inodes reclaimed but the workload has few active inodes and is likely a timing artifact. stutter ------- stutter simulates a simple workload. One part uses a lot of anonymous memory, a second measures mmap latency and a third copies a large file. The primary metric is checking for mmap latency. stutter 4.7.0-rc4 4.7.0-rc4 mmotm-20160623 nodelru-v8 Min mmap 16.6283 ( 0.00%) 13.4258 ( 19.26%) 1st-qrtle mmap 54.7570 ( 0.00%) 34.9121 ( 36.24%) 2nd-qrtle mmap 57.3163 ( 0.00%) 46.1147 ( 19.54%) 3rd-qrtle mmap 58.9976 ( 0.00%) 47.1882 ( 20.02%) Max-90% mmap 59.7433 ( 0.00%) 47.4453 ( 20.58%) Max-93% mmap 60.1298 ( 0.00%) 47.6037 ( 20.83%) Max-95% mmap 73.4112 ( 0.00%) 82.8719 (-12.89%) Max-99% mmap 92.8542 ( 0.00%) 88.8870 ( 4.27%) Max mmap 1440.6569 ( 0.00%) 121.4201 ( 91.57%) Mean mmap 59.3493 ( 0.00%) 42.2991 ( 28.73%) Best99%Mean mmap 57.2121 ( 0.00%) 41.8207 ( 26.90%) Best95%Mean mmap 55.9113 ( 0.00%) 39.9620 ( 28.53%) Best90%Mean mmap 55.6199 ( 0.00%) 39.3124 ( 29.32%) Best50%Mean mmap 53.2183 ( 0.00%) 33.1307 ( 37.75%) Best10%Mean mmap 45.9842 ( 0.00%) 20.4040 ( 55.63%) Best5%Mean mmap 43.2256 ( 0.00%) 17.9654 ( 58.44%) Best1%Mean mmap 32.9388 ( 0.00%) 16.6875 ( 49.34%) This shows a number of improvements with the worst-case outlier greatly improved. Some of the vmstats are interesting 4.7.0-rc4 4.7.0-rc4 mmotm-20160623nodelru-v8 Swap Ins 163 502 Swap Outs 0 0 DMA allocs 0 0 DMA32 allocs 618719206 1381662383 Normal allocs 891235743 564138421 Movable allocs 0 0 Allocation stalls 2603 1 Direct pages scanned 216787 2 Kswapd pages scanned 50719775 41778378 Kswapd pages reclaimed 41541765 41777639 Direct pages reclaimed 209159 0 Kswapd efficiency 81% 99% Kswapd velocity 16859.554 14329.059 Direct efficiency 96% 0% Direct velocity 72.061 0.001 Percentage direct scans 0% 0% Page writes by reclaim 6215049 0 Page writes file 6215049 0 Page writes anon 0 0 Page reclaim immediate 70673 90 Sector Reads 81940800 81680456 Sector Writes 100158984 98816036 Page rescued immediate 0 0 Slabs scanned 1366954 22683 While this is not guaranteed in all cases, this particular test showed a large reduction in direct reclaim activity. It's also worth noting that no page writes were issued from reclaim context. This series is not without its hazards. There are at least three areas that I'm concerned with even though I could not reproduce any problems in that area. 1. Reclaim/compaction is going to be affected because the amount of reclaim is no longer targetted at a specific zone. Compaction works on a per-zone basis so there is no guarantee that reclaiming a few THP's worth page pages will have a positive impact on compaction success rates. 2. The Slab/LRU reclaim ratio is affected because the frequency the shrinkers are called is now different. This may or may not be a problem but if it is, it'll be because shrinkers are not called enough and some balancing is required. 3. The anon/file reclaim ratio may be affected. Pages about to be dirtied are distributed between zones and the fair zone allocation policy used to do something very similar for anon. The distribution is now different but not necessarily in any way that matters but it's still worth bearing in mind. VM statistic counters for reclaim decisions are zone-based. If the kernel is to reclaim on a per-node basis then we need to track per-node statistics but there is no infrastructure for that. The most notable change is that the old node_page_state is renamed to sum_zone_node_page_state. The new node_page_state takes a pglist_data and uses per-node stats but none exist yet. There is some renaming such as vm_stat to vm_zone_stat and the addition of vm_node_stat and the renaming of mod_state to mod_zone_state. Otherwise, this is mostly a mechanical patch with no functional change. There is a lot of similarity between the node and zone helpers which is unfortunate but there was no obvious way of reusing the code and maintaining type safety. Link: http://lkml.kernel.org/r/1467970510-21195-2-git-send-email-mgorman@techsingularity.netSigned-off-by: NMel Gorman <mgorman@techsingularity.net> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Rik van Riel <riel@surriel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 27 7月, 2016 3 次提交
-
-
由 Kirill A. Shutemov 提交于
Let's add ShmemHugePages and ShmemPmdMapped fields into meminfo and smaps. It indicates how many times we allocate and map shmem THP. NR_ANON_TRANSPARENT_HUGEPAGES is renamed to NR_ANON_THPS. Link: http://lkml.kernel.org/r/1466021202-61880-27-git-send-email-kirill.shutemov@linux.intel.comSigned-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Minchan Kim 提交于
zram is very popular for some of the embedded world (e.g., TV, mobile phones). On those system, zsmalloc's consumed memory size is never trivial (one of example from real product system, total memory: 800M, zsmalloc consumed: 150M), so we have used this out of tree patch to monitor system memory behavior via /proc/vmstat. With zsmalloc in vmstat, it helps in tracking down system behavior due to memory usage. [minchan@kernel.org: zsmalloc: follow up zsmalloc vmstat] Link: http://lkml.kernel.org/r/20160607091737.GC23435@bbox [akpm@linux-foundation.org: fix build with CONFIG_ZSMALLOC=m] Link: http://lkml.kernel.org/r/1464919731-13255-1-git-send-email-minchan@kernel.orgSigned-off-by: NMinchan Kim <minchan@kernel.org> Cc: Sangseok Lee <sangseok.lee@lge.com> Cc: Chanho Min <chanho.min@lge.com> Cc: Chan Gyun Jeong <chan.jeong@lge.com> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vladimir Davydov 提交于
