- 10 9月, 2013 5 次提交
-
-
由 Srivatsa S. Bhat 提交于
The functions that are used to write to cpufreq sysfs files (such as store_scaling_max_freq()) are not hotplug safe. They can race with CPU hotplug tasks and lead to problems such as trying to acquire an already destroyed timer-mutex etc. Eg: __cpufreq_remove_dev() __cpufreq_governor(policy, CPUFREQ_GOV_STOP); policy->governor->governor(policy, CPUFREQ_GOV_STOP); cpufreq_governor_dbs() case CPUFREQ_GOV_STOP: mutex_destroy(&cpu_cdbs->timer_mutex) cpu_cdbs->cur_policy = NULL; <PREEMPT> store() __cpufreq_set_policy() __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); policy->governor->governor(policy, CPUFREQ_GOV_LIMITS); case CPUFREQ_GOV_LIMITS: mutex_lock(&cpu_cdbs->timer_mutex); <-- Warning (destroyed mutex) if (policy->max < cpu_cdbs->cur_policy->cur) <- cur_policy == NULL So use get_online_cpus()/put_online_cpus() in the store_*() functions, to synchronize with CPU hotplug. However, there is an additional point to note here: some parts of the CPU teardown in the cpufreq subsystem are done in the CPU_POST_DEAD stage, with cpu_hotplug.lock *released*. So, using the get/put_online_cpus() functions alone is insufficient; we should also ensure that we don't race with those latter steps in the hotplug sequence. We can easily achieve this by checking if the CPU is online before proceeding with the store, since the CPU would have been marked offline by the time the CPU_POST_DEAD notifiers are executed. Reported-by: NStephen Boyd <sboyd@codeaurora.org> Signed-off-by: NSrivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Srivatsa S. Bhat 提交于
__cpufreq_remove_dev_finish() handles the kobject cleanup for a CPU going offline. But because we destroy the kobject towards the end of the CPU offline phase, there are certain race windows where a task can try to write to a cpufreq sysfs file (eg: using store_scaling_max_freq()) while we are taking that CPU offline, and this can bump up the kobject refcount, which in turn might hinder the CPU offline task from running to completion. (It can also cause other more serious problems such as trying to acquire a destroyed timer-mutex etc., depending on the exact stage of the cleanup at which the task managed to take a new refcount). To fix the race window, we will need to synchronize those store_*() call-sites with CPU hotplug, using get_online_cpus()/put_online_cpus(). However, that in turn can cause a total deadlock because it can end up waiting for the CPU offline task to complete, with incremented refcount! Write to sysfs CPU offline task -------------- ---------------- kobj_refcnt++ Acquire cpu_hotplug.lock get_online_cpus(); Wait for kobj_refcnt to drop to zero **DEADLOCK** A simple way to avoid this problem is to perform the kobject cleanup in the CPU offline path, with the cpu_hotplug.lock *released*. That is, we can perform the wait-for-kobj-refcnt-to-drop as well as the subsequent cleanup in the CPU_POST_DEAD stage of CPU offline, which is run with cpu_hotplug.lock released. Doing this helps us avoid deadlocks due to holding kobject refcounts and waiting on each other on the cpu_hotplug.lock. (Note: We can't move all of the cpufreq CPU offline steps to the CPU_POST_DEAD stage, because certain things such as stopping the governors have to be done before the outgoing CPU is marked offline. So retain those parts in the CPU_DOWN_PREPARE stage itself). Reported-by: NStephen Boyd <sboyd@codeaurora.org> Signed-off-by: NSrivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Srivatsa S. Bhat 提交于
During CPU offline, the cpufreq core invokes __cpufreq_remove_dev() to perform work such as stopping the cpufreq governor, clearing the CPU from the policy structure etc, and finally cleaning up the kobject. There are certain subtle issues related to the kobject cleanup, and it would be much easier to deal with them if we separate that part from the rest of the cleanup-work in the CPU offline phase. So split the __cpufreq_remove_dev() function into 2 parts: one that handles the kobject cleanup, and the other that handles the rest of the work. Reported-by: NStephen Boyd <sboyd@codeaurora.org> Signed-off-by: NSrivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Viresh Kumar 提交于
