- 28 8月, 2017 1 次提交
-
-
由 Waiman Long 提交于
The reference count in kernfs_node structure is treated like a rwsem by using lockdep instrumentation code. The lockdep name, however, is still "s_active" which is carried over from the old sysfs code. As s_active is no longer the variable name, its use may confuse users on where the lock is when it is reported by lockdep. So it is changed to "kn->count" which is how this variable is normally referenced in kernfs code. Signed-off-by: NWaiman Long <longman@redhat.com> Acked-by: NTejun Heo <tj@kernel.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 17 3月, 2017 1 次提交
-
-
由 Vaibhav Jain 提交于
Recently started seeing a kernel oops when a module tries removing a memory mapped sysfs bin_attribute. On closer investigation the root cause seems to be kernfs_release_file() trying to call kernfs_op.release() callback that's NULL for such sysfs bin_attributes. The oops occurs when kernfs_release_file() is called from kernfs_drain_open_files() to cleanup any open handles with active memory mappings. The patch fixes this by checking for flag KERNFS_HAS_RELEASE before calling kernfs_release_file() in function kernfs_drain_open_files(). On ppc64-le arch with cxl module the oops back-trace is of the form below: [ 861.381126] Unable to handle kernel paging request for instruction fetch [ 861.381360] Faulting instruction address: 0x00000000 [ 861.381428] Oops: Kernel access of bad area, sig: 11 [#1] .... [ 861.382481] NIP: 0000000000000000 LR: c000000000362c60 CTR: 0000000000000000 .... Call Trace: [c000000f1680b750] [c000000000362c34] kernfs_drain_open_files+0x104/0x1d0 (unreliable) [c000000f1680b790] [c00000000035fa00] __kernfs_remove+0x260/0x2c0 [c000000f1680b820] [c000000000360da0] kernfs_remove_by_name_ns+0x60/0xe0 [c000000f1680b8b0] [c0000000003638f4] sysfs_remove_bin_file+0x24/0x40 [c000000f1680b8d0] [c00000000062a164] device_remove_bin_file+0x24/0x40 [c000000f1680b8f0] [d000000009b7b22c] cxl_sysfs_afu_remove+0x144/0x170 [cxl] [c000000f1680b940] [d000000009b7c7e4] cxl_remove+0x6c/0x1a0 [cxl] [c000000f1680b990] [c00000000052f694] pci_device_remove+0x64/0x110 [c000000f1680b9d0] [c0000000006321d4] device_release_driver_internal+0x1f4/0x2b0 [c000000f1680ba20] [c000000000525cb0] pci_stop_bus_device+0xa0/0xd0 [c000000f1680ba60] [c000000000525e80] pci_stop_and_remove_bus_device+0x20/0x40 [c000000f1680ba90] [c00000000004a6c4] pci_hp_remove_devices+0x84/0xc0 [c000000f1680bad0] [c00000000004a688] pci_hp_remove_devices+0x48/0xc0 [c000000f1680bb10] [c0000000009dfda4] eeh_reset_device+0xb0/0x290 [c000000f1680bbb0] [c000000000032b4c] eeh_handle_normal_event+0x47c/0x530 [c000000f1680bc60] [c000000000032e64] eeh_handle_event+0x174/0x350 [c000000f1680bd10] [c000000000033228] eeh_event_handler+0x1e8/0x1f0 [c000000f1680bdc0] [c0000000000d384c] kthread+0x14c/0x190 [c000000f1680be30] [c00000000000b5a0] ret_from_kernel_thread+0x5c/0xbc Fixes: f83f3c51 ("kernfs: fix locking around kernfs_ops->release() callback") Signed-off-by: NVaibhav Jain <vaibhav@linux.vnet.ibm.com> Acked-by: NTejun Heo <tj@kernel.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 02 3月, 2017 1 次提交
-
-
由 Ingo Molnar 提交于
Update code that relied on sched.h including various MM types for them. This will allow us to remove the <linux/mm_types.h> include from <linux/sched.h>. Acked-by: NLinus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 25 2月, 2017 1 次提交
-
-
由 Dave Jiang 提交于
->fault(), ->page_mkwrite(), and ->pfn_mkwrite() calls do not need to take a vma and vmf parameter when the vma already resides in vmf. Remove the vma parameter to simplify things. [arnd@arndb.de: fix ARM build] Link: http://lkml.kernel.org/r/20170125223558.1451224-1-arnd@arndb.de Link: http://lkml.kernel.org/r/148521301778.19116.10840599906674778980.stgit@djiang5-desk3.ch.intel.comSigned-off-by: NDave Jiang <dave.jiang@intel.com> Signed-off-by: NArnd Bergmann <arnd@arndb.de> Reviewed-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Jan Kara <jack@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 22 2月, 2017 1 次提交
-
-
由 Tejun Heo 提交于
The release callback may be called from two places - file release operation and kernfs open file draining. kernfs_open_file->mutex is used to synchronize the two callsites. This unfortunately leads to possible circular locking because of->mutex is used to protect the usual kernfs operations which may use locking constructs which are held while removing and thus draining kernfs files. @of->mutex is for synchronizing concurrent kernfs access operations and all we need here is synchronization between the releaes and drain paths. As the drain path has to grab kernfs_open_file_mutex anyway, let's use the mutex to synchronize the release operation instead. Signed-off-by: NTejun Heo <tj@kernel.org> Reported-and-tested-by: NTony Lindgren <tony@atomide.com> Fixes: 0e67db2f ("kernfs: add kernfs_ops->open/release() callbacks") Acked-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 28 12月, 2016 2 次提交
-
-
由 Tejun Heo 提交于
Add ->open/release() methods to kernfs_ops. ->open() is called when the file is opened and ->release() when the file is either released or severed. These callbacks can be used, for example, to manage persistent caching objects over multiple seq_file iterations. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: NAcked-by: Zefan Li <lizefan@huawei.com>
-
由 Tejun Heo 提交于
More kernfs_open_file->mutex synchronized flags are planned to be added. Convert ->mmapped to a bitfield in preparation. While at it, make kernfs_fop_mmap() use "true" instead of "1" on ->mmapped. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: NAcked-by: Zefan Li <lizefan@huawei.com>
-
- 27 10月, 2016 1 次提交
-
-
由 Tony Luck 提交于
If you edit a kernfs backed file with vi(1), you see an ugly error message when you write the file because vi tries to fsync(2) the file after writing, which fails. We have noop_fsync() for this, use it. Signed-off-by: NTony Luck <tony.luck@intel.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 31 8月, 2016 1 次提交
-
-
由 Tejun Heo 提交于
