- 14 7月, 2007 24 次提交
-
-
由 Jens Axboe 提交于
When nfsd was transitioned to use splice instead of sendfile() for data transfers, a line setting the page index was lost. Restore it, so that nfsd is functional when that path is used. Signed-off-by: NJens Axboe <jens.axboe@oracle.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Thomas Gleixner 提交于
Roman Zippel noticed another inconsistency of the wmult table. wmult[16] has a missing digit. Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Linus Torvalds 提交于
* master.kernel.org:/pub/scm/linux/kernel/git/davej/cpufreq: [CPUFREQ] Fix typos in powernow-k8 printk's. [CPUFREQ] Restore previously used governor on a hot-replugged CPU [CPUFREQ] bugfix cpufreq in combination with performance governor [CPUFREQ] powernow-k8 compile fix. [CPUFREQ] the overdue removal of X86_SPEEDSTEP_CENTRINO_ACPI [CPUFREQ] Longhaul - Option to disable ACPI C3 support Fixed up arch/i386/kernel/cpu/cpufreq/powernow-k8.c due to revert that got fixed differently in the cpufreq branch. Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
git://lost.foo-projects.org/~dwillia2/git/iop由 Linus Torvalds 提交于
* 'ioat-md-accel-for-linus' of git://lost.foo-projects.org/~dwillia2/git/iop: (28 commits) ioatdma: add the unisys "i/oat" pci vendor/device id ARM: Add drivers/dma to arch/arm/Kconfig iop3xx: surface the iop3xx DMA and AAU units to the iop-adma driver iop13xx: surface the iop13xx adma units to the iop-adma driver dmaengine: driver for the iop32x, iop33x, and iop13xx raid engines md: remove raid5 compute_block and compute_parity5 md: handle_stripe5 - request io processing in raid5_run_ops md: handle_stripe5 - add request/completion logic for async expand ops md: handle_stripe5 - add request/completion logic for async read ops md: handle_stripe5 - add request/completion logic for async check ops md: handle_stripe5 - add request/completion logic for async compute ops md: handle_stripe5 - add request/completion logic for async write ops md: common infrastructure for running operations with raid5_run_ops md: raid5_run_ops - run stripe operations outside sh->lock raid5: replace custom debug PRINTKs with standard pr_debug raid5: refactor handle_stripe5 and handle_stripe6 (v3) async_tx: add the async_tx api xor: make 'xor_blocks' a library routine for use with async_tx dmaengine: make clients responsible for managing channels dmaengine: refactor dmaengine around dma_async_tx_descriptor ...
-
git://git.kernel.dk/data/git/linux-2.6-block由 Linus Torvalds 提交于
* 'splice-2.6.23' of git://git.kernel.dk/data/git/linux-2.6-block: splice: fix offset mangling with direct splicing (sendfile) security: revalidate rw permissions for sys_splice and sys_vmsplice relay: fixup kerneldoc comment relay: fix bogus cast in subbuf_splice_actor()
-
git://ftp.linux-mips.org/pub/scm/upstream-linus由 Linus Torvalds 提交于
* 'upstream' of git://ftp.linux-mips.org/pub/scm/upstream-linus: [MIPS] Workaround for a sparse warning in include/asm-mips/mach-tx4927/ioremap.h [MIPS] Make show_code static and add __user tag [MIPS] Workaround for a sparse warning in include/asm-mips/compat.h [MIPS] Add some __user tags [MIPS] math-emu minor cleanup [MIPS] Kill CONFIG_TX4927BUG_WORKAROUND [MIPS] Alchemy: Remove code wrapped by dead symbol CONFIG_FB_XPERT98 [MIPS] Alchemy: Remove code wrapped by dead symbol CONFIG_AU1000_SRC_CLK [MIPS] Alchemy: Remove code wrapped by dead symbol CONFIG_AU1000_USE32K [MIPS] Alchemy: Remove code wrapped by dead symbol CONFIG_AU1XXX_PSC_SPI [CHAR] Delete leftovers of old Alchemy UART driver
-
由 Linus Torvalds 提交于
This reverts commit 904f7a3f. As noted by Peter Anvin: "It causes build failures on i386. Yet another case of unnecessary divergence between i386 and x86-64 I'm afraid..." Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
git://git.kernel.org/pub/scm/linux/kernel/git/mingo/linux-2.6-sched由 Linus Torvalds 提交于
* git://git.kernel.org/pub/scm/linux/kernel/git/mingo/linux-2.6-sched: [PATCH] sched: small topology.h cleanup [PATCH] sched: fix show_task()/show_tasks() output [PATCH] sched: remove stale version info from kernel/sched_debug.c [PATCH] sched: allow larger granularity [PATCH] sched: fix prio_to_wmult[] for nice 1 [ I re-did the commits to get rid of some bogus merge commit that Ingo had. - Linus ] Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ingo Molnar 提交于
trivial cleanup: LOCAL_DISTANCE and REMOTE_DISTANCE are only used in topology.h and inside an #ifndef section - limit their existence to that #ifndef. Signed-off-by: NIngo Molnar <mingo@elte.hu> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ingo Molnar 提交于
