1. 21 12月, 2012 1 次提交
  2. 04 8月, 2012 1 次提交
  3. 01 8月, 2012 1 次提交
    • M
      mm: add support for a filesystem to activate swap files and use direct_IO for writing swap pages · 62c230bc
      Mel Gorman 提交于
      Currently swapfiles are managed entirely by the core VM by using ->bmap to
      allocate space and write to the blocks directly.  This effectively ensures
      that the underlying blocks are allocated and avoids the need for the swap
      subsystem to locate what physical blocks store offsets within a file.
      
      If the swap subsystem is to use the filesystem information to locate the
      blocks, it is critical that information such as block groups, block
      bitmaps and the block descriptor table that map the swap file were
      resident in memory.  This patch adds address_space_operations that the VM
      can call when activating or deactivating swap backed by a file.
      
        int swap_activate(struct file *);
        int swap_deactivate(struct file *);
      
      The ->swap_activate() method is used to communicate to the file that the
      VM relies on it, and the address_space should take adequate measures such
      as reserving space in the underlying device, reserving memory for mempools
      and pinning information such as the block descriptor table in memory.  The
      ->swap_deactivate() method is called on sys_swapoff() if ->swap_activate()
      returned success.
      
      After a successful swapfile ->swap_activate, the swapfile is marked
      SWP_FILE and swapper_space.a_ops will proxy to
      sis->swap_file->f_mappings->a_ops using ->direct_io to write swapcache
      pages and ->readpage to read.
      
      It is perfectly possible that direct_IO be used to read the swap pages but
      it is an unnecessary complication.  Similarly, it is possible that
      ->writepage be used instead of direct_io to write the pages but filesystem
      developers have stated that calling writepage from the VM is undesirable
      for a variety of reasons and using direct_IO opens up the possibility of
      writing back batches of swap pages in the future.
      
      [a.p.zijlstra@chello.nl: Original patch]
      Signed-off-by: NMel Gorman <mgorman@suse.de>
      Acked-by: NRik van Riel <riel@redhat.com>
      Cc: Christoph Hellwig <hch@infradead.org>
      Cc: David S. Miller <davem@davemloft.net>
      Cc: Eric B Munson <emunson@mgebm.net>
      Cc: Eric Paris <eparis@redhat.com>
      Cc: James Morris <jmorris@namei.org>
      Cc: Mel Gorman <mgorman@suse.de>
      Cc: Mike Christie <michaelc@cs.wisc.edu>
      Cc: Neil Brown <neilb@suse.de>
      Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
      Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
      Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
      Cc: Xiaotian Feng <dfeng@redhat.com>
      Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      62c230bc
  4. 14 7月, 2012 7 次提交
    • A
      don't pass nameidata to ->create() · ebfc3b49
      Al Viro 提交于
      boolean "does it have to be exclusive?" flag is passed instead;
      Local filesystem should just ignore it - the object is guaranteed
      not to be there yet.
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      ebfc3b49
    • A
      stop passing nameidata to ->lookup() · 00cd8dd3
      Al Viro 提交于
      Just the flags; only NFS cares even about that, but there are
      legitimate uses for such argument.  And getting rid of that
      completely would require splitting ->lookup() into a couple
      of methods (at least), so let's leave that alone for now...
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      00cd8dd3
    • A
      stop passing nameidata * to ->d_revalidate() · 0b728e19
      Al Viro 提交于
      Just the lookup flags.  Die, bastard, die...
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      0b728e19
    • A
      kill struct opendata · 30d90494
      Al Viro 提交于
      Just pass struct file *.  Methods are happier that way...
      There's no need to return struct file * from finish_open() now,
      so let it return int.  Next: saner prototypes for parts in
      namei.c
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      30d90494
    • A
      make ->atomic_open() return int · d9585277
      Al Viro 提交于
      Change of calling conventions:
      old		new
      NULL		1
      file		0
      ERR_PTR(-ve)	-ve
      
      Caller *knows* that struct file *; no need to return it.
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      d9585277
    • A
      ->atomic_open() prototype change - pass int * instead of bool * · 47237687
      Al Viro 提交于
      ... and let finish_open() report having opened the file via that sucker.
      Next step: don't modify od->filp at all.
      