We can't take a big lock around __cpufreq_governor() as this causes recursive locking for some cases. But calls to this routine must be serialized for every policy. Otherwise we can see some unpredictable events. For example, consider following scenario: __cpufreq_remove_dev() __cpufreq_governor(policy, CPUFREQ_GOV_STOP); policy->governor->governor(policy, CPUFREQ_GOV_STOP); cpufreq_governor_dbs() case CPUFREQ_GOV_STOP: mutex_destroy(&cpu_cdbs->timer_mutex) cpu_cdbs->cur_policy = NULL; <PREEMPT> store() __cpufreq_set_policy() __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); policy->governor->governor(policy, CPUFREQ_GOV_LIMITS); case CPUFREQ_GOV_LIMITS: mutex_lock(&cpu_cdbs->timer_mutex); <-- Warning (destroyed mutex) if (policy->max < cpu_cdbs->cur_policy->cur) <- cur_policy == NULL And so store() will eventually result in a crash if cur_policy is NULL at this point. Introduce an additional variable which would guarantee serialization here. Reported-by: NStephen Boyd <sboyd@codeaurora.org> Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Viresh Kumar 提交于
__cpufreq_governor() returns with -EBUSY when governor is already stopped and we try to stop it again, but when it is stopped we must not allow calls to CPUFREQ_GOV_LIMITS event as well. This patch adds this check in __cpufreq_governor(). Reported-by: NStephen Boyd <sboyd@codeaurora.org> Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 21 8月, 2013 1 次提交
-
-
由 Li Zhong 提交于
This patch tries to fix lockdep complaint attached below. It seems that we should always read acquire the cpufreq_rwsem, whether CONFIG_SMP is enabled or not. And CONFIG_HOTPLUG_CPU depends on CONFIG_SMP, so it seems we don't need CONFIG_SMP for the code enabled by CONFIG_HOTPLUG_CPU. [ 0.504191] ===================================== [ 0.504627] [ BUG: bad unlock balance detected! ] [ 0.504627] 3.11.0-rc6-next-20130819 #1 Not tainted [ 0.504627] ------------------------------------- [ 0.504627] swapper/1 is trying to release lock (cpufreq_rwsem) at: [ 0.504627] [<ffffffff813d927a>] cpufreq_add_dev+0x13a/0x3e0 [ 0.504627] but there are no more locks to release! [ 0.504627] [ 0.504627] other info that might help us debug this: [ 0.504627] 1 lock held by swapper/1: [ 0.504627] #0: (subsys mutex#4){+.+.+.}, at: [<ffffffff8134a7bf>] subsys_interface_register+0x4f/0xe0 [ 0.504627] [ 0.504627] stack backtrace: [ 0.504627] CPU: 0 PID: 1 Comm: swapper Not tainted 3.11.0-rc6-next-20130819 #1 [ 0.504627] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 0.504627] ffffffff813d927a ffff88007f847c98 ffffffff814c062b ffff88007f847cc8 [ 0.504627] ffffffff81098bce ffff88007f847cf8 ffffffff81aadc30 ffffffff813d927a [ 0.504627] 00000000ffffffff ffff88007f847d68 ffffffff8109d0be 0000000000000006 [ 0.504627] Call Trace: [ 0.504627] [<ffffffff813d927a>] ? cpufreq_add_dev+0x13a/0x3e0 [ 0.504627] [<ffffffff814c062b>] dump_stack+0x19/0x1b [ 0.504627] [<ffffffff81098bce>] print_unlock_imbalance_bug+0xfe/0x110 [ 0.504627] [<ffffffff813d927a>] ? cpufreq_add_dev+0x13a/0x3e0 [ 0.504627] [<ffffffff8109d0be>] lock_release_non_nested+0x1ee/0x310 [ 0.504627] [<ffffffff81099d0e>] ? mark_held_locks+0xae/0x120 [ 0.504627] [<ffffffff811510cb>] ? kfree+0xcb/0x1d0 [ 0.504627] [<ffffffff813d77ea>] ? cpufreq_policy_free+0x4a/0x60 [ 0.504627] [<ffffffff813d927a>] ? cpufreq_add_dev+0x13a/0x3e0 [ 0.504627] [<ffffffff8109d2a4>] lock_release+0xc4/0x250 [ 0.504627] [<ffffffff8106c9f3>] up_read+0x23/0x40 [ 0.504627] [<ffffffff813d927a>] cpufreq_add_dev+0x13a/0x3e0 [ 0.504627] [<ffffffff8134a809>] subsys_interface_register+0x99/0xe0 [ 0.504627] [<ffffffff81b19f3b>] ? cpufreq_gov_dbs_init+0x12/0x12 [ 0.504627] [<ffffffff813d7f0d>] cpufreq_register_driver+0x9d/0x1d0 [ 0.504627] [<ffffffff81b19f3b>] ? cpufreq_gov_dbs_init+0x12/0x12 [ 0.504627] [<ffffffff81b1a039>] acpi_cpufreq_init+0xfe/0x1f8 [ 0.504627] [<ffffffff810002ba>] do_one_initcall+0xda/0x180 [ 0.504627] [<ffffffff81ae301e>] kernel_init_freeable+0x12c/0x1bb [ 0.504627] [<ffffffff81ae2841>] ? do_early_param+0x8c/0x8c [ 0.504627] [<ffffffff814b4dd0>] ? rest_init+0x140/0x140 [ 0.504627] [<ffffffff814b4dde>] kernel_init+0xe/0xf0 [ 0.504627] [<ffffffff814d029a>] ret_from_fork+0x7a/0xb0 [ 0.504627] [<ffffffff814b4dd0>] ? rest_init+0x140/0x140 Signed-off-by: NLi Zhong <zhong@linux.vnet.ibm.com> Acked-and-tested-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 20 8月, 2013 5 次提交