fix show_task()/show_tasks() output: - there's no sibling info anymore - the fields were not aligned properly with the description - get rid of the lazy-TLB output: it's been quite some time since we last had a bug there, and when we had a bug it wasnt helped a bit by this debug output. Signed-off-by: NIngo Molnar <mingo@elte.hu> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ingo Molnar 提交于
kernel/sched_debug.c referred to CFS -v20, but there's no CFS versioning needed within the upstream kernel. Signed-off-by: NIngo Molnar <mingo@elte.hu> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ingo Molnar 提交于
Allow granularity up to 100 msecs, instead of 10 msecs. (needed on larger boxes) Signed-off-by: NIngo Molnar <mingo@elte.hu> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mike Galbraith 提交于
There's a typo in the values in prio_to_wmult[] for nice level 1. While it did not cause bad CPU distribution, but caused more rescheduling between nice-0 and nice-1 tasks than necessary. Signed-off-by: NIngo Molnar <mingo@elte.hu> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Atsushi Nemoto 提交于
include2/asm/mach-tx49xx/ioremap.h:39:52: warning: cast truncates bits from constant value (fff000000 becomes ff000000) Signed-off-by: NAtsushi Nemoto <anemo@mba.ocn.ne.jp> Signed-off-by: NRalf Baechle <ralf@linux-mips.org>
-
由 Atsushi Nemoto 提交于
Signed-off-by: NAtsushi Nemoto <anemo@mba.ocn.ne.jp> Signed-off-by: NRalf Baechle <ralf@linux-mips.org>
-
由 Atsushi Nemoto 提交于
Cast to a __user pointer via "unsigned long" to get rid of this warning: include2/asm/compat.h:135:10: warning: cast adds address space to expression (<asn:1>) Signed-off-by: NAtsushi Nemoto <anemo@mba.ocn.ne.jp> Signed-off-by: NRalf Baechle <ralf@linux-mips.org>
-
由 Atsushi Nemoto 提交于
Signed-off-by: NAtsushi Nemoto <anemo@mba.ocn.ne.jp> Signed-off-by: NRalf Baechle <ralf@linux-mips.org>
-
由 Atsushi Nemoto 提交于
Declaring emulpc and contpc as "unsigned long" can get rid of some casts. This also get rid of some sparse warnings. Signed-off-by: NAtsushi Nemoto <anemo@mba.ocn.ne.jp> Signed-off-by: NRalf Baechle <ralf@linux-mips.org>
-
由 Atsushi Nemoto 提交于
Kill workarounds for very early chip (perhaps pre-TX4927A). Signed-off-by: NAtsushi Nemoto <anemo@mba.ocn.ne.jp> Signed-off-by: NRalf Baechle <ralf@linux-mips.org>
-
由 Ralf Baechle 提交于
Noticed by Robert P. J. Day (rpjday@mindspring.com). Signed-off-by: NRalf Baechle <ralf@linux-mips.org>
-
由 Ralf Baechle 提交于
Noticed by Robert P. J. Day (rpjday@mindspring.com). Signed-off-by: NRalf Baechle <ralf@linux-mips.org>
-
由 Ralf Baechle 提交于
Noticed by Robert P. J. Day (rpjday@mindspring.com). Signed-off-by: NRalf Baechle <ralf@linux-mips.org>
-
由 Ralf Baechle 提交于
Noticed by Robert P. J. Day (rpjday@mindspring.com). Signed-off-by: NRalf Baechle <ralf@linux-mips.org>
-
由 Ralf Baechle 提交于
Signed-off-by: NRalf Baechle <ralf@linux-mips.org>
-
- 13 7月, 2007 16 次提交
-
-
由 Dan Williams 提交于
Cc: John Magolan <john.magolan@unisys.com> Signed-off-by: NShannon Nelson <shannon.nelson@intel.com> Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
由 Dan Williams 提交于
Cc: Russell King <rmk@arm.linux.org.uk> Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
由 Dan Williams 提交于
Adds the platform device definitions and the architecture specific support routines (i.e. register initialization and descriptor formats) for the iop-adma driver. Changelog: * add support for > 1k zero sum buffer sizes * added dma/aau platform devices to iq80321 and iq80332 setup * fixed the calculation in iop_desc_is_aligned * support xor buffer sizes larger than 16MB * fix places where software descriptors are assumed to be contiguous, only hardware descriptors are contiguous for up to a PAGE_SIZE buffer size * convert to async_tx * add interrupt support * add platform devices for 80219 boards * do not call platform register macros in driver code * remove switch() statements for compatible register offsets/layouts * change over to bitmap based capabilities * remove unnecessary ARM assembly statement * checkpatch.pl fixes * gpl v2 only correction * phys move to dma_async_tx_descriptor Cc: Russell King <rmk@arm.linux.org.uk> Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
由 Dan Williams 提交于