Not used since oom_lock was instroduced. Link: http://lkml.kernel.org/r/1464358093-22663-1-git-send-email-vdavydov@virtuozzo.comSigned-off-by: NVladimir Davydov <vdavydov@virtuozzo.com> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 21 5月, 2016 2 次提交
-
-
由 Weijie Yang 提交于
If SPARSEMEM, use page_ext in mem_section if !SPARSEMEM, use page_ext in pgdata Signed-off-by: NWeijie Yang <weijie.yang@samsung.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
"mm: consider compaction feedback also for costly allocation" has removed the upper bound for the reclaim/compaction retries based on the number of reclaimed pages for costly orders. While this is desirable the patch did miss a mis interaction between reclaim, compaction and the retry logic. The direct reclaim tries to get zones over min watermark while compaction backs off and returns COMPACT_SKIPPED when all zones are below low watermark + 1<<order gap. If we are getting really close to OOM then __compaction_suitable can keep returning COMPACT_SKIPPED a high order request (e.g. hugetlb order-9) while the reclaim is not able to release enough pages to get us over low watermark. The reclaim is still able to make some progress (usually trashing over few remaining pages) so we are not able to break out from the loop. I have seen this happening with the same test described in "mm: consider compaction feedback also for costly allocation" on a swapless system. The original problem got resolved by "vmscan: consider classzone_idx in compaction_ready" but it shows how things might go wrong when we approach the oom event horizont. The reason why compaction requires being over low rather than min watermark is not clear to me. This check was there essentially since 56de7263 ("mm: compaction: direct compact when a high-order allocation fails"). It is clearly an implementation detail though and we shouldn't pull it into the generic retry logic while we should be able to cope with such eventuality. The only place in should_compact_retry where we retry without any upper bound is for compaction_withdrawn() case. Introduce compaction_zonelist_suitable function which checks the given zonelist and returns true only if there is at least one zone which would would unblock __compaction_suitable if more memory got reclaimed. In this implementation it checks __compaction_suitable with NR_FREE_PAGES plus part of the reclaimable memory as the target for the watermark check. The reclaimable memory is reduced linearly by the allocation order. The idea is that we do not want to reclaim all the remaining memory for a single allocation request just unblock __compaction_suitable which doesn't guarantee we will make a further progress. The new helper is then used if compaction_withdrawn() feedback was provided so we do not retry if there is no outlook for a further progress. !costly requests shouldn't be affected much - e.g. order-2 pages would require to have at least 64kB on the reclaimable LRUs while order-9 would need at least 32M which should be enough to not lock up. [vbabka@suse.cz: fix classzone_idx vs. high_zoneidx usage in compaction_zonelist_suitable] [akpm@linux-foundation.org: fix it for Mel's mm-page_alloc-remove-field-from-alloc_context.patch] Signed-off-by: NMichal Hocko <mhocko@suse.com> Acked-by: NHillf Danton <hillf.zj@alibaba-inc.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 20 5月, 2016 5 次提交
-
-
由 Mel Gorman 提交于
The function call overhead of get_pfnblock_flags_mask() is measurable in the page free paths. This patch uses an inlined version that is faster. Signed-off-by: NMel Gorman <mgorman@techsingularity.net> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
The allocator fast path looks up the first usable zone in a zonelist and then get_page_from_freelist does the same job in the zonelist iterator. This patch preserves the necessary information. 4.6.0-rc2 4.6.0-rc2 fastmark-v1r20 initonce-v1r20 Min alloc-odr0-1 364.00 ( 0.00%) 359.00 ( 1.37%) Min alloc-odr0-2 262.00 ( 0.00%) 260.00 ( 0.76%) Min alloc-odr0-4 214.00 ( 0.00%) 214.00 ( 0.00%) Min alloc-odr0-8 186.00 ( 0.00%) 186.00 ( 0.00%) Min alloc-odr0-16 173.00 ( 0.00%) 173.00 ( 0.00%) Min alloc-odr0-32 165.00 ( 0.00%) 165.00 ( 0.00%) Min alloc-odr0-64 161.00 ( 0.00%) 162.00 ( -0.62%) Min alloc-odr0-128 159.00 ( 0.00%) 161.00 ( -1.26%) Min alloc-odr0-256 168.00 ( 0.00%) 170.00 ( -1.19%) Min alloc-odr0-512 180.00 ( 0.00%) 181.00 ( -0.56%) Min alloc-odr0-1024 190.00 ( 0.00%) 190.00 ( 0.00%) Min alloc-odr0-2048 196.00 ( 0.00%) 196.00 ( 0.00%) Min alloc-odr0-4096 202.00 ( 0.00%) 202.00 ( 0.00%) Min alloc-odr0-8192 206.00 ( 0.00%) 205.00 ( 0.49%) Min alloc-odr0-16384 206.00 ( 0.00%) 205.00 ( 0.49%) The benefit is negligible and the results are within the noise but each cycle counts. Signed-off-by: NMel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
