- 04 1月, 2014 2 次提交
-
-
由 Thierry Escande 提交于
This removes the declaration of NFCID3 size in digital_dep.c and now uses the one from nfc.h. This also removes a faulty and unneeded call to max(). Reported-by: NDan Carpenter <dan.carpenter@oracle.com> Signed-off-by: NThierry Escande <thierry.escande@linux.intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Thierry Escande 提交于
It's bad to use these macros when not dealing with error code. this patch changes calls to these macros with correct casts. Signed-off-by: NThierry Escande <thierry.escande@linux.intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
- 25 9月, 2013 4 次提交
-
-
由 Samuel Ortiz 提交于
We do not add the newline to the pr_fmt macro, in order to give more flexibility to the caller and to keep the logging style consistent with the rest of the NFC and kernel code. Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Samuel Ortiz 提交于
They can be replaced by the standard pr_err and pr_debug one after defining the right pr_fmt macro. Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Thierry Escande 提交于
This adds support for NFC-DEP target mode for NFC-A and NFC-F technologies. If the driver provides it, the stack uses an automatic mode for technology detection and automatic anti-collision. Otherwise the stack tries to use non-automatic synchronization and listens for SENS_REQ and SENSF_REQ commands. The detection, activation, and data exchange procedures work exactly the same way as in initiator mode, as described in the previous commits, except that the digital stack waits for commands and sends responses back to the peer device. Signed-off-by: NThierry Escande <thierry.escande@linux.intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-
由 Thierry Escande 提交于
This adds support for NFC-DEP protocol in initiator mode for NFC-A and NFC-F technologies. When a target is detected, the process flow is as follow: For NFC-A technology: 1 - The digital stack receives a SEL_RES as the reply of the SEL_REQ command. 2 - If b7 of SEL_RES is set, the peer device is configure for NFC-DEP protocol. NFC core is notified through nfc_targets_found(). Execution continues at step 4. 3 - Otherwise, it's a tag and the NFC core is notified. Detection ends. 4 - The digital stacks sends an ATR_REQ command containing a randomly generated NFCID3 and the general bytes obtained from the LLCP layer of NFC core. For NFC-F technology: 1 - The digital stack receives a SENSF_RES as the reply of the SENSF_REQ command. 2 - If B1 and B2 of NFCID2 are 0x01 and 0xFE respectively, the peer device is configured for NFC-DEP protocol. NFC core is notified through nfc_targets_found(). Execution continues at step 4. 3 - Otherwise it's a type 3 tag. NFC core is notified. Detection ends. 4 - The digital stacks sends an ATR_REQ command containing the NFC-F NFCID2 as NFCID3 and the general bytes obtained from the LLCP layer of NFC core. For both technologies: 5 - The digital stacks receives the ATR_RES response containing the NFCID3 and the general bytes of the peer device. 6 - The digital stack notifies NFC core that the DEP link is up through nfc_dep_link_up(). 7 - The NFC core performs data exchange through tm_transceive(). 8 - The digital stack sends a DEP_REQ command containing an I PDU with the data from NFC core. 9 - The digital stack receives a DEP_RES command 10 - If the DEP_RES response contains a supervisor PDU with timeout extension request (RTOX) the digital stack sends a DEP_REQ command containing a supervisor PDU acknowledging the RTOX request. The execution continues at step 9. 11 - If the DEP_RES response contains an I PDU, the response data is passed back to NFC core through the response callback. The execution continues at step 8. Signed-off-by: NThierry Escande <thierry.escande@linux.intel.com> Signed-off-by: NSamuel Ortiz <sameo@linux.intel.com>
-