Adds the platform device definitions and the architecture specific support routines (i.e. register initialization and descriptor formats) for the iop-adma driver. Changelog: * added 'descriptor pool size' to the platform data * add base support for buffer sizes larger than 16MB (hw max) * build error fix from Kirill A. Shutemov * rebase for async_tx changes * add interrupt support * do not call platform register macros in driver code * remove unnecessary ARM assembly statement * checkpatch.pl fixes * gpl v2 only correction Cc: Russell King <rmk@arm.linux.org.uk> Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
由 Dan Williams 提交于
The Intel(R) IOP series of i/o processors integrate an Xscale core with raid acceleration engines. The capabilities per platform are: iop219: (2) copy engines iop321: (2) copy engines (1) xor and block fill engine iop33x: (2) copy and crc32c engines (1) xor, xor zero sum, pq, pq zero sum, and block fill engine iop34x (iop13xx): (2) copy, crc32c, xor, xor zero sum, and block fill engines (1) copy, crc32c, xor, xor zero sum, pq, pq zero sum, and block fill engine The driver supports the features of the async_tx api: * asynchronous notification of operation completion * implicit (interupt triggered) handling of inter-channel transaction dependencies The driver adapts to the platform it is running by two methods. 1/ #include <asm/arch/adma.h> which defines the hardware specific iop_chan_* and iop_desc_* routines as a series of static inline functions 2/ The private platform data attached to the platform_device defines the capabilities of the channels 20070626: Callbacks are run in a tasklet. Given the recent discussion on LKML about killing tasklets in favor of workqueues I did a quick conversion of the driver. Raid5 resync performance dropped from 50MB/s to 30MB/s, so the tasklet implementation remains until a generic softirq interface is available. Changelog: * fixed a slot allocation bug in do_iop13xx_adma_xor that caused too few slots to be requested eventually leading to data corruption * enabled the slot allocation routine to attempt to free slots before returning -ENOMEM * switched the cleanup routine to solely use the software chain and the status register to determine if a descriptor is complete. This is necessary to support other IOP engines that do not have status writeback capability * make the driver iop generic * modified the allocation routines to understand allocating a group of slots for a single operation * added a null xor initialization operation for the xor only channel on iop3xx * support xor operations on buffers larger than the hardware maximum * split the do_* routines into separate prep, src/dest set, submit stages * added async_tx support (dependent operations initiation at cleanup time) * simplified group handling * added interrupt support (callbacks via tasklets) * brought the pending depth inline with ioat (i.e. 4 descriptors) * drop dma mapping methods, suggested by Chris Leech * don't use inline in C files, Adrian Bunk * remove static tasklet declarations * make iop_adma_alloc_slots easier to read and remove chances for a corrupted descriptor chain * fix locking bug in iop_adma_alloc_chan_resources, Benjamin Herrenschmidt * convert capabilities over to dma_cap_mask_t * fixup sparse warnings * add descriptor flush before iop_chan_enable * checkpatch.pl fixes * gpl v2 only correction * move set_src, set_dest, submit to async_tx methods * move group_list and phys to async_tx Cc: Russell King <rmk@arm.linux.org.uk> Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
由 Dan Williams 提交于
replaced by raid5_run_ops Signed-off-by: NDan Williams <dan.j.williams@intel.com> Acked-By: NNeilBrown <neilb@suse.de>
-
由 Dan Williams 提交于
I/O submission requests were already handled outside of the stripe lock in handle_stripe. Now that handle_stripe is only tasked with finding work, this logic belongs in raid5_run_ops. Signed-off-by: NDan Williams <dan.j.williams@intel.com> Acked-By: NNeilBrown <neilb@suse.de>
-
由 Dan Williams 提交于
When a stripe is being expanded bulk copying takes place to move the data from the old stripe to the new. Since raid5_run_ops only operates on one stripe at a time these bulk copies are handled in-line under the stripe lock. In the dma offload case we poll for the completion of the operation. After the data has been copied into the new stripe the parity needs to be recalculated across the new disks. We reuse the existing postxor functionality to carry out this calculation. By setting STRIPE_OP_POSTXOR without setting STRIPE_OP_BIODRAIN the completion path in handle stripe can differentiate expand operations from normal write operations. Signed-off-by: NDan Williams <dan.j.williams@intel.com> Acked-By: NNeilBrown <neilb@suse.de>
-