alloc_flags is a bitmask of flags but it is signed which does not necessarily generate the best code depending on the compiler. Even without an impact, it makes more sense that this be unsigned. Signed-off-by: NMel Gorman <mgorman@techsingularity.net> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
The page allocator iterates through a zonelist for zones that match the addressing limitations and nodemask of the caller but many allocations will not be restricted. Despite this, there is always functional call overhead which builds up. This patch inlines the optimistic basic case and only calls the iterator function for the complex case. A hindrance was the fact that cpuset_current_mems_allowed is used in the fastpath as the allowed nodemask even though all nodes are allowed on most systems. The patch handles this by only considering cpuset_current_mems_allowed if a cpuset exists. As well as being faster in the fast-path, this removes some junk in the slowpath. The performance difference on a page allocator microbenchmark is; 4.6.0-rc2 4.6.0-rc2 statinline-v1r20 optiter-v1r20 Min alloc-odr0-1 412.00 ( 0.00%) 382.00 ( 7.28%) Min alloc-odr0-2 301.00 ( 0.00%) 282.00 ( 6.31%) Min alloc-odr0-4 247.00 ( 0.00%) 233.00 ( 5.67%) Min alloc-odr0-8 215.00 ( 0.00%) 203.00 ( 5.58%) Min alloc-odr0-16 199.00 ( 0.00%) 188.00 ( 5.53%) Min alloc-odr0-32 191.00 ( 0.00%) 182.00 ( 4.71%) Min alloc-odr0-64 187.00 ( 0.00%) 177.00 ( 5.35%) Min alloc-odr0-128 185.00 ( 0.00%) 175.00 ( 5.41%) Min alloc-odr0-256 193.00 ( 0.00%) 184.00 ( 4.66%) Min alloc-odr0-512 207.00 ( 0.00%) 197.00 ( 4.83%) Min alloc-odr0-1024 213.00 ( 0.00%) 203.00 ( 4.69%) Min alloc-odr0-2048 220.00 ( 0.00%) 209.00 ( 5.00%) Min alloc-odr0-4096 226.00 ( 0.00%) 214.00 ( 5.31%) Min alloc-odr0-8192 229.00 ( 0.00%) 218.00 ( 4.80%) Min alloc-odr0-16384 229.00 ( 0.00%) 219.00 ( 4.37%) perf indicated that next_zones_zonelist disappeared in the profile and __next_zones_zonelist did not appear. This is expected as the micro-benchmark would hit the inlined fast-path every time. Signed-off-by: NMel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Chanho Min 提交于
is_highmem() can be simplified by use of is_highmem_idx(). This patch removes redundant code and will make it easier to maintain if the zone policy is changed or a new zone is added. (akpm: saves me 25 bytes of text per is_highmem() callsite) Signed-off-by: NChanho Min <chanho.min@lge.com> Reviewed-by: NDan Williams <dan.j.williams@intel.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 18 3月, 2016 2 次提交
-
-
由 Johannes Weiner 提交于
In machines with 140G of memory and enterprise flash storage, we have seen read and write bursts routinely exceed the kswapd watermarks and cause thundering herds in direct reclaim. Unfortunately, the only way to tune kswapd aggressiveness is through adjusting min_free_kbytes - the system's emergency reserves - which is entirely unrelated to the system's latency requirements. In order to get kswapd to maintain a 250M buffer of free memory, the emergency reserves need to be set to 1G. That is a lot of memory wasted for no good reason. On the other hand, it's reasonable to assume that allocation bursts and overall allocation concurrency scale with memory capacity, so it makes sense to make kswapd aggressiveness a function of that as well. Change the kswapd watermark scale factor from the currently fixed 25% of the tunable emergency reserve to a tunable 0.1% of memory. Beyond 1G of memory, this will produce bigger watermark steps than the current formula in default settings. Ensure that the new formula never chooses steps smaller than that, i.e. 25% of the emergency reserve. On a 140G machine, this raises the default watermark steps - the distance between min and low, and low and high - from 16M to 143M. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMel Gorman <mgorman@suse.de> Acked-by: NRik van Riel <riel@redhat.com> Acked-by: NDavid Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vlastimil Babka 提交于
Memory compaction can be currently performed in several contexts: - kswapd balancing a zone after a high-order allocation failure - direct compaction to satisfy a high-order allocation, including THP page fault attemps - khugepaged trying to collapse a hugepage - manually from /proc The purpose of compaction is two-fold. The obvious purpose is to satisfy a (pending or future) high-order allocation, and is easy to evaluate. The other purpose is to keep overal memory fragmentation low and help the anti-fragmentation mechanism. The success wrt the latter purpose is more The current situation wrt the purposes has a few drawbacks: - compaction is invoked only when a high-order page or hugepage is not available (or manually). This might be too late for the purposes of keeping memory fragmentation low. - direct compaction increases latency of allocations. Again, it would be better if compaction was performed asynchronously to keep