kernfs_notify_workfn() sends out file modified events for the scheduled kernfs_nodes. Because the modifications aren't from userland, it doesn't have the matching file struct at hand and can't use fsnotify_modify(). Instead, it looked up the inode and then used d_find_any_alias() to find the dentry and used fsnotify_parent() and fsnotify() directly to generate notifications. The assumption was that the relevant dentries would have been pinned if there are listeners, which isn't true as inotify doesn't pin dentries at all and watching the parent doesn't pin the child dentries even for dnotify. This led to, for example, inotify watchers not getting notifications if the system is under memory pressure and the matching dentries got reclaimed. It can also be triggered through /proc/sys/vm/drop_caches or a remount attempt which involves shrinking dcache. fsnotify_parent() only uses the dentry to access the parent inode, which kernfs can do easily. Update kernfs_notify_workfn() so that it uses fsnotify() directly for both the parent and target inodes without going through d_find_any_alias(). While at it, supply the target file name to fsnotify() from kernfs_node->name. Signed-off-by: NTejun Heo <tj@kernel.org> Reported-by: NEvgeny Vereshchagin <evvers@ya.ru> Fixes: d911d987 ("kernfs: make kernfs_notify() trigger inotify events too") Cc: John McCutchan <john@johnmccutchan.com> Cc: Robert Love <rlove@rlove.org> Cc: Eric Paris <eparis@parisplace.org> Cc: stable@vger.kernel.org # v3.16+ Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 01 5月, 2016 1 次提交
-
-
由 Chris Wilson 提交于
A fault in a user provided buffer may lead anywhere, and lockdep warns that we have a potential deadlock between the mm->mmap_sem and the kernfs file mutex: [ 82.811702] ====================================================== [ 82.811705] [ INFO: possible circular locking dependency detected ] [ 82.811709] 4.5.0-rc4-gfxbench+ #1 Not tainted [ 82.811711] ------------------------------------------------------- [ 82.811714] kms_setmode/5859 is trying to acquire lock: [ 82.811717] (&dev->struct_mutex){+.+.+.}, at: [<ffffffff8150d9c1>] drm_gem_mmap+0x1a1/0x270 [ 82.811731] but task is already holding lock: [ 82.811734] (&mm->mmap_sem){++++++}, at: [<ffffffff8117b364>] vm_mmap_pgoff+0x44/0xa0 [ 82.811745] which lock already depends on the new lock. [ 82.811749] the existing dependency chain (in reverse order) is: [ 82.811752] -> #3 (&mm->mmap_sem){++++++}: [ 82.811761] [<ffffffff810cc883>] lock_acquire+0xc3/0x1d0 [ 82.811766] [<ffffffff8118bc65>] __might_fault+0x75/0xa0 [ 82.811771] [<ffffffff8124da4a>] kernfs_fop_write+0x8a/0x180 [ 82.811787] [<ffffffff811d1023>] __vfs_write+0x23/0xe0 [ 82.811792] [<ffffffff811d1d74>] vfs_write+0xa4/0x190 [ 82.811797] [<ffffffff811d2c14>] SyS_write+0x44/0xb0 [ 82.811801] [<ffffffff817bb81b>] entry_SYSCALL_64_fastpath+0x16/0x73 [ 82.811807] -> #2 (s_active#6){++++.+}: [ 82.811814] [<ffffffff810cc883>] lock_acquire+0xc3/0x1d0 [ 82.811819] [<ffffffff8124c070>] __kernfs_remove+0x210/0x2f0 [ 82.811823] [<ffffffff8124d040>] kernfs_remove_by_name_ns+0x40/0xa0 [ 82.811828] [<ffffffff8124e9e0>] sysfs_remove_file_ns+0x10/0x20 [ 82.811832] [<ffffffff815318d4>] device_del+0x124/0x250 [ 82.811837] [<ffffffff81531a19>] device_unregister+0x19/0x60 [ 82.811841] [<ffffffff8153c051>] cpu_cache_sysfs_exit+0x51/0xb0 [ 82.811846] [<ffffffff8153c628>] cacheinfo_cpu_callback+0x38/0x70 [ 82.811851] [<ffffffff8109ae89>] notifier_call_chain+0x39/0xa0 [ 82.811856] [<ffffffff8109aef9>] __raw_notifier_call_chain+0x9/0x10 [ 82.811860] [<ffffffff810786de>] cpu_notify+0x1e/0x40 [ 82.811865] [<ffffffff81078779>] cpu_notify_nofail+0x9/0x20 [ 82.811869] [<ffffffff81078ac3>] _cpu_down+0x233/0x340 [ 82.811874] [<ffffffff81079019>] disable_nonboot_cpus+0xc9/0x350 [ 82.811878] [<ffffffff810d2e11>] suspend_devices_and_enter+0x5a1/0xb50 [ 82.811883] [<ffffffff810d3903>] pm_suspend+0x543/0x8d0 [ 82.811888] [<ffffffff810d1b77>] state_store+0x77/0xe0 [ 82.811892] [<ffffffff813fa68f>] kobj_attr_store+0xf/0x20 [ 82.811897] [<ffffffff8124e740>] sysfs_kf_write+0x40/0x50 [ 82.811902] [<ffffffff8124dafc>] kernfs_fop_write+0x13c/0x180 [ 82.811906] [<ffffffff811d1023>] __vfs_write+0x23/0xe0 [ 82.811910] [<ffffffff811d1d74>] vfs_write+0xa4/0x190 [ 82.811914] [<ffffffff811d2c14>] SyS_write+0x44/0xb0 [ 82.811918] [<ffffffff817bb81b>] entry_SYSCALL_64_fastpath+0x16/0x73 [ 82.811923] -> #1 (cpu_hotplug.lock){+.+.+.}: [ 82.811929] [<ffffffff810cc883>] lock_acquire+0xc3/0x1d0 [ 82.811933] [<ffffffff817b6f72>] mutex_lock_nested+0x62/0x3b0 [ 82.811940] [<ffffffff810784c1>] get_online_cpus+0x61/0x80 [ 82.811944] [<ffffffff811170eb>] stop_machine+0x1b/0xe0 [ 82.811949] [<ffffffffa0178edd>] gen8_ggtt_insert_entries__BKL+0x2d/0x30 [i915] [ 82.812009] [<ffffffffa017d3a6>] ggtt_bind_vma+0x46/0x70 [i915] [ 82.812045] [<ffffffffa017eb70>] i915_vma_bind+0x140/0x290 [i915] [ 82.812081] [<ffffffffa01862b9>] i915_gem_object_do_pin+0x899/0xb00 [i915] [ 82.812117] [<ffffffffa0186555>] i915_gem_object_pin+0x35/0x40 [i915] [ 82.812154] [<ffffffffa019a23e>] intel_init_pipe_control+0xbe/0x210 [i915] [ 82.812192] [<ffffffffa0197312>] intel_logical_rings_init+0xe2/0xde0 [i915] [ 82.812232] [<ffffffffa0186fe3>] i915_gem_init+0xf3/0x130 [i915] [ 82.812278] [<ffffffffa02097ed>] i915_driver_load+0xf2d/0x1770 [i915] [ 82.812318] [<ffffffff81512474>] drm_dev_register+0xa4/0xb0 [ 82.812323] [<ffffffff8151467e>] drm_get_pci_dev+0xce/0x1e0 [ 82.812328] [<ffffffffa01472cf>] i915_pci_probe+0x2f/0x50 [i915] [ 82.812360] [<ffffffff8143f907>] pci_device_probe+0x87/0xf0 [ 82.812366] [<ffffffff81535f89>] driver_probe_device+0x229/0x450 [ 82.812371] [<ffffffff81536233>] __driver_attach+0x83/0x90 [ 82.812375] [<ffffffff81533c61>] bus_for_each_dev+0x61/0xa0 [ 82.812380] [<ffffffff81535879>] driver_attach+0x19/0x20 [ 82.812384] [<ffffffff8153535f>] bus_add_driver+0x1ef/0x290 [ 82.812388] [<ffffffff81536e9b>] driver_register+0x5b/0xe0 [ 82.812393] [<ffffffff8143e83b>] __pci_register_driver+0x5b/0x60 [ 82.812398] [<ffffffff81514866>] drm_pci_init+0xd6/0x100 [ 82.812402] [<ffffffffa027c094>] 0xffffffffa027c094 [ 82.812406] [<ffffffff810003de>] do_one_initcall+0xae/0x1d0 [ 82.812412] [<ffffffff811595a0>] do_init_module+0x5b/0x1cb [ 82.812417] [<ffffffff81106160>] load_module+0x1c20/0x2480 [ 82.812422] [<ffffffff81106bae>] SyS_finit_module+0x7e/0xa0 [ 82.812428] [<ffffffff817bb81b>] entry_SYSCALL_64_fastpath+0x16/0x73 [ 82.812433] -> #0 (&dev->struct_mutex){+.