-
-
由 Viresh Kumar 提交于
To iterate over all policies we currently iterate over all online CPUs and then get the policy for each of them which is suboptimal. Use the newly created cpufreq_policy_list for this purpose instead. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Viresh Kumar 提交于
cpufreq_policy_cpu per-cpu variables are used for storing the ID of the CPU that manages the given CPU's policy. However, we also store a policy pointer for each cpu in cpufreq_cpu_data, so the cpufreq_policy_cpu information is simply redundant. It is better to use cpufreq_cpu_data to retrieve a policy and get policy->cpu from there, so make that happen everywhere and drop the cpufreq_policy_cpu per-cpu variables which aren't necessary any more. [rjw: Changelog] Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Viresh Kumar 提交于
We don't need to check if event is CPUFREQ_GOV_POLICY_INIT and put governor module as we are sure event can only be START/STOP here. Remove the useless check. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Viresh Kumar 提交于
cpufreq_policy_list is a list of active policies. We do remove policies from this list when all CPUs belonging to that policy are removed. But during system suspend we don't really free a policy struct as it will be used again during resume, so we didn't remove it from cpufreq_policy_list as well.. However, this is incorrect. We are saying this policy isn't valid anymore and must not be referenced (though we haven't freed it), but it can still be used by code that iterates over cpufreq_policy_list. Remove policy from this list during system suspend as well. Of course, we must add it back whenever the first CPU belonging to that policy shows up. [rjw: Changelog] Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Viresh Kumar 提交于
Align closing brace '}' of an if block. [rjw: Subject and changelog] Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 18 8月, 2013 1 次提交
-
-
由 Rafael J. Wysocki 提交于
Revert commit eb608521 (cpufreq: Use cpufreq_policy_list for iterating over policies), because it breaks system suspend/resume on multiple machines. It either causes resume to block indefinitely or causes the BUG_ON() in lock_policy_rwsem_##mode() to trigger on sysfs accesses to cpufreq attributes. Conflicts: drivers/cpufreq/cpufreq.c
-
- 10 8月, 2013 5 次提交
-
-
由 Viresh Kumar 提交于
The __cpufreq_governor() function can fail in rare cases especially if there are bugs in cpufreq drivers. Thus we must stop processing as soon as this routine fails, otherwise it may result in undefined behavior. This patch adds error checking code whenever this routine is called from any place. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Viresh Kumar 提交于
Critical sections of the cpufreq core are protected with the help of the driver module owner's refcount, which isn't the correct approach, because it causes rmmod to return an error when some routine has updated that refcount. Let's use rwsem for this purpose instead. Only cpufreq_unregister_driver() will use write sem and everybody else will use read sem. [rjw: Subject & changelog] Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Viresh Kumar 提交于
The cpufreq governor owner refcount usage is broken. We should only increment that refcount when a CPUFREQ_GOV_POLICY_INIT event has come and it should only be decremented if CPUFREQ_GOV_POLICY_EXIT has come. Currently, there can be situations where the governor is in use, but we have allowed it to be unloaded which may result in undefined behavior. Let's fix it. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Viresh Kumar 提交于