fragmentation low, before the allocation itself comes. - (a special case of the previous) the cost of compaction during THP page faults can easily offset the benefits of THP. - kswapd compaction appears to be complex, fragile and not working in some scenarios. It could also end up compacting for a high-order allocation request when it should be reclaiming memory for a later order-0 request. To improve the situation, we should be able to benefit from an equivalent of kswapd, but for compaction - i.e. a background thread which responds to fragmentation and the need for high-order allocations (including hugepages) somewhat proactively. One possibility is to extend the responsibilities of kswapd, which could however complicate its design too much. It should be better to let kswapd handle reclaim, as order-0 allocations are often more critical than high-order ones. Another possibility is to extend khugepaged, but this kthread is a single instance and tied to THP configs. This patch goes with the option of a new set of per-node kthreads called kcompactd, and lays the foundations, without introducing any new tunables. The lifecycle mimics kswapd kthreads, including the memory hotplug hooks. For compaction, kcompactd uses the standard compaction_suitable() and ompact_finished() criteria and the deferred compaction functionality. Unlike direct compaction, it uses only sync compaction, as there's no allocation latency to minimize. This patch doesn't yet add a call to wakeup_kcompactd. The kswapd compact/reclaim loop for high-order pages will be replaced by waking up kcompactd in the next patch with the description of what's wrong with the old approach. Waking up of the kcompactd threads is also tied to kswapd activity and follows these rules: - we don't want to affect any fastpaths, so wake up kcompactd only from the slowpath, as it's done for kswapd - if kswapd is doing reclaim, it's more important than compaction, so don't invoke kcompactd until kswapd goes to sleep - the target order used for kswapd is passed to kcompactd Future possible future uses for kcompactd include the ability to wake up kcompactd on demand in special situations, such as when hugepages are not available (currently not done due to __GFP_NO_KSWAPD) or when a fragmentation event (i.e. __rmqueue_fallback()) occurs. It's also possible to perform periodic compaction with kcompactd. [arnd@arndb.de: fix build errors with kcompactd] [paul.gortmaker@windriver.com: don't use modular references for non modular code] Signed-off-by: NVlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: David Rientjes <rientjes@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: NArnd Bergmann <arnd@arndb.de> Signed-off-by: NPaul Gortmaker <paul.gortmaker@windriver.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 16 3月, 2016 3 次提交
-
-
由 Joonsoo Kim 提交于
There is a performance drop report due to hugepage allocation and in there half of cpu time are spent on pageblock_pfn_to_page() in compaction [1]. In that workload, compaction is triggered to make hugepage but most of pageblocks are un-available for compaction due to pageblock type and skip bit so compaction usually fails. Most costly operations in this case is to find valid pageblock while scanning whole zone range. To check if pageblock is valid to compact, valid pfn within pageblock is required and we can obtain it by calling pageblock_pfn_to_page(). This function checks whether pageblock is in a single zone and return valid pfn if possible. Problem is that we need to check it every time before scanning pageblock even if we re-visit it and this turns out to be very expensive in this workload. Although we have no way to skip this pageblock check in the system where hole exists at arbitrary position, we can use cached value for zone continuity and just do pfn_to_page() in the system where hole doesn't exist. This optimization considerably speeds up in above workload. Before vs After Max: 1096 MB/s vs 1325 MB/s Min: 635 MB/s 1015 MB/s Avg: 899 MB/s 1194 MB/s Avg is improved by roughly 30% [2]. [1]: http://www.spinics.net/lists/linux-mm/msg97378.html [2]: https://lkml.org/lkml/2015/12/9/23 [akpm@linux-foundation.org: don't forget to restore zone->contiguous on error path, per Vlastimil] Signed-off-by: NJoonsoo Kim <iamjoonsoo.kim@lge.com> Reported-by: NAaron Lu <aaron.lu@intel.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Tested-by: NAaron Lu <aaron.lu@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
Cache thrash detection (see a528910e "mm: thrash detection-based file cache sizing" for details) currently only works on the system level, not inside cgroups. Worse, as the refaults are compared to the global number of active cache, cgroups might wrongfully get all their refaults activated when their pages are hotter than those of others. Move the refault machinery from the zone to the lruvec, and then tag eviction entries with the memcg ID. This makes the thrash detection work correctly inside cgroups. [sergey.senozhatsky@gmail.com: do not return from workingset_activation() with locked rcu and page] Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Signed-off-by: NSergey Senozhatsky <sergey.senozhatsky@gmail.com> Reviewed-by: NVladimir Davydov <vdavydov@virtuozzo.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vlastimil Babka 提交于