+.+.}: [ 82.812439] [<ffffffff810cbe59>] __lock_acquire+0x1fc9/0x20f0 [ 82.812443] [<ffffffff810cc883>] lock_acquire+0xc3/0x1d0 [ 82.812456] [<ffffffff8150d9e7>] drm_gem_mmap+0x1c7/0x270 [ 82.812460] [<ffffffff81196a14>] mmap_region+0x334/0x580 [ 82.812466] [<ffffffff81196fc4>] do_mmap+0x364/0x410 [ 82.812470] [<ffffffff8117b38d>] vm_mmap_pgoff+0x6d/0xa0 [ 82.812474] [<ffffffff811950f4>] SyS_mmap_pgoff+0x184/0x220 [ 82.812479] [<ffffffff8100a0fd>] SyS_mmap+0x1d/0x20 [ 82.812484] [<ffffffff817bb81b>] entry_SYSCALL_64_fastpath+0x16/0x73 [ 82.812489] other info that might help us debug this: [ 82.812493] Chain exists of: &dev->struct_mutex --> s_active#6 --> &mm->mmap_sem [ 82.812502] Possible unsafe locking scenario: [ 82.812506] CPU0 CPU1 [ 82.812508] ---- ---- [ 82.812510] lock(&mm->mmap_sem); [ 82.812514] lock(s_active#6); [ 82.812519] lock(&mm->mmap_sem); [ 82.812522] lock(&dev->struct_mutex); [ 82.812526] *** DEADLOCK *** [ 82.812531] 1 lock held by kms_setmode/5859: [ 82.812533] #0: (&mm->mmap_sem){++++++}, at: [<ffffffff8117b364>] vm_mmap_pgoff+0x44/0xa0 [ 82.812541] stack backtrace: [ 82.812547] CPU: 0 PID: 5859 Comm: kms_setmode Not tainted 4.5.0-rc4-gfxbench+ #1 [ 82.812550] Hardware name: /NUC5CPYB, BIOS PYBSWCEL.86A.0040.2015.0814.1353 08/14/2015 [ 82.812553] 0000000000000000 ffff880079407bf0 ffffffff813f8505 ffffffff825fb270 [ 82.812560] ffffffff825c4190 ffff880079407c30 ffffffff810c84ac ffff880079407c90 [ 82.812566] ffff8800797ed328 ffff8800797ecb00 0000000000000001 ffff8800797ed350 [ 82.812573] Call Trace: [ 82.812578] [<ffffffff813f8505>] dump_stack+0x67/0x92 [ 82.812582] [<ffffffff810c84ac>] print_circular_bug+0x1fc/0x310 [ 82.812586] [<ffffffff810cbe59>] __lock_acquire+0x1fc9/0x20f0 [ 82.812590] [<ffffffff810cc883>] lock_acquire+0xc3/0x1d0 [ 82.812594] [<ffffffff8150d9c1>] ? drm_gem_mmap+0x1a1/0x270 [ 82.812599] [<ffffffff8150d9e7>] drm_gem_mmap+0x1c7/0x270 [ 82.812603] [<ffffffff8150d9c1>] ? drm_gem_mmap+0x1a1/0x270 [ 82.812608] [<ffffffff81196a14>] mmap_region+0x334/0x580 [ 82.812612] [<ffffffff81196fc4>] do_mmap+0x364/0x410 [ 82.812616] [<ffffffff8117b38d>] vm_mmap_pgoff+0x6d/0xa0 [ 82.812629] [<ffffffff811950f4>] SyS_mmap_pgoff+0x184/0x220 [ 82.812633] [<ffffffff8100a0fd>] SyS_mmap+0x1d/0x20 [ 82.812637] [<ffffffff817bb81b>] entry_SYSCALL_64_fastpath+0x16/0x73 Highly unlikely though this scenario is, we can avoid the issue entirely by moving the copy operation from out under the kernfs_get_active() tracking by assigning the preallocated buffer its own mutex. The temporary buffer allocation doesn't require mutex locking as it is entirely local. The locked section was extended by the addition of the preallocated buf to speed up md user operations in commit 2b75869b Author: NeilBrown <neilb@suse.de> Date: Mon Oct 13 16:41:28 2014 +1100 sysfs/kernfs: allow attributes to request write buffer be pre-allocated. Reported-by: NVille Syrjälä <ville.syrjala@linux.intel.com> Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=94350Signed-off-by: NChris Wilson <chris@chris-wilson.co.uk> Reviewed-by: NJoonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Ville Syrjälä <ville.syrjala@linux.intel.com> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: NeilBrown <neilb@suse.de> Acked-by: NTejun Heo <tj@kernel.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 25 5月, 2015 1 次提交
-
-
由 Wolfram Sang 提交于
Grabbing the parent is not happening anymore since 2010 (e72ceb8c "sysfs: Remove sysfs_get/put_active_two"). Remove this confusing comment. Signed-off-by: NWolfram Sang <wsa+renesas@sang-engineering.com> Acked-by: NTejun Heo <tj@kernel.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 17 3月, 2015 1 次提交
-
-
由 NeilBrown 提交于
Kernfs supports two styles of read: direct_read and seqfile_read. The latter supports 'poll' correctly thanks to the update of '->event' in kernfs_seq_show. The former does not as '->event' is never updated on a read. So add an appropriate update in kernfs_file_direct_read(). This was noticed because some 'md' sysfs attributes were recently changed to use direct reads. Reported-by: NPrakash Punnoor <prakash@punnoor.de> Reported-by: NTorsten Kaiser <just.for.lkml@googlemail.com> Fixes: 750f199eSigned-off-by: NNeilBrown <neilb@suse.de> Acked-by: NTejun Heo <tj@kernel.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 14 2月, 2015 1 次提交
-
-
由 Tejun Heo 提交于
When a new kernfs node is created, KERNFS_STATIC_NAME is used to avoid making a separate copy of its name. It's currently only used for sysfs attributes whose filenames are required to stay accessible and unchanged. There are rare exceptions where these names are allocated and formatted dynamically but for the vast majority of cases they're consts in the rodata section. Now that kernfs is converted to use kstrdup_const() and kfree_const(), there's little point in keeping KERNFS_STATIC_NAME around. Remove it. Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Andrzej Hajda <a.hajda@samsung.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 17 12月, 2014 1 次提交
-
-
由 Al Viro 提交于
the only instance this method has ever grown was one in kernfs - one that call ->migrate() of another vm_ops if it exists. Signed-off-by: NAl Viro <viro@zeniv.linux.org.uk>
-
- 08 11月, 2014 2 次提交
-
-
由 NeilBrown 提交于
To match the previous patch which used the pre-alloc buffer for writes, this patch causes reads to use the same buffer. This is not strictly necessary as the current seq_read() will allocate on first read, so user-space can trigger the required pre-alloc. But consistency is valuable. The read function is somewhat simpler than seq_read() and, for example, does not support reading from an offset into the file: reads must be at the start of the file. As seq_read() does not use the prealloc buffer, ->seq_show is incompatible with ->prealloc and caused an EINVAL return from open(). sysfs code which calls into kernfs always chooses the correct function. As the buffer is shared with writes and other reads, the mutex is extended to cover the copy_to_user. Signed-off-by: NNeilBrown <neilb@suse.de> Reviewed-by: NTejun Heo <tj@kernel.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 NeilBrown 提交于