      [AV: FILE_CREATE was already used by cifs; Miklos' fix folded]
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      47237687
    • M
      vfs: add i_op->atomic_open() · d18e9008
      Miklos Szeredi 提交于
      Add a new inode operation which is called on the last component of an open.
      Using this the filesystem can look up, possibly create and open the file in one
      atomic operation.  If it cannot perform this (e.g. the file type turned out to
      be wrong) it may signal this by returning NULL instead of an open struct file
      pointer.
      
      i_op->atomic_open() is only called if the last component is negative or needs
      lookup.  Handling cached positive dentries here doesn't add much value: these
      can be opened using f_op->open().  If the cached file turns out to be invalid,
      the open can be retried, this time using ->atomic_open() with a fresh dentry.
      
      For now leave the old way of using open intents in lookup and revalidate in
      place.  This will be removed once all the users are converted.
      
      David Howells noticed that if ->atomic_open() opens the file but does not create
      it, handle_truncate() will be called on it even if it is not a regular file.
      Fix this by checking the file type in this case too.
      Signed-off-by: NMiklos Szeredi <mszeredi@suse.cz>
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      d18e9008
  5. 02 6月, 2012 1 次提交
    • J
      fs: introduce inode operation ->update_time · c3b2da31
      Josef Bacik 提交于
      Btrfs has to make sure we have space to allocate new blocks in order to modify
      the inode, so updating time can fail.  We've gotten around this by having our
      own file_update_time but this is kind of a pain, and Christoph has indicated he
      would like to make xfs do something different with atime updates.  So introduce
      ->update_time, where we will deal with i_version an a/m/c time updates and
      indicate which changes need to be made.  The normal version just does what it
      has always done, updates the time and marks the inode dirty, and then
      filesystems can choose to do something different.
      
      I've gone through all of the users of file_update_time and made them check for
      errors with the exception of the fault code since it's complicated and I wasn't
      quite sure what to do there, also Jan is going to be pushing the file time
      updates into page_mkwrite for those who have it so that should satisfy btrfs and
      make it not a big deal to check the file_update_time() return code in the
      generic fault path. Thanks,
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      c3b2da31
  6. 30 5月, 2012 1 次提交
  7. 09 4月, 2012 1 次提交
  8. 07 3月, 2012 1 次提交
  9. 07 1月, 2012 1 次提交
  10. 04 1月, 2012 3 次提交
  11. 28 9月, 2011 1 次提交
    • P
      doc: fix broken references · 395cf969
      Paul Bolle 提交于
      There are numerous broken references to Documentation files (in other
      Documentation files, in comments, etc.). These broken references are
      caused by typo's in the references, and by renames or removals of the
      Documentation files. Some broken references are simply odd.
      
      Fix these broken references, sometimes by dropping the irrelevant text
      they were part of.
      Signed-off-by: NPaul Bolle <pebolle@tiscali.nl>
      Signed-off-by: NJiri Kosina <jkosina@suse.cz>
      395cf969
  12. 26 7月, 2011 1 次提交
  13. 21 7月, 2011 3 次提交
    • J
      fs: push i_mutex and filemap_write_and_wait down into ->fsync() handlers · 02c24a82
      Josef Bacik 提交于
      Btrfs needs to be able to control how filemap_write_and_wait_range() is called
      in fsync to make it less of a painful operation, so push down taking i_mutex and
      the calling of filemap_write_and_wait() down into the ->fsync() handlers.  Some
      file systems can drop taking the i_mutex altogether it seems, like ext3 and
      ocfs2.  For correctness sake I just pushed everything down in all cases to make
      sure that we keep the current behavior the same for everybody, and then each
      individual fs maintainer can make up their mind about what to do from there.
      Thanks,
      Acked-by: NJan Kara <jack@suse.cz>
      Signed-off-by: NJosef Bacik <josef@redhat.com>
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      02c24a82
    • D
      vfs: increase shrinker batch size · 8ab47664
      Dave Chinner 提交于
      Now that the per-sb shrinker is responsible for shrinking 2 or more
      caches, increase the batch size to keep econmies of scale for
      shrinking each cache.  Increase the shrinker batch size to 1024
      objects.
      
      To allow for a large increase in batch size, add a conditional
      reschedule to prune_icache_sb() so that we don't hold the LRU spin
      lock for too long. This mirrors the behaviour of the
      __shrink_dcache_sb(), and allows us to increase the batch size
      without needing to worry about problems caused by long lock hold
      times.
      
