1. 14 12月, 2006 4 次提交
  2. 13 12月, 2006 1 次提交
  3. 09 12月, 2006 1 次提交
  4. 04 12月, 2006 1 次提交
  5. 30 11月, 2006 1 次提交
  6. 13 11月, 2006 1 次提交
    • J
      [PATCH] mspec driver build fix · 1a4b0fc5
      Jes Sorensen 提交于
      Fix MSPEC driver to build for non SN2 enabled configs as the driver should
      work in cached and uncached modes (no fetchop) on these systems.  In
      addition make MSPEC select IA64_UNCACHED_ALLOCATOR, which is required for
      it and move it to arch/ia64/Kconfig to avoid warnings on non ia64
      architectures running allmodconfig.  Once the Kconfig code is fixed, we can
      move it back.
      Signed-off-by: NJes Sorensen <jes@sgi.com>
      Cc: Fernando Luis Vzquez Cao <fernando@oss.ntt.co.jp>
      Cc: "Luck, Tony" <tony.luck@intel.com>
      Signed-off-by: NAndrew Morton <akpm@osdl.org>
      Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
      1a4b0fc5
  7. 17 10月, 2006 1 次提交
  8. 04 10月, 2006 1 次提交
  9. 01 10月, 2006 1 次提交
    • D
      [PATCH] BLOCK: Make it possible to disable the block layer [try #6] · 9361401e
      David Howells 提交于
      Make it possible to disable the block layer.  Not all embedded devices require
      it, some can make do with just JFFS2, NFS, ramfs, etc - none of which require
      the block layer to be present.
      
      This patch does the following:
      
       (*) Introduces CONFIG_BLOCK to disable the block layer, buffering and blockdev
           support.
      
       (*) Adds dependencies on CONFIG_BLOCK to any configuration item that controls
           an item that uses the block layer.  This includes:
      
           (*) Block I/O tracing.
      
           (*) Disk partition code.
      
           (*) All filesystems that are block based, eg: Ext3, ReiserFS, ISOFS.
      
           (*) The SCSI layer.  As far as I can tell, even SCSI chardevs use the
           	 block layer to do scheduling.  Some drivers that use SCSI facilities -
           	 such as USB storage - end up disabled indirectly from this.
      
           (*) Various block-based device drivers, such as IDE and the old CDROM
           	 drivers.
      
           (*) MTD blockdev handling and FTL.
      
           (*) JFFS - which uses set_bdev_super(), something it could avoid doing by
           	 taking a leaf out of JFFS2's book.
      
       (*) Makes most of the contents of linux/blkdev.h, linux/buffer_head.h and
           linux/elevator.h contingent on CONFIG_BLOCK being set.  sector_div() is,
           however, still used in places, and so is still available.
      
       (*) Also made contingent are the contents of linux/mpage.h, linux/genhd.h and
           parts of linux/fs.h.
      
       (*) Makes a number of files in fs/ contingent on CONFIG_BLOCK.
      
       (*) Makes mm/bounce.c (bounce buffering) contingent on CONFIG_BLOCK.
      
       (*) set_page_dirty() doesn't call __set_page_dirty_buffers() if CONFIG_BLOCK
           is not enabled.
      
       (*) fs/no-block.c is created to hold out-of-line stubs and things that are
           required when CONFIG_BLOCK is not set:
      
           (*) Default blockdev file operations (to give error ENODEV on opening).
      
       (*) Makes some /proc changes:
      
           (*) /proc/devices does not list any blockdevs.
      
           (*) /proc/diskstats and /proc/partitions are contingent on CONFIG_BLOCK.
      
       (*) Makes some compat ioctl handling contingent on CONFIG_BLOCK.
      
       (*) If CONFIG_BLOCK is not defined, makes sys_quotactl() return -ENODEV if
           given command other than Q_SYNC or if a special device is specified.
      
       (*) In init/do_mounts.c, no reference is made to the blockdev routines if
           CONFIG_BLOCK is not defined.  This does not prohibit NFS roots or JFFS2.
      
       (*) The bdflush, ioprio_set and ioprio_get syscalls can now be absent (return
           error ENOSYS by way of cond_syscall if so).
      
       (*) The seclvl_bd_claim() and seclvl_bd_release() security calls do nothing if
           CONFIG_BLOCK is not set, since they can't then happen.
      Signed-Off-By: NDavid Howells <dhowells@redhat.com>
      Signed-off-by: NJens Axboe <axboe@kernel.dk>
      9361401e
  10. 30 9月, 2006 1 次提交
  11. 27 9月, 2006 2 次提交
  12. 25 8月, 2006 1 次提交
  13. 31 7月, 2006 1 次提交
  14. 13 7月, 2006 1 次提交
  15. 07 7月, 2006 1 次提交
  16. 30 6月, 2006 1 次提交
  17. 28 6月, 2006 1 次提交
  18. 27 6月, 2006 3 次提交
  19. 26 6月, 2006 1 次提交
  20. 16 5月, 2006 1 次提交
  21. 11 4月, 2006 1 次提交
  22. 28 3月, 2006 3 次提交
  23. 27 3月, 2006 1 次提交
  24. 24 3月, 2006 1 次提交
  25. 23 3月, 2006 1 次提交
  26. 08 2月, 2006 1 次提交
  27. 02 2月, 2006 1 次提交
  28. 15 1月, 2006 1 次提交
  29. 11 1月, 2006 3 次提交
    • A
      [PATCH] TTY layer buffering revamp · 33f0f88f
      Alan Cox 提交于
      The API and code have been through various bits of initial review by
      serial driver people but they definitely need to live somewhere for a
      while so the unconverted drivers can get knocked into shape, existing
      drivers that have been updated can be better tuned and bugs whacked out.
      