md/raid allows metadata management to be performed in user-space. A various times, particularly on device failure, the metadata needs to be updated before further writes can be permitted. This means that the user-space program which updates metadata much not block on writeout, and so must not allocate memory. mlockall(MCL_CURRENT|MCL_FUTURE) and pre-allocation can avoid all memory allocation issues for user-memory, but that does not help kernel memory. Several kernel objects can be pre-allocated. e.g. files opened before any writes to the array are permitted. However some kernel allocation happens in places that cannot be pre-allocated. In particular, writes to sysfs files (to tell md that it can now allow writes to the array) allocate a buffer using GFP_KERNEL. This patch allows attributes to be marked as "PREALLOC". In that case the maximal buffer is allocated when the file is opened, and then used on each write instead of allocating a new buffer. As the same buffer is now shared for all writes on the same file description, the mutex is extended to cover full use of the buffer including the copy_from_user(). The new __ATTR_PREALLOC() 'or's a new flag in to the 'mode', which is inspected by sysfs_add_file_mode_ns() to determine if the file should be marked as requiring prealloc. Despite the comment, we *do* use ->seq_show together with ->prealloc in this patch. The next patch fixes that. Signed-off-by: NNeilBrown <neilb@suse.de> Reviewed-by: NTejun Heo <tj@kernel.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 10 7月, 2014 1 次提交
-
-
由 Fabian Frederick 提交于
s/static_name/name_is_static Signed-off-by: NFabian Frederick <fabf@skynet.be> Acked-by: NTejun Heo <tj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 03 7月, 2014 1 次提交
-
-
由 Tejun Heo 提交于
d911d987 ("kernfs: make kernfs_notify() trigger inotify events too") added fsnotify triggering to kernfs_notify() which requires a sleepable context. There are already existing users of kernfs_notify() which invoke it from an atomic context and in general it's silly to require a sleepable context for triggering a notification. The following is an invalid context bug triggerd by md invoking sysfs_notify() from IO completion path. BUG: sleeping function called from invalid context at kernel/locking/mutex.c:586 in_atomic(): 1, irqs_disabled(): 1, pid: 0, name: swapper/1 2 locks held by swapper/1/0: #0: (&(&vblk->vq_lock)->rlock){-.-...}, at: [<ffffffffa0039042>] virtblk_done+0x42/0xe0 [virtio_blk] #1: (&(&bitmap->counts.lock)->rlock){-.....}, at: [<ffffffff81633718>] bitmap_endwrite+0x68/0x240 irq event stamp: 33518 hardirqs last enabled at (33515): [<ffffffff8102544f>] default_idle+0x1f/0x230 hardirqs last disabled at (33516): [<ffffffff818122ed>] common_interrupt+0x6d/0x72 softirqs last enabled at (33518): [<ffffffff810a1272>] _local_bh_enable+0x22/0x50 softirqs last disabled at (33517): [<ffffffff810a29e0>] irq_enter+0x60/0x80 CPU: 1 PID: 0 Comm: swapper/1 Not tainted 3.16.0-0.rc2.git2.1.fc21.x86_64 #1 Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 0000000000000000 f90db13964f4ee05 ffff88007d403b80 ffffffff81807b4c 0000000000000000 ffff88007d403ba8 ffffffff810d4f14 0000000000000000 0000000000441800 ffff880078fa1780 ffff88007d403c38 ffffffff8180caf2 Call Trace: <IRQ> [<ffffffff81807b4c>] dump_stack+0x4d/0x66 [<ffffffff810d4f14>] __might_sleep+0x184/0x240 [<ffffffff8180caf2>] mutex_lock_nested+0x42/0x440 [<ffffffff812d76a0>] kernfs_notify+0x90/0x150 [<ffffffff8163377c>] bitmap_endwrite+0xcc/0x240 [<ffffffffa00de863>] close_write+0x93/0xb0 [raid1] [<ffffffffa00df029>] r1_bio_write_done+0x29/0x50 [raid1] [<ffffffffa00e0474>] raid1_end_write_request+0xe4/0x260 [raid1] [<ffffffff813acb8b>] bio_endio+0x6b/0xa0 [<ffffffff813b46c4>] blk_update_request+0x94/0x420 [<ffffffff813bf0ea>] blk_mq_end_io+0x1a/0x70 [<ffffffffa00392c2>] virtblk_request_done+0x32/0x80 [virtio_blk] [<ffffffff813c0648>] __blk_mq_complete_request+0x88/0x120 [<ffffffff813c070a>] blk_mq_complete_request+0x2a/0x30 [<ffffffffa0039066>] virtblk_done+0x66/0xe0 [virtio_blk] [<ffffffffa002535a>] vring_interrupt+0x3a/0xa0 [virtio_ring] [<ffffffff81116177>] handle_irq_event_percpu+0x77/0x340 [<ffffffff8111647d>] handle_irq_event+0x3d/0x60 [<ffffffff81119436>] handle_edge_irq+0x66/0x130 [<ffffffff8101c3e4>] handle_irq+0x84/0x150 [<ffffffff818146ad>] do_IRQ+0x4d/0xe0 [<ffffffff818122f2>] common_interrupt+0x72/0x72 <EOI> [<ffffffff8105f706>] ? native_safe_halt+0x6/0x10 [<ffffffff81025454>] default_idle+0x24/0x230 [<ffffffff81025f9f>] arch_cpu_idle+0xf/0x20 [<ffffffff810f5adc>] cpu_startup_entry+0x37c/0x7b0 [<ffffffff8104df1b>] start_secondary+0x25b/0x300 This patch fixes it by punting the notification delivery through a work item. This ends up adding an extra pointer to kernfs_elem_attr enlarging kernfs_node by a pointer, which is not ideal but not a very big deal either. If this turns out to be an actual issue, we can move kernfs_elem_attr->size to kernfs_node->iattr later. Signed-off-by: NTejun Heo <tj@kernel.org> Reported-by: NJosh Boyer <jwboyer@fedoraproject.org> Cc: Jens Axboe <axboe@kernel.dk> Reviewed-by: NMichael S. Tsirkin <mst@redhat.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 13 5月, 2014 1 次提交
-
-
由 Tejun Heo 提交于
The kernfs open method - kernfs_fop_open() - inherited extra permission checks from sysfs. While the vfs layer allows ignoring the read/write permissions checks if the issuer has CAP_DAC_OVERRIDE, sysfs explicitly denied open regardless of the cap if the file doesn't have any of the UGO perms of the requested access or doesn't implement the requested operation. It can be debated whether this was a good idea or not but the behavior is too subtle and dangerous to change at this point. After cgroup got converted to kernfs, this extra perm check also got applied to cgroup breaking libcgroup which opens write-only files with O_RDWR as root. This patch gates the extra open permission check with a new flag KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK and enables it for sysfs. For sysfs, nothing changes. For cgroup, root now can perform any operation regardless of the permissions as it was before kernfs conversion. Note that kernfs still fails unimplemented operations with -EINVAL. While at it, add comments explaining KERNFS_ROOT flags. Signed-off-by: NTejun Heo <tj@kernel.org> Reported-by: NAndrey Wagin <avagin@gmail.com> Tested-by: NAndrey Wagin <avagin@gmail.com> Cc: Li Zefan <lizefan@huawei.com> References: http://lkml.kernel.org/g/CANaxB-xUm3rJ-Cbp72q-rQJO5mZe1qK6qXsQM=vh0U8upJ44+A@mail.gmail.com Fixes: 2bd59d48 ("cgroup: convert to kernfs") Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 26 4月, 2014 2 次提交