To iterate over all policies we currently iterate over all CPUs and then get the policy for each of them. Let's use the newly created cpufreq_policy_list for this purpose. [rjw: Changelog] Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Lukasz Majewski 提交于
Policies available in the cpufreq framework are now linked together. They are accessible via cpufreq_policy_list defined in the cpufreq core. [rjw: Fix from Yinghai Lu folded in] Signed-off-by: NLukasz Majewski <l.majewski@samsung.com> Signed-off-by: NMyungjoo Ham <myungjoo.ham@samsung.com> Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 08 8月, 2013 15 次提交
-
-
由 Viresh Kumar 提交于
Chapter 14 of Documentation/CodingStyle says: The preferred form for passing a size of a struct is the following: p = kmalloc(sizeof(*p), ...); The alternative form where struct name is spelled out hurts readability and introduces an opportunity for a bug when the pointer variable type is changed but the corresponding sizeof that is passed to a memory allocator is not. This wasn't followed consistently in drivers/cpufreq, let's make it more consistent by always following this rule. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Viresh Kumar 提交于
They are called policy, cur_policy, new_policy, data, etc. Just call them policy wherever possible. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Viresh Kumar 提交于
This patch addresses the following issues in the header files in the cpufreq core: - Include headers in ascending order, so that we don't add same many times by mistake. - <asm/> must be included after <linux/>, so that they override whatever they need to. - Remove unnecessary includes. - Don't include files already included by cpufreq.h or cpufreq_governor.h. [rjw: Changelog] Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Viresh Kumar 提交于
The caller of cpufreq_add_policy_cpu() already has a pointer to the policy structure and there is no need to look it up again in cpufreq_add_policy_cpu(). Let's pass it directly. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Reviewed-by: NSrivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Rafael J. Wysocki 提交于
The only case triggering a jump to the err_out_unregister label in __cpufreq_add_dev() is when cpufreq_add_dev_interface() fails. However, if cpufreq_add_dev_interface() fails, it calls kobject_put() for the policy kobject in its error code path and since that causes the kobject's refcount to become 0, the additional kobject_put() for the same kobject under err_out_unregister and the wait_for_completion() following it are pointless, so drop them. Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: NSrivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org>
-
由 Rafael J. Wysocki 提交于
The cpufreq core is a little inconsistent in the way it uses the driver module refcount. Namely, if __cpufreq_add_dev() is called for a CPU that doesn't share the policy object with any other CPUs, the driver module refcount it grabs to start with will be dropped by it before returning and will be equal to whatever it had been before that function was invoked. However, if the given CPU does share the policy object with other CPUs, either cpufreq_add_policy_cpu() is called to link the new CPU to the existing policy, or cpufreq_add_dev_symlink() is used to link the other CPUs sharing the policy with it to the just created policy object. In that case, because both cpufreq_add_policy_cpu() and cpufreq_add_dev_symlink() call cpufreq_cpu_get() for the given policy (the latter possibly many times) without the balancing cpufreq_cpu_put() (unless there is an error), the driver module refcount will be left by __cpufreq_add_dev() with a nonzero value (different from the initial one). To remove that inconsistency make cpufreq_add_policy_cpu() execute cpufreq_cpu_put() for the given policy before returning, which decrements the driver module refcount so that it will be equal to its initial value after __cpufreq_add_dev() returns. Also remove the cpufreq_cpu_get() call from cpufreq_add_dev_symlink(), since both the policy refcount and the driver module refcount are nonzero when it is called and they don't need to be bumped up by it. Accordingly, drop the cpufreq_cpu_put() from __cpufreq_remove_dev(), since it is only necessary to balance the cpufreq_cpu_get() called by cpufreq_add_policy_cpu() or cpufreq_add_dev_symlink(). Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: NSrivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org>