由 Dan Williams 提交于
When a read bio is attached to the stripe and the corresponding block is marked R5_UPTODATE, then a read (biofill) operation is scheduled to copy the data from the stripe cache to the bio buffer. handle_stripe flags the blocks to be operated on with the R5_Wantfill flag. If new read requests arrive while raid5_run_ops is running they will not be handled until handle_stripe is scheduled to run again. Changelog: * cleanup to_read and to_fill accounting * do not fail reads that have reached the cache Signed-off-by: NDan Williams <dan.j.williams@intel.com> Acked-By: NNeilBrown <neilb@suse.de>
-
由 Dan Williams 提交于
Check operations are scheduled when the array is being resynced or an explicit 'check/repair' command was sent to the array. Previously check operations would destroy the parity block in the cache such that even if parity turned out to be correct the parity block would be marked !R5_UPTODATE at the completion of the check. When the operation can be carried out by a dma engine the assumption is that it can check parity as a read-only operation. If raid5_run_ops notices that the check was handled by hardware it will preserve the R5_UPTODATE status of the parity disk. When a check operation determines that the parity needs to be repaired we reuse the existing compute block infrastructure to carry out the operation. Repair operations imply an immediate write back of the data, so to differentiate a repair from a normal compute operation the STRIPE_OP_MOD_REPAIR_PD flag is added. Changelog: * remove test_and_set/test_and_clear BUG_ONs, Neil Brown Signed-off-by: NDan Williams <dan.j.williams@intel.com> Acked-By: NNeilBrown <neilb@suse.de>
-
由 Dan Williams 提交于
handle_stripe will compute a block when a backing disk has failed, or when it determines it can save a disk read by computing the block from all the other up-to-date blocks. Previously a block would be computed under the lock and subsequent logic in handle_stripe could use the newly up-to-date block. With the raid5_run_ops implementation the compute operation is carried out a later time outside the lock. To preserve the old functionality we take advantage of the dependency chain feature of async_tx to flag the block as R5_Wantcompute and then let other parts of handle_stripe operate on the block as if it were up-to-date. raid5_run_ops guarantees that the block will be ready before it is used in another operation. However, this only works in cases where the compute and the dependent operation are scheduled at the same time. If a previous call to handle_stripe sets the R5_Wantcompute flag there is no facility to pass the async_tx dependency chain across successive calls to raid5_run_ops. The req_compute variable protects against this case. Changelog: * remove the req_compute BUG_ON Signed-off-by: NDan Williams <dan.j.williams@intel.com> Acked-By: NNeilBrown <neilb@suse.de>
-
由 Dan Williams 提交于
After handle_stripe5 decides whether it wants to perform a read-modify-write, or a reconstruct write it calls handle_write_operations5. A read-modify-write operation will perform an xor subtraction of the blocks marked with the R5_Wantprexor flag, copy the new data into the stripe (biodrain) and perform a postxor operation across all up-to-date blocks to generate the new parity. A reconstruct write is run when all blocks are already up-to-date in the cache so all that is needed is a biodrain and postxor. On the completion path STRIPE_OP_PREXOR will be set if the operation was a read-modify-write. The STRIPE_OP_BIODRAIN flag is used in the completion path to differentiate write-initiated postxor operations versus expansion-initiated postxor operations. Completion of a write triggers i/o to the drives. Changelog: * make the 'rcw' parameter to handle_write_operations5 a simple flag, Neil Brown * remove test_and_set/test_and_clear BUG_ONs, Neil Brown Signed-off-by: NDan Williams <dan.j.williams@intel.com> Acked-By: NNeilBrown <neilb@suse.de>
-
由 Dan Williams 提交于
All the handle_stripe operations that are to be transitioned to use raid5_run_ops need a method to coherently gather work under the stripe-lock and hand that work off to raid5_run_ops. The 'get_stripe_work' routine runs under the lock to read all the bits in sh->ops.pending that do not have the corresponding bit set in sh->ops.ack. This modified 'pending' bitmap is then passed to raid5_run_ops for processing. The transition from 'ack' to 'completion' does not need similar protection as the existing release_stripe infrastructure will guarantee that handle_stripe will run again after a completion bit is set, and handle_stripe can tolerate a sh->ops.completed bit being set while the lock is held. A call to async_tx_issue_pending_all() is added to raid5d to kick the offload engines once all pending stripe operations work has been submitted. This enables batching of the submission and completion of operations. Signed-off-by: NDan Williams <dan.j.williams@intel.com> Acked-By: NNeilBrown <neilb@suse.de>