-
-
由 Tejun Heo 提交于
While updating how mmap enabled kernfs files are handled by lockdep, 9b2db6e1 ("sysfs: bail early from kernfs_file_mmap() to avoid spurious lockdep warning") inadvertently dropped error return check from kernfs_file_mmap(). The intention was just dropping "if (ops->mmap)" check as the control won't reach the point if the mmap callback isn't implemented, but I mistakenly removed the error return check together with it. This led to Xorg crash on i810 which was reported and bisected to the commit and then to the specific change by Tobias. Signed-off-by: NTejun Heo <tj@kernel.org> Reported-and-bisected-by: NTobias Powalowski <tobias.powalowski@googlemail.com> Tested-by: NTobias Powalowski <tobias.powalowski@googlemail.com> References: http://lkml.kernel.org/g/533D01BD.1010200@googlemail.com Cc: stable <stable@vger.kernel.org> # 3.14 Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Tejun Heo 提交于
kernfs_notify() is used to indicate either new data is available or the content of a file has changed. It currently only triggers poll which may not be the most convenient to monitor especially when there are a lot to monitor. Let's hook it up to fsnotify too so that the events can be monitored via inotify too. fsnotify_modify() requires file * but kernfs_notify() doesn't have any specific file associated; however, we can walk all super_blocks associated with a kernfs_root and as kernfs always associate one ino with inode and one dentry with an inode, it's trivial to look up the dentry associated with a given kernfs_node. As any active monitor would pin dentry, just looking up existing dentry is enough. This patch looks up the dentry associated with the specified kernfs_node and generates events equivalent to fsnotify_modify(). Note that as fsnotify doesn't provide fsnotify_modify() equivalent which can be called with dentry, kernfs_notify() directly calls fsnotify_parent() and fsnotify(). It might be better to add a wrapper in fsnotify.h instead. Signed-off-by: NTejun Heo <tj@kernel.org> Cc: John McCutchan <john@johnmccutchan.com> Cc: Robert Love <rlove@rlove.org> Cc: Eric Paris <eparis@parisplace.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 09 3月, 2014 1 次提交
-
-
由 Tejun Heo 提交于
While implementing atomic_write_len, 4d3773c4 ("kernfs: implement kernfs_ops->atomic_write_len") moved data copy from userland inside kernfs_get_active() and kernfs_open_file->mutex so that kernfs_ops->atomic_write_len can be accessed before copying buffer from userland; unfortunately, this could lead to locking order inversion involving mmap_sem if copy_from_user() takes a page fault. ====================================================== [ INFO: possible circular locking dependency detected ] 3.14.0-rc4-next-20140228-sasha-00011-g4077c67-dirty #26 Tainted: G W ------------------------------------------------------- trinity-c236/10658 is trying to acquire lock: (&of->mutex#2){+.+.+.}, at: [<fs/kernfs/file.c:487>] kernfs_fop_mmap+0x54/0x120 but task is already holding lock: (&mm->mmap_sem){++++++}, at: [<mm/util.c:397>] vm_mmap_pgoff+0x6e/0xe0 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (&mm->mmap_sem){++++++}: [<kernel/locking/lockdep.c:1945 kernel/locking/lockdep.c:2131>] validate_chain+0x6c5/0x7b0 [<kernel/locking/lockdep.c:3182>] __lock_acquire+0x4cd/0x5a0 [<arch/x86/include/asm/current.h:14 kernel/locking/lockdep.c:3602>] lock_acquire+0x182/0x1d0 [<mm/memory.c:4188>] might_fault+0x7e/0xb0 [<arch/x86/include/asm/uaccess.h:713 fs/kernfs/file.c:291>] kernfs_fop_write+0xd8/0x190 [<fs/read_write.c:473>] vfs_write+0xe3/0x1d0 [<fs/read_write.c:523 fs/read_write.c:515>] SyS_write+0x5d/0xa0 [<arch/x86/kernel/entry_64.S:749>] tracesys+0xdd/0xe2 -> #0 (&of->mutex#2){+.+.+.}: [<kernel/locking/lockdep.c:1840>] check_prev_add+0x13f/0x560 [<kernel/locking/lockdep.c:1945 kernel/locking/lockdep.c:2131>] validate_chain+0x6c5/0x7b0 [<kernel/locking/lockdep.c:3182>] __lock_acquire+0x4cd/0x5a0 [<arch/x86/include/asm/current.h:14 kernel/locking/lockdep.c:3602>] lock_acquire+0x182/0x1d0 [<kernel/locking/mutex.c:470 kernel/locking/mutex.c:571>] mutex_lock_nested+0x6a/0x510 [<fs/kernfs/file.c:487>] kernfs_fop_mmap+0x54/0x120 [<mm/mmap.c:1573>] mmap_region+0x310/0x5c0 [<mm/mmap.c:1365>] do_mmap_pgoff+0x385/0x430 [<mm/util.c:399>] vm_mmap_pgoff+0x8f/0xe0 [<mm/mmap.c:1416 mm/mmap.c:1374>] SyS_mmap_pgoff+0x1b0/0x210 [<arch/x86/kernel/sys_x86_64.c:72>] SyS_mmap+0x1d/0x20 [<arch/x86/kernel/entry_64.S:749>] tracesys+0xdd/0xe2 other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&mm->mmap_sem); lock(&of->mutex#2); lock(&mm->mmap_sem); lock(&of->mutex#2); *** DEADLOCK *** 1 lock held by trinity-c236/10658: #0: (&mm->mmap_sem){++++++}, at: [<mm/util.c:397>] vm_mmap_pgoff+0x6e/0xe0 stack backtrace: CPU: 2 PID: 10658 Comm: trinity-c236 Tainted: G W 3.14.0-rc4-next-20140228-sasha-00011-g4077c67-dirty #26 0000000000000000 ffff88011911fa48 ffffffff8438e945 0000000000000000 0000000000000000 ffff88011911fa98 ffffffff811a0109 ffff88011911fab8 ffff88011911fab8 ffff88011911fa98 ffff880119128cc0 ffff880119128cf8 Call Trace: [<lib/dump_stack.c:52>] dump_stack+0x52/0x7f [<kernel/locking/lockdep.c:1213>] print_circular_bug+0x129/0x160 [<kernel/locking/lockdep.c:1840>] check_prev_add+0x13f/0x560 [<include/linux/spinlock.h:343 mm/slub.c:1933>] ? deactivate_slab+0x511/0x550 [<kernel/locking/lockdep.c:1945 kernel/locking/lockdep.c:2131>] validate_chain+0x6c5/0x7b0 [<kernel/locking/lockdep.c:3182>] __lock_acquire+0x4cd/0x5a0 [<mm/mmap.c:1552>] ? mmap_region+0x24a/0x5c0 [<arch/x86/include/asm/current.h:14 kernel/locking/lockdep.c:3602>] lock_acquire+0x182/0x1d0 [<fs/kernfs/file.c:487>] ? kernfs_fop_mmap+0x54/0x120 [<kernel/locking/mutex.c:470 kernel/locking/mutex.c:571>] mutex_lock_nested+0x6a/0x510 [<fs/kernfs/file.c:487>] ? kernfs_fop_mmap+0x54/0x120 [<kernel/sched/core.c:2477>] ? get_parent_ip+0x11/0x50 [<fs/kernfs/file.c:487>] ? kernfs_fop_mmap+0x54/0x120 [<fs/kernfs/file.c:487>] kernfs_fop_mmap+0x54/0x120 [<mm/mmap.c:1573>] mmap_region+0x310/0x5c0 [<mm/mmap.c:1365>] do_mmap_pgoff+0x385/0x430 [<mm/util.c:397>] ? vm_mmap_pgoff+0x6e/0xe0 [<mm/util.c:399>] vm_mmap_pgoff+0x8f/0xe0 [<kernel/rcu/update.c:97>] ? __rcu_read_unlock+0x44/0xb0 [<fs/file.c:641>] ? dup_fd+0x3c0/0x3c0 [<mm/mmap.c:1416 mm/mmap.c:1374>] SyS_mmap_pgoff+0x1b0/0x210 [<arch/x86/kernel/sys_x86_64.c:72>] SyS_mmap+0x1d/0x20 [<arch/x86/kernel/entry_64.S:749>] tracesys+0xdd/0xe2 Fix it by caching atomic_write_len in kernfs_open_file during open so that it can be determined without accessing kernfs_ops in kernfs_fop_write(). This restores the structure of kernfs_fop_write() before 4d3773c4 with updated @len determination logic. Signed-off-by: NTejun Heo <tj@kernel.org> Reported-by: NSasha Levin <sasha.levin@oracle.com> References: http://lkml.kernel.org/g/53113485.2090407@oracle.comSigned-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 08 2月, 2014 2 次提交
-
-
由 Tejun Heo 提交于
A write to a kernfs_node is buffered through a kernel buffer. Writes <= PAGE_SIZE are performed atomically, while larger ones are executed in PAGE_SIZE chunks. While this is enough for sysfs, cgroup which is scheduled to be converted to use kernfs needs a bit more control over it. This patch adds kernfs_ops->atomic_write_len. If not set (zero), the behavior stays the same. If set, writes upto the size are executed atomically and larger writes are rejected with -E2BIG. A different implementation strategy would be allowing configuring chunking size while making the original write size available to the write method; however, such strategy, while being more complicated, doesn't really buy anything. If the write implementation has to handle chunking, the specific chunk size shouldn't matter all that much. Signed-off-by: NTejun Heo <tj@kernel.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Tejun Heo 提交于
kernfs_addrm_cxt and the accompanying kernfs_addrm_start/finish() were added because there were operations which should be performed outside kernfs_mutex after adding and removing kernfs_nodes. The necessary operations were recorded in kernfs_addrm_cxt and performed by kernfs_addrm_finish(); however, after the recent changes which relocated deactivation and unmapping so that they're performed directly during removal, the only operation kernfs_addrm_finish() performs is kernfs_put(), which can be moved inside the removal path too. This patch moves the kernfs_put() of the base ref to __kernfs_remove() and remove kernfs_addrm_cxt and kernfs_addrm_start/finish(). * kernfs_add_one() is updated to grab and release kernfs_mutex itself. sysfs_addrm_start/finish() invocations around it are removed from all users. * __kernfs_remove() puts an unlinked node directly instead of chaining it to kernfs_addrm_cxt. Its callers are updated to grab and release kernfs_mutex instead of calling kernfs_addrm_start/finish() around it. v2: Rebased on top of "kernfs: associate a new kernfs_node with its parent on creation" which dropped @parent from kernfs_add_one(). Signed-off-by: NTejun Heo <tj@kernel.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 18 1月, 2014 1 次提交
-
-
由 Tejun Heo 提交于
Once created, a kernfs_node is always destroyed by kernfs_put(). Since ba7443bc ("sysfs, kernfs: implement kernfs_create/destroy_root()"), kernfs_put() depends on kernfs_root() to locate the ino_ida. kernfs_root() in turn depends on kernfs_node->parent being set for !dir nodes. This means that kernfs_put() of a !dir node requires its ->parent to be initialized. This leads to oops when a newly created !dir node is destroyed without going through kernfs_add_one() or after failing kernfs_add_one() before ->parent is set. kernfs_root() invoked from kernfs_put() will try to dereference NULL parent. Fix it by moving parent association to kernfs_new_node() from kernfs_add_one(). kernfs_new_node() now takes @parent instead of @root and determines the root from the parent and also sets the new node's parent properly. @parent parameter is removed from kernfs_add_one(). As there's no parent when creating the root node, __kernfs_new_node() which takes @root as before and doesn't set the parent is used in that case. This ensures that a kernfs_node in any stage in its life has its parent associated and thus can be put. Signed-off-by: NTejun Heo <tj@kernel.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 15 1月, 2014 1 次提交
-
-
由 Tejun Heo 提交于
When kernfs_seq_start() fails to obtain an active reference, it returns ERR_PTR(-ENODEV). kernfs_seq_stop() is then invoked with the error pointer value; however, it still proceeds to invoke kernfs_put_active() on the node leading to unbalanced put. If kernfs_seq_stop() is called even after active ref failure, it should skip invocation of @ops->seq_stop() and put_active. Unfortunately, this is a bit complicated because active ref failure isn't the only thing which may fail with ERR_PTR(-ENODEV). @ops->seq_start/next() may also fail with the error value and kernfs_seq_stop() doesn't have a way to tell apart those failures. Work it around by factoring out the active part of kernfs_seq_stop() into kernfs_seq_stop_active() and invoking it directly if @ops->seq_start/next() fail with ERR_PTR(-ENODEV) and updating kernfs_seq_stop() to skip kernfs_seq_stop_active() on ERR_PTR(-ENODEV). This is a bit nasty but ensures that the active put is skipped iff get_active failed in kernfs_seq_start(). tj: This was originally committed as d92d2e6b but got reverted by 683bb276 along with other kernfs self removal patches. However, this one is an independent fix and shouldn't have been reverted together. Reinstate the change. Sorry about the mess. Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Sasha Levin <sasha.levin@oracle.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 14 1月, 2014 4 次提交
-
-
由 Greg Kroah-Hartman 提交于