-
由 Viresh Kumar 提交于
Pointer to struct cpufreq_policy is already passed to these routines and we don't need to send policy->cpu to them as well. So, get rid of this extra argument and use policy->cpu everywhere. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Viresh Kumar 提交于
We call cpufreq_cpu_get() in cpufreq_add_dev_symlink() to increase usage refcount of policy, but not to get a policy for the given CPU. So, we don't really need to capture the return value of this routine. We can simply use policy passed as an argument to cpufreq_add_dev_symlink(). Moreover debug print is rewritten to make it more clear. [rjw: Changelog] Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Srivatsa S. Bhat 提交于
Now that we have the infrastructure to perform a light-weight init/tear-down, use that in the cpufreq CPU hotplug notifier when invoked from the suspend/resume path. This also ensures that the file permissions of the cpufreq sysfs files are preserved across suspend/resume, something which commit a66b2e (cpufreq: Preserve sysfs files across suspend/resume) originally intended to do, but had to be reverted due to other problems. Signed-off-by: NSrivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Srivatsa S. Bhat 提交于
To perform light-weight cpu-init and teardown in the cpufreq subsystem during suspend/resume, we need to separate out the 2 main functionalities of the cpufreq CPU hotplug callbacks, as outlined below: 1. Init/tear-down of core cpufreq and CPU-specific components, which are critical to the correct functioning of the cpufreq subsystem. 2. Init/tear-down of cpufreq sysfs files during suspend/resume. The first part requires accurate updates to the policy structure such as its ->cpus and ->related_cpus masks, whereas the second part requires that the policy->kobj structure is not released or re-initialized during suspend/resume. To handle both these requirements, we need to allow updates to the policy structure throughout suspend/resume, but prevent the structure from getting freed up. Also, we must have a mechanism by which the cpu-up callbacks can restore the policy structure, without allocating things afresh. (That also helps avoid memory leaks). To achieve this, we use 2 schemes: a. Use a fallback per-cpu storage area for preserving the policy structures during suspend, so that they can be restored during resume appropriately. b. Use the 'frozen' flag to determine when to free or allocate the policy structure vs when to restore the policy from the saved fallback storage. Thus we can successfully preserve the structure across suspend/resume. Effectively, this helps us complete the separation of the 'light-weight' and the 'full' init/tear-down sequences in the cpufreq subsystem, so that this can be made use of in the suspend/resume scenario. Signed-off-by: NSrivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Srivatsa S. Bhat 提交于
During suspend/resume we would like to do a light-weight init/teardown of CPUs in the cpufreq subsystem and preserve certain things such as sysfs files etc across suspend/resume transitions. Add a flag called 'frozen' to help distinguish the full init/teardown sequence from the light-weight one. Signed-off-by: NSrivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Srivatsa S. Bhat 提交于
During cpu offline, when the policy->cpu is going down, some other CPU present in the policy->cpus mask is nominated as the new policy->cpu. Extract this functionality from __cpufreq_remove_dev() and implement it in a helper function. This helps in upcoming code reorganization. Signed-off-by: NSrivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Srivatsa S. Bhat 提交于