-
由 Dan Williams 提交于
When the raid acceleration work was proposed, Neil laid out the following attack plan: 1/ move the xor and copy operations outside spin_lock(&sh->lock) 2/ find/implement an asynchronous offload api The raid5_run_ops routine uses the asynchronous offload api (async_tx) and the stripe_operations member of a stripe_head to carry out xor+copy operations asynchronously, outside the lock. To perform operations outside the lock a new set of state flags is needed to track new requests, in-flight requests, and completed requests. In this new model handle_stripe is tasked with scanning the stripe_head for work, updating the stripe_operations structure, and finally dropping the lock and calling raid5_run_ops for processing. The following flags outline the requests that handle_stripe can make of raid5_run_ops: STRIPE_OP_BIOFILL - copy data into request buffers to satisfy a read request STRIPE_OP_COMPUTE_BLK - generate a missing block in the cache from the other blocks STRIPE_OP_PREXOR - subtract existing data as part of the read-modify-write process STRIPE_OP_BIODRAIN - copy data out of request buffers to satisfy a write request STRIPE_OP_POSTXOR - recalculate parity for new data that has entered the cache STRIPE_OP_CHECK - verify that the parity is correct STRIPE_OP_IO - submit i/o to the member disks (note this was already performed outside the stripe lock, but it made sense to add it as an operation type The flow is: 1/ handle_stripe sets STRIPE_OP_* in sh->ops.pending 2/ raid5_run_ops reads sh->ops.pending, sets sh->ops.ack, and submits the operation to the async_tx api 3/ async_tx triggers the completion callback routine to set sh->ops.complete and release the stripe 4/ handle_stripe runs again to finish the operation and optionally submit new operations that were previously blocked Note this patch just defines raid5_run_ops, subsequent commits (one per major operation type) modify handle_stripe to take advantage of this routine. Changelog: * removed ops_complete_biodrain in favor of ops_complete_postxor and ops_complete_write. * removed the raid5_run_ops workqueue * call bi_end_io for reads in ops_complete_biofill, saves a call to handle_stripe * explicitly handle the 2-disk raid5 case (xor becomes memcpy), Neil Brown * fix race between async engines and bi_end_io call for reads, Neil Brown * remove unnecessary spin_lock from ops_complete_biofill * remove test_and_set/test_and_clear BUG_ONs, Neil Brown * remove explicit interrupt handling for channel switching, this feature was absorbed (i.e. it is now implicit) by the async_tx api * use return_io in ops_complete_biofill Signed-off-by: NDan Williams <dan.j.williams@intel.com> Acked-By: NNeilBrown <neilb@suse.de>
-
由 Dan Williams 提交于
Replaces PRINTK with pr_debug, and kills the RAID5_DEBUG definition in favor of the global DEBUG definition. To get local debug messages just add '#define DEBUG' to the top of the file. Signed-off-by: NDan Williams <dan.j.williams@intel.com> Acked-By: NNeilBrown <neilb@suse.de>
-
由 Dan Williams 提交于
handle_stripe5 and handle_stripe6 have very deep logic paths handling the various states of a stripe_head. By introducing the 'stripe_head_state' and 'r6_state' objects, large portions of the logic can be moved to sub-routines. 'struct stripe_head_state' consumes all of the automatic variables that previously stood alone in handle_stripe5,6. 'struct r6_state' contains the handle_stripe6 specific variables like p_failed and q_failed. One of the nice side effects of the 'stripe_head_state' change is that it allows for further reductions in code duplication between raid5 and raid6. The following new routines are shared between raid5 and raid6: handle_completed_write_requests handle_requests_to_failed_array handle_stripe_expansion Changes: * v2: fixed 'conf->raid_disk-1' for the raid6 'handle_stripe_expansion' path * v3: removed the unused 'dirty' field from struct stripe_head_state * v3: coalesced open coded bi_end_io routines into return_io() Signed-off-by: NDan Williams <dan.j.williams@intel.com> Acked-By: NNeilBrown <neilb@suse.de>
-