This reverts commit d92d2e6b. Tejun writes: I'm sorry but can you please revert the whole series? get_active() waiting while a node is deactivated has potential to lead to deadlock and that deactivate/reactivate interface is something fundamentally flawed and that cgroup will have to work with the remove_self() like everybody else. IOW, I think the first posting was correct. Cc: Tejun Heo <tj@kernel.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Greg Kroah-Hartman 提交于
This reverts commit ae34372e. Tejun writes: I'm sorry but can you please revert the whole series? get_active() waiting while a node is deactivated has potential to lead to deadlock and that deactivate/reactivate interface is something fundamentally flawed and that cgroup will have to work with the remove_self() like everybody else. IOW, I think the first posting was correct. Cc: Tejun Heo <tj@kernel.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Greg Kroah-Hartman 提交于
This reverts commit f601f9a2. Tejun writes: I'm sorry but can you please revert the whole series? get_active() waiting while a node is deactivated has potential to lead to deadlock and that deactivate/reactivate interface is something fundamentally flawed and that cgroup will have to work with the remove_self() like everybody else. IOW, I think the first posting was correct. Cc: Tejun Heo <tj@kernel.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Greg Kroah-Hartman 提交于
This reverts commit 99177a34. Tejun writes: I'm sorry but can you please revert the whole series? get_active() waiting while a node is deactivated has potential to lead to deadlock and that deactivate/reactivate interface is something fundamentally flawed and that cgroup will have to work with the remove_self() like everybody else. IOW, I think the first posting was correct. Cc: Tejun Heo <tj@kernel.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 11 1月, 2014 4 次提交
-
-
由 Tejun Heo 提交于
kernfs_addrm_cxt and the accompanying kernfs_addrm_start/finish() were added because there were operations which should be performed outside kernfs_mutex after adding and removing kernfs_nodes. The necessary operations were recorded in kernfs_addrm_cxt and performed by kernfs_addrm_finish(); however, after the recent changes which relocated deactivation and unmapping so that they're performed directly during removal, the only operation kernfs_addrm_finish() performs is kernfs_put(), which can be moved inside the removal path too. This patch moves the kernfs_put() of the base ref to __kernfs_remove() and remove kernfs_addrm_cxt and kernfs_addrm_start/finish(). * kernfs_add_one() is updated to grab and release the parent's active ref and kernfs_mutex itself. kernfs_get/put_active() and kernfs_addrm_start/finish() invocations around it are removed from all users. * __kernfs_remove() puts an unlinked node directly instead of chaining it to kernfs_addrm_cxt. Its callers are updated to grab and release kernfs_mutex instead of calling kernfs_addrm_start/finish() around it. v2: Updated to fit the v2 restructuring of removal path. Signed-off-by: NTejun Heo <tj@kernel.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Tejun Heo 提交于
kernfs_unmap_bin_file() is supposed to unmap all memory mappings of the target file before kernfs_remove() finishes; however, it currently is being called from kernfs_addrm_finish() and has the same race problem as the original implementation of deactivation when there are multiple removers - only the remover which snatches the node to its addrm_cxt->removed list is guaranteed to wait for its completion before returning. It can be fixed by moving kernfs_unmap_bin_file() invocation from kernfs_addrm_finish() to __kernfs_remove(). The function may be called multiple times but that shouldn't do any harm. We end up dropping kernfs_mutex in the removal loop and the node may be removed inbetween by someone else. kernfs_unlink_sibling() is updated to test whether the node has already been removed and return accordingly. __kernfs_remove() in turn performs post-unlinking cleanup only if it actually unlinked the node. KERNFS_HAS_MMAP test is moved out of the unmap function into __kernfs_remove() so that we don't unlock kernfs_mutex unnecessarily. While at it, drop the now meaningless "bin" qualifier from the function name. v2: Rewritten to fit the v2 restructuring of removal path. HAS_MMAP test relocated. Signed-off-by: NTejun Heo <tj@kernel.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Tejun Heo 提交于
KERNFS_REMOVED is used to mark half-initialized and dying nodes so that they don't show up in lookups and deny adding new nodes under or renaming it; however, its role overlaps those of deactivation and removal from rbtree. It's necessary to deny addition of new children while removal is in progress; however, this role considerably intersects with deactivation - KERNFS_REMOVED prevents new children while deactivation prevents new file operations. There's no reason to have them separate making things more complex than necessary. KERNFS_REMOVED is also used to decide whether a node is still visible to vfs layer, which is rather redundant as equivalent determination can be made by testing whether the node is on its parent's children rbtree or not. This patch removes KERNFS_REMOVED. * Instead of KERNFS_REMOVED, each node now starts its life deactivated. This means that we now use both atomic_add() and atomic_sub() on KN_DEACTIVATED_BIAS, which is INT_MIN. The compiler generates an overflow warnings when negating INT_MIN as the negation can't be represented as a positive number. Nothing is actually broken but let's bump BIAS by one to avoid the warnings for archs which negates the subtrahend.. * KERNFS_REMOVED tests in add and rename paths are replaced with kernfs_get/put_active() of the target nodes. Due to the way the add path is structured now, active ref handling is done in the callers of kernfs_add_one(). This will be consolidated up later. * kernfs_remove_one() is updated to deactivate instead of setting KERNFS_REMOVED. This removes deactivation from kernfs_deactivate(), which is now renamed to kernfs_drain(). * kernfs_dop_revalidate() now tests RB_EMPTY_NODE(&kn->rb) instead of KERNFS_REMOVED and KERNFS_REMOVED test in kernfs_dir_pos() is dropped. A node which is removed from the children rbtree is not included in the iteration in the first place. This means that a node may be visible through vfs a bit longer - it's now also visible after deactivation until the actual removal. This slightly enlarged window difference doesn't make any difference to the userland. * Sanity check on KERNFS_REMOVED in kernfs_put() is replaced with checks on the active ref. * Some comment style updates in the affected area. v2: Reordered before removal path restructuring. kernfs_active() dropped and kernfs_get/put_active() used instead. RB_EMPTY_NODE() used in the lookup paths. Signed-off-by: NTejun Heo <tj@kernel.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Tejun Heo 提交于