      To ensure that filesystems using the per-sb shrinker callouts don't
      cause problems, document that the object freeing method must
      reschedule appropriately inside loops.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      8ab47664
    • D
      superblock: add filesystem shrinker operations · 0e1fdafd
      Dave Chinner 提交于
      Now we have a per-superblock shrinker implementation, we can add a
      filesystem specific callout to it to allow filesystem internal
      caches to be shrunk by the superblock shrinker.
      
      Rather than perpetuate the multipurpose shrinker callback API (i.e.
      nr_to_scan == 0 meaning "tell me how many objects freeable in the
      cache), two operations will be added. The first will return the
      number of objects that are freeable, the second is the actual
      shrinker call.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      0e1fdafd
  14. 20 7月, 2011 2 次提交
  15. 27 5月, 2011 1 次提交
    • C
      fs: pass exact type of data dirties to ->dirty_inode · aa385729
      Christoph Hellwig 提交于
      Tell the filesystem if we just updated timestamp (I_DIRTY_SYNC) or
      anything else, so that the filesystem can track internally if it
      needs to push out a transaction for fdatasync or not.
      
      This is just the prototype change with no user for it yet.  I plan
      to push large XFS changes for the next merge window, and getting
      this trivial infrastructure in this window would help a lot to avoid
      tree interdependencies.
      
      Also remove incorrect comments that ->dirty_inode can't block.  That
      has been changed a long time ago, and many implementations rely on it.
      Signed-off-by: NChristoph Hellwig <hch@lst.de>
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      aa385729
  16. 31 3月, 2011 1 次提交
  17. 25 3月, 2011 1 次提交
    • D
      fs: remove inode_lock from iput_final and prune_icache · f283c86a
      Dave Chinner 提交于
      Now that inode state changes are protected by the inode->i_lock and
      the inode LRU manipulations by the inode_lru_lock, we can remove the
      inode_lock from prune_icache and the initial part of iput_final().
      
      instead of using the inode_lock to protect the inode during
      iput_final, use the inode->i_lock instead. This protects the inode
      against new references being taken while we change the inode state
      to I_FREEING, as well as preventing prune_icache from grabbing the
      inode while we are manipulating it. Hence we no longer need the
      inode_lock in iput_final prior to setting I_FREEING on the inode.
      
      For prune_icache, we no longer need the inode_lock to protect the
      LRU list, and the inodes themselves are protected against freeing
      races by the inode->i_lock. Hence we can lift the inode_lock from
      prune_icache as well.
      Signed-off-by: NDave Chinner <dchinner@redhat.com>
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      f283c86a
  18. 18 3月, 2011 1 次提交
  19. 17 3月, 2011 1 次提交
  20. 16 1月, 2011 4 次提交
    • D
      Unexport do_add_mount() and add in follow_automount(), not ->d_automount() · ea5b778a
      David Howells 提交于
      Unexport do_add_mount() and make ->d_automount() return the vfsmount to be
      added rather than calling do_add_mount() itself.  follow_automount() will then
      do the addition.
      
      This slightly complicates things as ->d_automount() normally wants to add the
      new vfsmount to an expiration list and start an expiration timer.  The problem
      with that is that the vfsmount will be deleted if it has a refcount of 1 and
      the timer will not repeat if the expiration list is empty.
      
      To this end, we require the vfsmount to be returned from d_automount() with a
      refcount of (at least) 2.  One of these refs will be dropped unconditionally.
      In addition, follow_automount() must get a 3rd ref around the call to
      do_add_mount() lest it eat a ref and return an error, leaving the mount we
      have open to being expired as we would otherwise have only 1 ref on it.
      
      d_automount() should also add the the vfsmount to the expiration list (by
      calling mnt_set_expiry()) and start the expiration timer before returning, if
      this mechanism is to be used.  The vfsmount will be unlinked from the
      expiration list by follow_automount() if do_add_mount() fails.
      
      This patch also fixes the call to do_add_mount() for AFS to propagate the mount
      flags from the parent vfsmount.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      ea5b778a
    • D
      Allow d_manage() to be used in RCU-walk mode · ab90911f
      David Howells 提交于
      Allow d_manage() to be called from pathwalk when it is in RCU-walk mode as well
      as when it is in Ref-walk mode.  This permits __follow_mount_rcu() to call
      d_manage() directly.  d_manage() needs a parameter to indicate that it is in
      RCU-walk mode as it isn't allowed to sleep if in that mode (but should return
      -ECHILD instead).
      
      autofs4_d_manage() can then be set to retain RCU-walk mode if the daemon
      accesses it and otherwise request dropping back to ref-walk mode.
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      ab90911f
    • D
      Add a dentry op to allow processes to be held during pathwalk transit · cc53ce53
      David Howells 提交于
      Add a dentry op (d_manage) to permit a filesystem to hold a process and make it
      sleep when it tries to transit away from one of that filesystem's directories
      during a pathwalk.  The operation is keyed off a new dentry flag
      (DCACHE_MANAGE_TRANSIT).
      