      This replaces the tty flip buffers with kmalloc objects in rings. In the
      normal situation for an IRQ driven serial port at typical speeds the
      behaviour is pretty much the same, two buffers end up allocated and the
      kernel cycles between them as before.
      
      When there are delays or at high speed we now behave far better as the
      buffer pool can grow a bit rather than lose characters. This also means
      that we can operate at higher speeds reliably.
      
      For drivers that receive characters in blocks (DMA based, USB and
      especially virtualisation) the layer allows a lot of driver specific
      code that works around the tty layer with private secondary queues to be
      removed. The IBM folks need this sort of layer, the smart serial port
      people do, the virtualisers do (because a virtualised tty typically
      operates at infinite speed rather than emulating 9600 baud).
      
      Finally many drivers had invalid and unsafe attempts to avoid buffer
      overflows by directly invoking tty methods extracted out of the innards
      of work queue structs. These are no longer needed and all go away. That
      fixes various random hangs with serial ports on overflow.
      
      The other change in here is to optimise the receive_room path that is
      used by some callers. It turns out that only one ldisc uses receive room
      except asa constant and it updates it far far less than the value is
      read. We thus make it a variable not a function call.
      
      I expect the code to contain bugs due to the size alone but I'll be
      watching and squashing them and feeding out new patches as it goes.
      
      Because the buffers now dynamically expand you should only run out of
      buffering when the kernel runs out of memory for real.  That means a lot of
      the horrible hacks high performance drivers used to do just aren't needed any
      more.
      
      Description:
      
      tty_insert_flip_char is an old API and continues to work as before, as does
      tty_flip_buffer_push() [this is why many drivers dont need modification].  It
      does now also return the number of chars inserted
      
      There are also
      
      tty_buffer_request_room(tty, len)
      
      which asks for a buffer block of the length requested and returns the space
      found.  This improves efficiency with hardware that knows how much to
      transfer.
      
      and tty_insert_flip_string_flags(tty, str, flags, len)
      
      to insert a string of characters and flags
      
      For a smart interface the usual code is
      
          len = tty_request_buffer_room(tty, amount_hardware_says);
          tty_insert_flip_string(tty, buffer_from_card, len);
      
      More description!
      
      At the moment tty buffers are attached directly to the tty.  This is causing a
      lot of the problems related to tty layer locking, also problems at high speed
      and also with bursty data (such as occurs in virtualised environments)
      
      I'm working on ripping out the flip buffers and replacing them with a pool of
      dynamically allocated buffers.  This allows both for old style "byte I/O"
      devices and also helps virtualisation and smart devices where large blocks of
      data suddenely materialise and need storing.
      
      So far so good.  Lots of drivers reference tty->flip.*.  Several of them also
      call directly and unsafely into function pointers it provides.  This will all
      break.  Most drivers can use tty_insert_flip_char which can be kept as an API
      but others need more.
      
      At the moment I've added the following interfaces, if people think more will
      be needed now is a good time to say
      
       int tty_buffer_request_room(tty, size)
      
      Try and ensure at least size bytes are available, returns actual room (may be
      zero).  At the moment it just uses the flipbuf space but that will change.
      Repeated calls without characters being added are not cumulative.  (ie if you
      call it with 1, 1, 1, and then 4 you'll have four characters of space.  The
      other functions will also try and grow buffers in future but this will be a
      more efficient way when you know block sizes.
      
       int tty_insert_flip_char(tty, ch, flag)
      
      As before insert a character if there is room.  Now returns 1 for success, 0
      for failure.
      
       int tty_insert_flip_string(tty, str, len)
      
      Insert a block of non error characters.  Returns the number inserted.
      
       int tty_prepare_flip_string(tty, strptr, len)
      
      Adjust the buffer to allow len characters to be added.  Returns a buffer
      pointer in strptr and the length available.  This allows for hardware that
      needs to use functions like insl or mencpy_fromio.
      Signed-off-by: NAlan Cox <alan@redhat.com>
      Cc: Paul Fulghum <paulkf@microgate.com>
      Signed-off-by: NHirokazu Takata <takata@linux-m32r.org>
      Signed-off-by: NSerge Hallyn <serue@us.ibm.com>
      Signed-off-by: NJeff Dike <jdike@addtoit.com>
      Signed-off-by: NJohn Hawkes <hawkes@sgi.com>
      Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com>
      Signed-off-by: NAdrian Bunk <bunk@stusta.de>
      Signed-off-by: NAndrew Morton <akpm@osdl.org>
      Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
      33f0f88f
    • A
      [PATCH] Disable rio on 64-bit platforms · aed615a9
      Alexey Dobriyan 提交于
      Do it via Kconfig rather than via #error.
      Signed-off-by: NAlexey Dobriyan <adobriyan@gmail.com>
      Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
      Signed-off-by: NAndrew Morton <akpm@osdl.org>
      Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
      aed615a9
    • B
      [PATCH] i386: GPIO driver for AMD CS5535/CS5536 · e329113c
      Ben Gardner 提交于
      A simple driver for the CS5535 and CS5536 that allows a user-space program
      to manipulate GPIO pins.  The CS5535/CS5536 chips are Geode processor
      companion devices.
      Signed-off-by: NBen Gardner <bgardner@wabtec.com>
      Signed-off-by: NRichard Knutsson <ricknu-0@student.ltu.se>
      Signed-off-by: NAndrew Morton <akpm@osdl.org>
      Signed-off-by: NLinus Torvalds <torvalds@osdl.org>
      e329113c
  30. 09 1月, 2006 1 次提交