The information in /sys/kernel/debug/page_owner includes the migratetype of the pageblock the page belongs to. This is also checked against the page's migratetype (as declared by gfp_flags during its allocation), and the page is reported as Fallback if its migratetype differs from the pageblock's one. t This is somewhat misleading because in fact fallback allocation is not the only reason why these two can differ. It also doesn't direcly provide the page's migratetype, although it's possible to derive that from the gfp_flags. It's arguably better to print both page and pageblock's migratetype and leave the interpretation to the consumer than to suggest fallback allocation as the only possible reason. While at it, we can print the migratetypes as string the same way as /proc/pagetypeinfo does, as some of the numeric values depend on kernel configuration. For that, this patch moves the migratetype_names array from #ifdef CONFIG_PROC_FS part of mm/vmstat.c to mm/page_alloc.c and exports it. With the new format strings for flags, we can now also provide symbolic page and gfp flags in the /sys/kernel/debug/page_owner file. This replaces the positional printing of page flags as single letters, which might have looked nicer, but was limited to a subset of flags, and required the user to remember the letters. Example page_owner entry after the patch: Page allocated via order 0, mask 0x24213ca(GFP_HIGHUSER_MOVABLE|__GFP_COLD|__GFP_NOWARN|__GFP_NORETRY) PFN 520 type Movable Block 1 type Movable Flags 0xfffff8001006c(referenced|uptodate|lru|active|mappedtodisk) [<ffffffff811682c4>] __alloc_pages_nodemask+0x134/0x230 [<ffffffff811b4058>] alloc_pages_current+0x88/0x120 [<ffffffff8115e386>] __page_cache_alloc+0xe6/0x120 [<ffffffff8116ba6c>] __do_page_cache_readahead+0xdc/0x240 [<ffffffff8116bd05>] ondemand_readahead+0x135/0x260 [<ffffffff8116bfb1>] page_cache_sync_readahead+0x31/0x50 [<ffffffff81160523>] generic_file_read_iter+0x453/0x760 [<ffffffff811e0d57>] __vfs_read+0xa7/0xd0 Signed-off-by: NVlastimil Babka <vbabka@suse.cz> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 04 2月, 2016 1 次提交
-
-
由 Kirill A. Shutemov 提交于
Andrea Arcangeli suggested to make split queue per-node to improve scalability. Let's do it. Signed-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Suggested-by: NAndrea Arcangeli <aarcange@redhat.com> Reviewed-by: NAndrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Sasha Levin <sasha.levin@oracle.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 15 1月, 2016 4 次提交
-
-
由 Johannes Weiner 提交于
The dirty balance reserve that dirty throttling has to consider is merely memory not available to userspace allocations. There is nothing writeback-specific about it. Generalize the name so that it's reusable outside of that context. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Acked-by: NMichal Hocko <mhocko@suse.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Yaowei Bai 提交于
Make memmap_valid_within return bool due to this particular function only using either one or zero as its return value. No functional change. Signed-off-by: NYaowei Bai <baiyaowei@cmss.chinamobile.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Yaowei Bai 提交于
Hardcoding index to zonelists array in gfp_zonelist() is not a good idea, let's enumerate it to improve readability. No functional change. [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: fix CONFIG_NUMA=n build] [n-horiguchi@ah.jp.nec.com: fix warning in comparing enumerator] Signed-off-by: NYaowei Bai <baiyaowei@cmss.chinamobile.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Yaowei Bai 提交于
Since commit a0b8cab3 ("mm: remove lru parameter from __pagevec_lru_add and remove parts of pagevec API") there's no user of this function anymore, so remove it. Signed-off-by: NYaowei Bai <baiyaowei@cmss.chinamobile.com> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NHillf Danton <hillf.zj@alibaba-inc.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 07 11月, 2015 6 次提交
-
-
由 Andrew Morton 提交于
Someone has an 86 column display. Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
High-order watermark checking exists for two reasons -- kswapd high-order awareness and protection for high-order atomic requests. Historically the kernel depended on MIGRATE_RESERVE to preserve min_free_kbytes as high-order free pages for as long as possible. This patch introduces MIGRATE_HIGHATOMIC that reserves pageblocks for high-order atomic allocations on demand and avoids using those blocks for order-0 allocations. This is more flexible and reliable than MIGRATE_RESERVE was. A MIGRATE_HIGHORDER pageblock is created when an atomic high-order allocation request steals a pageblock but limits the total number to 1% of the zone. Callers that speculatively abuse atomic allocations for long-lived high-order allocations to access the reserve will quickly fail. Note