cpufreq_add_dev_interface() includes the work of exposing the interface to the device, as well as a lot of unrelated stuff. Move the latter to cpufreq_add_dev(), where it is more appropriate. Signed-off-by: NSrivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Srivatsa S. Bhat 提交于
Separate out the allocation of the cpufreq policy structure (along with its error handling) to a helper function. This makes the code easier to read and also helps with some upcoming code reorganization. Signed-off-by: NSrivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Srivatsa S. Bhat 提交于
The call to cpufreq_update_policy() is placed in the CPU hotplug callback of cpufreq_stats, which has a higher priority than the CPU hotplug callback of cpufreq-core. As a result, during CPU_ONLINE/CPU_ONLINE_FROZEN, we end up calling cpufreq_update_policy() *before* calling cpufreq_add_dev() ! And for uninitialized CPUs, it just returns silently, not doing anything. To add to that, cpufreq_stats is not even the right place to call cpufreq_update_policy() to begin with. The cpufreq core ought to handle this in its own callback, from an elegance/relevance perspective. So move the invocation of cpufreq_update_policy() to cpufreq_cpu_callback, and place it *after* cpufreq_add_dev(). Signed-off-by: NSrivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 30 7月, 2013 1 次提交
-
-
由 Rafael J. Wysocki 提交于
Since cpufreq_cpu_put() called by __cpufreq_remove_dev() drops the driver module refcount, __cpufreq_remove_dev() causes that refcount to become negative for the cpufreq driver after a suspend/resume cycle. This is not the only bad thing that happens there, however, because kobject_put() should only be called for the policy kobject at this point if the CPU is not the last one for that policy. Namely, if the given CPU is the last one for that policy, the policy kobject's refcount should be 1 at this point, as set by cpufreq_add_dev_interface(), and only needs to be dropped once for the kobject to go away. This actually happens under the cpu == 1 check, so it need not be done before by cpufreq_cpu_put(). On the other hand, if the given CPU is not the last one for that policy, this means that cpufreq_add_policy_cpu() has been called at least once for that policy and cpufreq_cpu_get() has been called for it too. To balance that cpufreq_cpu_get(), we need to call cpufreq_cpu_put() in that case. Thus, to fix the described problem and keep the reference counters balanced in both cases, move the cpufreq_cpu_get() call in __cpufreq_remove_dev() to the code path executed only for CPUs that share the policy with other CPUs. Reported-and-tested-by: NToralf Förster <toralf.foerster@gmx.de> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: NSrivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Cc: 3.10+ <stable@vger.kernel.org>
-
- 26 7月, 2013 1 次提交
-
-
由 Stratos Karafotis 提交于
The target frequency calculation method in the ondemand governor has changed and it is now independent of the measured average frequency. Consequently, the __cpufreq_driver_getavg() function and getavg member of struct cpufreq_driver are not used any more, so drop them. [rjw: Changelog] Signed-off-by: NStratos Karafotis <stratosk@semaphore.gr> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 15 7月, 2013 2 次提交
-
-
由 Paul Gortmaker 提交于
The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. This removes all the drivers/cpufreq uses of the __cpuinit macros from all C files. [1] https://lkml.org/lkml/2013/5/20/589 [v2: leave 2nd lines of args misaligned as requested by Viresh] Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Viresh Kumar <viresh.kumar@linaro.org> Cc: cpufreq@vger.kernel.org Cc: linux-pm@vger.kernel.org Acked-by: NDirk Brandewie <dirk.j.brandewie@intel.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NPaul Gortmaker <paul.gortmaker@windriver.com>
-
由 Srivatsa S. Bhat 提交于