      The filesystem is allowed to be selective about which processes it holds and
      which it permits to continue on or prohibits from transiting from each flagged
      directory.  This will allow autofs to hold up client processes whilst letting
      its userspace daemon through to maintain the directory or the stuff behind it
      or mounted upon it.
      
      The ->d_manage() dentry operation:
      
      	int (*d_manage)(struct path *path, bool mounting_here);
      
      takes a pointer to the directory about to be transited away from and a flag
      indicating whether the transit is undertaken by do_add_mount() or
      do_move_mount() skipping through a pile of filesystems mounted on a mountpoint.
      
      It should return 0 if successful and to let the process continue on its way;
      -EISDIR to prohibit the caller from skipping to overmounted filesystems or
      automounting, and to use this directory; or some other error code to return to
      the user.
      
      ->d_manage() is called with namespace_sem writelocked if mounting_here is true
      and no other locks held, so it may sleep.  However, if mounting_here is true,
      it may not initiate or wait for a mount or unmount upon the parameter
      directory, even if the act is actually performed by userspace.
      
      Within fs/namei.c, follow_managed() is extended to check with d_manage() first
      on each managed directory, before transiting away from it or attempting to
      automount upon it.
      
      follow_down() is renamed follow_down_one() and should only be used where the
      filesystem deliberately intends to avoid management steps (e.g. autofs).
      
      A new follow_down() is added that incorporates the loop done by all other
      callers of follow_down() (do_add/move_mount(), autofs and NFSD; whilst AFS, NFS
      and CIFS do use it, their use is removed by converting them to use
      d_automount()).  The new follow_down() calls d_manage() as appropriate.  It
      also takes an extra parameter to indicate if it is being called from mount code
      (with namespace_sem writelocked) which it passes to d_manage().  follow_down()
      ignores automount points so that it can be used to mount on them.
      
      __follow_mount_rcu() is made to abort rcu-walk mode if it hits a directory with
      DCACHE_MANAGE_TRANSIT set on the basis that we're probably going to have to
      sleep.  It would be possible to enter d_manage() in rcu-walk mode too, and have
      that determine whether to abort or not itself.  That would allow the autofs
      daemon to continue on in rcu-walk mode.
      
      Note that DCACHE_MANAGE_TRANSIT on a directory should be cleared when it isn't
      required as every tranist from that directory will cause d_manage() to be
      invoked.  It can always be set again when necessary.
      
      ==========================
      WHAT THIS MEANS FOR AUTOFS
      ==========================
      
      Autofs currently uses the lookup() inode op and the d_revalidate() dentry op to
      trigger the automounting of indirect mounts, and both of these can be called
      with i_mutex held.
      
      autofs knows that the i_mutex will be held by the caller in lookup(), and so
      can drop it before invoking the daemon - but this isn't so for d_revalidate(),
      since the lock is only held on _some_ of the code paths that call it.  This
      means that autofs can't risk dropping i_mutex from its d_revalidate() function
      before it calls the daemon.
      
      The bug could manifest itself as, for example, a process that's trying to
      validate an automount dentry that gets made to wait because that dentry is
      expired and needs cleaning up:
      
      	mkdir         S ffffffff8014e05a     0 32580  24956
      	Call Trace:
      	 [<ffffffff885371fd>] :autofs4:autofs4_wait+0x674/0x897
      	 [<ffffffff80127f7d>] avc_has_perm+0x46/0x58
      	 [<ffffffff8009fdcf>] autoremove_wake_function+0x0/0x2e
      	 [<ffffffff88537be6>] :autofs4:autofs4_expire_wait+0x41/0x6b
      	 [<ffffffff88535cfc>] :autofs4:autofs4_revalidate+0x91/0x149
      	 [<ffffffff80036d96>] __lookup_hash+0xa0/0x12f
      	 [<ffffffff80057a2f>] lookup_create+0x46/0x80
      	 [<ffffffff800e6e31>] sys_mkdirat+0x56/0xe4
      