that SLUB is currently not such an abuser as it reclaims at least once. It is possible that the pageblock stolen has few suitable high-order pages and will need to steal again in the near future but there would need to be strong justification to search all pageblocks for an ideal candidate. The pageblocks are unreserved if an allocation fails after a direct reclaim attempt. The watermark checks account for the reserved pageblocks when the allocation request is not a high-order atomic allocation. The reserved pageblocks can not be used for order-0 allocations. This may allow temporary wastage until a failed reclaim reassigns the pageblock. This is deliberate as the intent of the reservation is to satisfy a limited number of atomic high-order short-lived requests if the system requires them. The stutter benchmark was used to evaluate this but while it was running there was a systemtap script that randomly allocated between 1 high-order page and 12.5% of memory's worth of order-3 pages using GFP_ATOMIC. This is much larger than the potential reserve and it does not attempt to be realistic. It is intended to stress random high-order allocations from an unknown source, show that there is a reduction in failures without introducing an anomaly where atomic allocations are more reliable than regular allocations. The amount of memory reserved varied throughout the workload as reserves were created and reclaimed under memory pressure. The allocation failures once the workload warmed up were as follows; 4.2-rc5-vanilla 70% 4.2-rc5-atomic-reserve 56% The failure rate was also measured while building multiple kernels. The failure rate was 14% but is 6% with this patch applied. Overall, this is a small reduction but the reserves are small relative to the number of allocation requests. In early versions of the patch, the failure rate reduced by a much larger amount but that required much larger reserves and perversely made atomic allocations seem more reliable than regular allocations. [yalin.wang2010@gmail.com: fix redundant check and a memory leak] Signed-off-by: NMel Gorman <mgorman@techsingularity.net> Acked-by: NVlastimil Babka <vbabka@suse.cz> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Vitaly Wool <vitalywool@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Nyalin wang <yalin.wang2010@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
MIGRATE_RESERVE preserves an old property of the buddy allocator that existed prior to fragmentation avoidance -- min_free_kbytes worth of pages tended to remain contiguous until the only alternative was to fail the allocation. At the time it was discovered that high-order atomic allocations relied on this property so MIGRATE_RESERVE was introduced. A later patch will introduce an alternative MIGRATE_HIGHATOMIC so this patch deletes MIGRATE_RESERVE and supporting code so it'll be easier to review. Note that this patch in isolation may look like a false regression if someone was bisecting high-order atomic allocation failures. Signed-off-by: NMel Gorman <mgorman@techsingularity.net> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Vitaly Wool <vitalywool@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
The zonelist cache (zlc) was introduced to skip over zones that were recently known to be full. This avoided expensive operations such as the cpuset checks, watermark calculations and zone_reclaim. The situation today is different and the complexity of zlc is harder to justify. 1) The cpuset checks are no-ops unless a cpuset is active and in general are a lot cheaper. 2) zone_reclaim is now disabled by default and I suspect that was a large source of the cost that zlc wanted to avoid. When it is enabled, it's known to be a major source of stalling when nodes fill up and it's unwise to hit every other user with the overhead. 3) Watermark checks are expensive to calculate for high-order allocation requests. Later patches in this series will reduce the cost of the watermark checking. 4) The most important issue is that in the current implementation it is possible for a failed THP allocation to mark a zone full for order-0 allocations and cause a fallback to remote nodes. The last issue could be addressed with additional complexity but as the benefit of zlc is questionable, it is better to remove it. If stalls due to zone_reclaim are ever reported then an alternative would be to introduce deferring logic based on a timeout inside zone_reclaim itself and leave the page allocator fast paths alone. The impact on page-allocator microbenchmarks is negligible as they don't hit the paths where the zlc comes into play. Most page-reclaim related workloads showed no noticeable difference as a result of the removal. The impact was noticeable in a workload called "stutter". One part uses a lot of anonymous memory, a second measures mmap latency and a third copies a large file. In an ideal world the latency application would not notice the mmap latency. On a 2-node machine the results of this patch are stutter 4.3.0-rc1 4.3.0-rc1 baseline nozlc-v4 Min mmap 20.9243 ( 0.00%) 20.7716 ( 0.73%) 