When kernfs_seq_start() fails to obtain an active reference, it returns ERR_PTR(-ENODEV). kernfs_seq_stop() is then invoked with the error pointer value; however, it still proceeds to invoke kernfs_put_active() on the node leading to unbalanced put. If kernfs_seq_stop() is called even after active ref failure, it should skip invocation of @ops->seq_stop() and put_active. Unfortunately, this is a bit complicated because active ref failure isn't the only thing which may fail with ERR_PTR(-ENODEV). @ops->seq_start/next() may also fail with the error value and kernfs_seq_stop() doesn't have a way to tell apart those failures. Work it around by factoring out the active part of kernfs_seq_stop() into kernfs_seq_stop_active() and invoking it directly if @ops->seq_start/next() fail with ERR_PTR(-ENODEV) and updating kernfs_seq_stop() to skip kernfs_seq_stop_active() on ERR_PTR(-ENODEV). This is a bit nasty but ensures that the active put is skipped iff get_active failed in kernfs_seq_start(). Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Sasha Levin <sasha.levin@oracle.com> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 18 12月, 2013 1 次提交
-
-
由 Tejun Heo 提交于
Because sysfs used struct attribute which are supposed to stay constant, sysfs didn't copy names when creating regular files. The specified string for name was supposed to stay constant. Such distinction isn't inherent for kernfs. kernfs_create_file[_ns]() should be able to take the same @name as kernfs_create_dir[_ns]() As there can be huge number of sysfs attributes, we still want to be able to use static names for sysfs attributes. This patch renames kernfs_create_file_ns_key() to __kernfs_create_file() and adds @name_is_static parameter so that the caller can explicitly indicate that @name can be used without copying. kernfs is updated to use KERNFS_STATIC_NAME to distinguish static and copied names. This patch doesn't introduce any behavior changes. Signed-off-by: NTejun Heo <tj@kernel.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
- 12 12月, 2013 5 次提交
-
-
由 Tejun Heo 提交于
kernfs has just been separated out from sysfs and we're already in full conflict mode. Nothing can make the situation any worse. Let's take the chance to name things properly. This patch performs the following renames. * s/sysfs_*()/kernfs_*()/ in all internal functions * s/sysfs/kernfs/ in internal strings, comments and whatever is remaining * Uniformly rename various vfs operations so that they're consistently named and distinguishable. This patch is strictly rename only and doesn't introduce any functional difference. Signed-off-by: NTejun Heo <tj@kernel.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Tejun Heo 提交于
kernfs has just been separated out from sysfs and we're already in full conflict mode. Nothing can make the situation any worse. Let's take the chance to name things properly. This patch performs the following renames. * s/sysfs_mutex/kernfs_mutex/ * s/sysfs_dentry_ops/kernfs_dops/ * s/sysfs_dir_operations/kernfs_dir_fops/ * s/sysfs_dir_inode_operations/kernfs_dir_iops/ * s/kernfs_file_operations/kernfs_file_fops/ - renamed for consistency * s/sysfs_symlink_inode_operations/kernfs_symlink_iops/ * s/sysfs_aops/kernfs_aops/ * s/sysfs_backing_dev_info/kernfs_bdi/ * s/sysfs_inode_operations/kernfs_iops/ * s/sysfs_dir_cachep/kernfs_node_cache/ * s/sysfs_ops/kernfs_sops/ This patch is strictly rename only and doesn't introduce any functional difference. Signed-off-by: NTejun Heo <tj@kernel.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Tejun Heo 提交于
kernfs has just been separated out from sysfs and we're already in full conflict mode. Nothing can make the situation any worse. Let's take the chance to name things properly. This patch performs the following renames. * s/SYSFS_DIR/KERNFS_DIR/ * s/SYSFS_KOBJ_ATTR/KERNFS_FILE/ * s/SYSFS_KOBJ_LINK/KERNFS_LINK/ * s/SYSFS_{TYPE_FLAGS}/KERNFS_{TYPE_FLAGS}/ * s/SYSFS_FLAG_{FLAG}/KERNFS_{FLAG}/ * s/sysfs_type()/kernfs_type()/ * s/SD_DEACTIVATED_BIAS/KN_DEACTIVATED_BIAS/ This patch is strictly rename only and doesn't introduce any functional difference. Signed-off-by: NTejun Heo <tj@kernel.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Tejun Heo 提交于
kernfs has just been separated out from sysfs and we're already in full conflict mode. Nothing can make the situation any worse. Let's take the chance to name things properly. This patch performs the following renames. * s/sysfs_open_dirent/kernfs_open_node/ * s/sysfs_open_file/kernfs_open_file/ * s/sysfs_inode_attrs/kernfs_iattrs/ * s/sysfs_addrm_cxt/kernfs_addrm_cxt/ * s/sysfs_super_info/kernfs_super_info/ * s/sysfs_info()/kernfs_info()/ * s/sysfs_open_dirent_lock/kernfs_open_node_lock/ * s/sysfs_open_file_mutex/kernfs_open_file_mutex/ * s/sysfs_of()/kernfs_of()/ This patch is strictly rename only and doesn't introduce any functional difference. Signed-off-by: NTejun Heo <tj@kernel.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-
由 Tejun Heo 提交于
kernfs has just been separated out from sysfs and we're already in full conflict mode. Nothing can make the situation any worse. Let's take the chance to name things properly. s_ prefix for kernfs members is used inconsistently and a misnomer now. It's not like kernfs_node is used widely across the kernel making the ability to grep for the members particularly useful. Let's just drop the prefix. This patch is strictly rename only and doesn't introduce any functional difference. Signed-off-by: NTejun Heo <tj@kernel.org> Signed-off-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org>
-