      versus the automount daemon which wants to remove that dentry, but can't
      because the normal process is holding the i_mutex lock:
      
      	automount     D ffffffff8014e05a     0 32581      1              32561
      	Call Trace:
      	 [<ffffffff80063c3f>] __mutex_lock_slowpath+0x60/0x9b
      	 [<ffffffff8000ccf1>] do_path_lookup+0x2ca/0x2f1
      	 [<ffffffff80063c89>] .text.lock.mutex+0xf/0x14
      	 [<ffffffff800e6d55>] do_rmdir+0x77/0xde
      	 [<ffffffff8005d229>] tracesys+0x71/0xe0
      	 [<ffffffff8005d28d>] tracesys+0xd5/0xe0
      
      which means that the system is deadlocked.
      
      This patch allows autofs to hold up normal processes whilst the daemon goes
      ahead and does things to the dentry tree behind the automouter point without
      risking a deadlock as almost no locks are held in d_manage() and none in
      d_automount().
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Was-Acked-by: NIan Kent <raven@themaw.net>
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      cc53ce53
    • D
      Add a dentry op to handle automounting rather than abusing follow_link() · 9875cf80
      David Howells 提交于
      Add a dentry op (d_automount) to handle automounting directories rather than
      abusing the follow_link() inode operation.  The operation is keyed off a new
      dentry flag (DCACHE_NEED_AUTOMOUNT).
      
      This also makes it easier to add an AT_ flag to suppress terminal segment
      automount during pathwalk and removes the need for the kludge code in the
      pathwalk algorithm to handle directories with follow_link() semantics.
      
      The ->d_automount() dentry operation:
      
      	struct vfsmount *(*d_automount)(struct path *mountpoint);
      
      takes a pointer to the directory to be mounted upon, which is expected to
      provide sufficient data to determine what should be mounted.  If successful, it
      should return the vfsmount struct it creates (which it should also have added
      to the namespace using do_add_mount() or similar).  If there's a collision with
      another automount attempt, NULL should be returned.  If the directory specified
      by the parameter should be used directly rather than being mounted upon,
      -EISDIR should be returned.  In any other case, an error code should be
      returned.
      
      The ->d_automount() operation is called with no locks held and may sleep.  At
      this point the pathwalk algorithm will be in ref-walk mode.
      
      Within fs/namei.c itself, a new pathwalk subroutine (follow_automount()) is
      added to handle mountpoints.  It will return -EREMOTE if the automount flag was
      set, but no d_automount() op was supplied, -ELOOP if we've encountered too many
      symlinks or mountpoints, -EISDIR if the walk point should be used without
      mounting and 0 if successful.  The path will be updated to point to the mounted
      filesystem if a successful automount took place.
      
      __follow_mount() is replaced by follow_managed() which is more generic
      (especially with the patch that adds ->d_manage()).  This handles transits from
      directories during pathwalk, including automounting and skipping over
      mountpoints (and holding processes with the next patch).
      
      __follow_mount_rcu() will jump out of RCU-walk mode if it encounters an
      automount point with nothing mounted on it.
      
      follow_dotdot*() does not handle automounts as you don't want to trigger them
      whilst following "..".
      
      I've also extracted the mount/don't-mount logic from autofs4 and included it
      here.  It makes the mount go ahead anyway if someone calls open() or creat(),
      tries to traverse the directory, tries to chdir/chroot/etc. into the directory,
      or sticks a '/' on the end of the pathname.  If they do a stat(), however,
      they'll only trigger the automount if they didn't also say O_NOFOLLOW.
      
      I've also added an inode flag (S_AUTOMOUNT) so that filesystems can mark their
      inodes as automount points.  This flag is automatically propagated to the
      dentry as DCACHE_NEED_AUTOMOUNT by __d_instantiate().  This saves NFS and could
      save AFS a private flag bit apiece, but is not strictly necessary.  It would be
      preferable to do the propagation in d_set_d_op(), but that doesn't normally
      have access to the inode.
      
      [AV: fixed breakage in case if __follow_mount_rcu() fails and nameidata_drop_rcu()
      succeeds in RCU case of do_lookup(); we need to fall through to non-RCU case after
      that, rather than just returning with ungrabbed *path]
      Signed-off-by: NDavid Howells <dhowells@redhat.com>
      Was-Acked-by: NIan Kent <raven@themaw.net>
      Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
      9875cf80
  21. 14 1月, 2011 1 次提交
  22. 07 1月, 2011 5 次提交