1st-qrtle mmap 22.0612 ( 0.00%) 22.0680 ( -0.03%) 2nd-qrtle mmap 22.3291 ( 0.00%) 22.3809 ( -0.23%) 3rd-qrtle mmap 25.2244 ( 0.00%) 25.2396 ( -0.06%) Max-90% mmap 48.0995 ( 0.00%) 28.3713 ( 41.02%) Max-93% mmap 52.5557 ( 0.00%) 36.0170 ( 31.47%) Max-95% mmap 55.8173 ( 0.00%) 47.3163 ( 15.23%) Max-99% mmap 67.3781 ( 0.00%) 70.1140 ( -4.06%) Max mmap 24447.6375 ( 0.00%) 12915.1356 ( 47.17%) Mean mmap 33.7883 ( 0.00%) 27.7944 ( 17.74%) Best99%Mean mmap 27.7825 ( 0.00%) 25.2767 ( 9.02%) Best95%Mean mmap 26.3912 ( 0.00%) 23.7994 ( 9.82%) Best90%Mean mmap 24.9886 ( 0.00%) 23.2251 ( 7.06%) Best50%Mean mmap 22.0157 ( 0.00%) 22.0261 ( -0.05%) Best10%Mean mmap 21.6705 ( 0.00%) 21.6083 ( 0.29%) Best5%Mean mmap 21.5581 ( 0.00%) 21.4611 ( 0.45%) Best1%Mean mmap 21.3079 ( 0.00%) 21.1631 ( 0.68%) Note that the maximum stall latency went from 24 seconds to 12 which is still bad but an improvement. The milage varies considerably 2-node machine on an earlier test went from 494 seconds to 47 seconds and a 4-node machine that tested an earlier version of this patch went from a worst case stall time of 6 seconds to 67ms. The nature of the benchmark is inherently unpredictable as it is hammering the system and the milage will vary between machines. There is a secondary impact with potentially more direct reclaim because zones are now being considered instead of being skipped by zlc. In this particular test run it did not occur so will not be described. However, in at least one test the following was observed 1. Direct reclaim rates were higher. This was likely due to direct reclaim being entered instead of the zlc disabling a zone and busy looping. Busy looping may have the effect of allowing kswapd to make more progress and in some cases may be better overall. If this is found then the correct action is to put direct reclaimers to sleep on a waitqueue and allow kswapd make forward progress. Busy looping on the zlc is even worse than when the allocator used to blindly call congestion_wait(). 2. There was higher swap activity as direct reclaim was active. 3. Direct reclaim efficiency was lower. This is related to 1 as more scanning activity also encountered more pages that could not be immediately reclaimed In that case, the direct page scan and reclaim rates are noticeable but it is not considered a problem for a few reasons 1. The test is primarily concerned with latency. The mmap attempts are also faulted which means there are THP allocation requests. The ZLC could cause zones to be disabled causing the process to busy loop instead of reclaiming. This looks like elevated direct reclaim activity but it's the correct action to take based on what processes requested. 2. The test hammers reclaim and compaction heavily. The number of successful THP faults is highly variable but affects the reclaim stats. It's not a realistic or reasonable measure of page reclaim activity. 3. No other page-reclaim intensive workload that was tested showed a problem. 4. If a workload is identified that benefitted from the busy looping then it should be fixed by having direct reclaimers sleep on a wait queue until woken by kswapd instead of busy looping. We had this class of problem before when congestion_waits() with a fixed timeout was a brain damaged decision but happened to benefit some workloads. If a workload is identified that relied on the zlc to busy loop then it should be fixed correctly and have a direct reclaimer sleep on a waitqueue until woken by kswapd. Signed-off-by: NMel Gorman <mgorman@techsingularity.net> Acked-by: NDavid Rientjes <rientjes@google.com> Acked-by: NChristoph Lameter <cl@linux.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Acked-by: NMichal Hocko <mhocko@suse.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Vitaly Wool <vitalywool@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
This patch redefines which GFP bits are used for specifying mobility and the order of the migrate types. Once redefined it's possible to convert GFP flags to a migrate type with a simple mask and shift. The only downside is that readers of OOM kill messages and allocation failures may have been used to the existing values but scripts/gfp-translate will help. Signed-off-by: NMel Gorman <mgorman@techsingularity.net> Acked-by: NVlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Vitaly Wool <vitalywool@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