commit a66b2e (cpufreq: Preserve sysfs files across suspend/resume) has unfortunately caused several things in the cpufreq subsystem to break subtly after a suspend/resume cycle. The intention of that patch was to retain the file permissions of the cpufreq related sysfs files across suspend/resume. To achieve that, the commit completely removed the calls to cpufreq_add_dev() and __cpufreq_remove_dev() during suspend/resume transitions. But the problem is that those functions do 2 kinds of things: 1. Low-level initialization/tear-down that are critical to the correct functioning of cpufreq-core. 2. Kobject and sysfs related initialization/teardown. Ideally we should have reorganized the code to cleanly separate these two responsibilities, and skipped only the sysfs related parts during suspend/resume. Since we skipped the entire callbacks instead (which also included some CPU and cpufreq-specific critical components), cpufreq subsystem started behaving erratically after suspend/resume. So revert the commit to fix the regression. We'll revisit and address the original goal of that commit separately, since it involves quite a bit of careful code reorganization and appears to be non-trivial. (While reverting the commit, note that another commit f51e1eb6 (cpufreq: Fix cpufreq regression after suspend/resume) already reverted part of the original set of changes. So revert only the remaining ones). Signed-off-by: NSrivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Tested-by: NPaul Bolle <pebolle@tiscali.nl> Cc: 3.10+ <stable@vger.kernel.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 04 7月, 2013 1 次提交
-
-
由 Viresh Kumar 提交于
Commit 7c30ed ("cpufreq: make sure frequency transitions are serialized") interacts poorly with systems that have a single core freqency for all cores. On such systems we have a single policy for all cores with several CPUs. When we do a frequency transition the governor calls the pre and post change notifiers which causes cpufreq_notify_transition() per CPU. Since the policy is the same for all of them all CPUs after the first and the warnings added are generated by checking a per-policy flag the warnings will be triggered for all cores after the first. Fix this by allowing notifier to be called for n times. Where n is the number of cpus in policy->cpus. Reported-and-tested-by: NMark Brown <broonie@linaro.org> Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 28 6月, 2013 2 次提交
-
-
由 Lan Tianyu 提交于
Commits fcf80582 (cpufreq: Simplify cpufreq_add_dev()) and aa77a527 (cpufreq: acpi-cpufreq: Don't set policy->related_cpus from .init()) changed the contents of the "related_cpus" sysfs attribute on systems where acpi-cpufreq is used and user space can't get the list of CPUs which are in the same hardware coordination CPU domain (provided by the ACPI AML method _PSD) via "related_cpus" any more. To make up for that loss add a new sysfs attribute "freqdomian_cpus" for the acpi-cpufreq driver which exposes the list of CPUs in the same domain regardless of whether it is coordinated by hardware or software. [rjw: Changelog, documentation] References: https://bugzilla.kernel.org/show_bug.cgi?id=58761Reported-by: NJean-Philippe Halimi <jean-philippe.halimi@exascale-computing.eu> Signed-off-by: NLan Tianyu <tianyu.lan@intel.com> Acked-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Viresh Kumar 提交于
Whenever we are changing frequency of a cpu, we are calling PRECHANGE and POSTCHANGE notifiers. They must be serialized. i.e. PRECHANGE or POSTCHANGE shouldn't be called twice contiguously. This can happen due to bugs in users of __cpufreq_driver_target() or actual cpufreq drivers who are sending these notifiers. This patch adds some protection against this. Now, we keep track of the last transaction and see if something went wrong. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 21 6月, 2013 1 次提交
-
-
由 Viresh Kumar 提交于
__cpufreq_notify_transition() is used only in cpufreq.c, make it static. Signed-off-by: NViresh Kumar <viresh.kumar@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-