Overall, the intent of this series is to remove the zonelist cache which was introduced to avoid high overhead in the page allocator. Once this is done, it is necessary to reduce the cost of watermark checks. The series starts with minor micro-optimisations. Next it notes that GFP flags that affect watermark checks are abused. __GFP_WAIT historically identified callers that could not sleep and could access reserves. This was later abused to identify callers that simply prefer to avoid sleeping and have other options. A patch distinguishes between atomic callers, high-priority callers and those that simply wish to avoid sleep. The zonelist cache has been around for a long time but it is of dubious merit with a lot of complexity and some issues that are explained. The most important issue is that a failed THP allocation can cause a zone to be treated as "full". This potentially causes unnecessary stalls, reclaim activity or remote fallbacks. The issues could be fixed but it's not worth it. The series places a small number of other micro-optimisations on top before examining GFP flags watermarks. High-order watermarks enforcement can cause high-order allocations to fail even though pages are free. The watermark checks both protect high-order atomic allocations and make kswapd aware of high-order pages but there is a much better way that can be handled using migrate types. This series uses page grouping by mobility to reserve pageblocks for high-order allocations with the size of the reservation depending on demand. kswapd awareness is maintained by examining the free lists. By patch 12 in this series, there are no high-order watermark checks while preserving the properties that motivated the introduction of the watermark checks. This patch (of 10): No user of zone_watermark_ok_safe() specifies alloc_flags. This patch removes the unnecessary parameter. Signed-off-by: NMel Gorman <mgorman@techsingularity.net> Acked-by: NDavid Rientjes <rientjes@google.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Acked-by: NMichal Hocko <mhocko@suse.com> Reviewed-by: NChristoph Lameter <cl@linux.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 06 11月, 2015 1 次提交
-
-
由 Yaowei Bai 提交于
Commit a2f3aa02 ("[PATCH] Fix sparsemem on Cell") fixed an oops experienced on the Cell architecture when init-time functions, early_*(), are called at runtime by introducing an 'enum memmap_context' parameter to memmap_init_zone() and init_currently_empty_zone(). This parameter is intended to be used to tell whether the call of these two functions is being made on behalf of a hotplug event, or happening at boot-time. However, init_currently_empty_zone() does not use this parameter at all, so remove it. Signed-off-by: NYaowei Bai <bywxiaobai@163.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 05 9月, 2015 1 次提交
-
-
由 minkyung88.kim 提交于
struct node_active_region is not used anymore. Remove it. Signed-off-by: Nminkyung88.kim <minkyung88.kim@lge.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 28 8月, 2015 1 次提交
-
-
由 Dan Williams 提交于
While pmem is usable as a block device or via DAX mappings to userspace there are several usage scenarios that can not target pmem due to its lack of struct page coverage. In preparation for "hot plugging" pmem into the vmemmap add ZONE_DEVICE as a new zone to tag these pages separately from the ones that are subject to standard page allocations. Importantly "device memory" can be removed at will by userspace unbinding the driver of the device. Having a separate zone prevents allocation and otherwise marks these pages that are distinct from typical uniform memory. Device memory has different lifetime and performance characteristics than RAM. However, since we have run out of ZONES_SHIFT bits this functionality currently depends on sacrificing ZONE_DMA. Cc: H. Peter Anvin <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Jerome Glisse <j.glisse@gmail.com> [hch: various simplifications in the arch interface] Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
- 01 7月, 2015 2 次提交
-
-
由 Mel Gorman 提交于
This patch initalises all low memory struct pages and 2G of the highest zone on each node during memory initialisation if CONFIG_DEFERRED_STRUCT_PAGE_INIT is set. That config option cannot be set but will be available in a later patch. Parallel initialisation of struct page depends on some features from memory hotplug and it is necessary to alter alter section annotations. Signed-off-by: NMel Gorman <mgorman@suse.de> Tested-by: NNate Zimmer <nzimmer@sgi.com> Tested-by: NWaiman Long <waiman.long@hp.com> Tested-by: NDaniel J Blueman <daniel@numascale.com> Acked-by: NPekka Enberg <penberg@kernel.org> Cc: Robin Holt <robinmholt@gmail.com> Cc: Nate Zimmer <nzimmer@sgi.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Waiman Long <waiman.long@hp.com> Cc: Scott Norton <scott.norton@hp.com> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
early_pfn_in_nid() and meminit_pfn_in_nid() are small functions that are unnecessarily visible outside memory initialisation. As well as unnecessary visibility, it's unnecessary function call overhead when initialising pages. This patch moves the helpers inline. [akpm@linux-foundation.org: fix build] [mhocko@suse.cz: fix build] Signed-off-by: NMel Gorman <mgorman@suse.de> Tested-by: NNate Zimmer <nzimmer@sgi.com> Tested-by: NWaiman Long <waiman.long@hp.com> Tested-by: NDaniel J Blueman <daniel@numascale.com> Acked-by: NPekka Enberg <penberg@kernel.org> Cc: Robin Holt <robinmholt@gmail.com> Cc: Nate Zimmer <nzimmer@sgi.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Waiman Long <waiman.long@hp.com> Cc: Scott Norton <scott.norton@hp.com> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: NMichal Hocko <mhocko@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-