- 23 2月, 2017 5 次提交
-
-
由 Dave Jiang 提交于
pmd_fault() and related functions really only need the vmf parameter since the additional parameters are all included in the vmf struct. Remove the additional parameter and simplify pmd_fault() and friends. Link: http://lkml.kernel.org/r/1484085142-2297-8-git-send-email-ross.zwisler@linux.intel.comSigned-off-by: NDave Jiang <dave.jiang@intel.com> Reviewed-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: NJan Kara <jack@suse.cz> Cc: Dave Chinner <david@fromorbit.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Dave Jiang 提交于
Instead of passing in multiple parameters in the pmd_fault() handler, a vmf can be passed in just like a fault() handler. This will simplify code and remove the need for the actual pmd fault handlers to allocate a vmf. Related functions are also modified to do the same. [dave.jiang@intel.com: fix issue with xfs_tests stall when DAX option is off] Link: http://lkml.kernel.org/r/148469861071.195597.3619476895250028518.stgit@djiang5-desk3.ch.intel.com Link: http://lkml.kernel.org/r/1484085142-2297-7-git-send-email-ross.zwisler@linux.intel.comSigned-off-by: NDave Jiang <dave.jiang@intel.com> Reviewed-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: NJan Kara <jack@suse.cz> Cc: Dave Chinner <david@fromorbit.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ross Zwisler 提交于
Add tracepoints to dax_pmd_insert_mapping(), following the same logging conventions as the tracepoints in dax_iomap_pmd_fault(). Here is an example PMD fault showing the new tracepoints: big-1504 [001] .... 326.960743: xfs_filemap_pmd_fault: dev 259:0 ino 0x1003 big-1504 [001] .... 326.960753: dax_pmd_fault: dev 259:0 ino 0x1003 shared WRITE|ALLOW_RETRY|KILLABLE|USER address 0x10505000 vm_start 0x10200000 vm_end 0x10700000 pgoff 0x200 max_pgoff 0x1400 big-1504 [001] .... 326.960981: dax_pmd_insert_mapping: dev 259:0 ino 0x1003 shared write address 0x10505000 length 0x200000 pfn 0x100600 DEV|MAP radix_entry 0xc000e big-1504 [001] .... 326.960986: dax_pmd_fault_done: dev 259:0 ino 0x1003 shared WRITE|ALLOW_RETRY|KILLABLE|USER address 0x10505000 vm_start 0x10200000 vm_end 0x10700000 pgoff 0x200 max_pgoff 0x1400 NOPAGE Link: http://lkml.kernel.org/r/1484085142-2297-6-git-send-email-ross.zwisler@linux.intel.comSigned-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: NJan Kara <jack@suse.cz> Acked-by: NSteven Rostedt <rostedt@goodmis.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ross Zwisler 提交于
Add tracepoints to dax_pmd_load_hole(), following the same logging conventions as the tracepoints in dax_iomap_pmd_fault(). Here is an example PMD fault showing the new tracepoints: read_big-1478 [004] .... 238.242188: xfs_filemap_pmd_fault: dev 259:0 ino 0x1003 read_big-1478 [004] .... 238.242191: dax_pmd_fault: dev 259:0 ino 0x1003 shared ALLOW_RETRY|KILLABLE|USER address 0x10400000 vm_start 0x10200000 vm_end 0x10600000 pgoff 0x200 max_pgoff 0x1400 read_big-1478 [004] .... 238.242390: dax_pmd_load_hole: dev 259:0 ino 0x1003 shared address 0x10400000 zero_page ffffea0002c20000 radix_entry 0x1e read_big-1478 [004] .... 238.242392: dax_pmd_fault_done: dev 259:0 ino 0x1003 shared ALLOW_RETRY|KILLABLE|USER address 0x10400000 vm_start 0x10200000 vm_end 0x10600000 pgoff 0x200 max_pgoff 0x1400 NOPAGE Link: http://lkml.kernel.org/r/1484085142-2297-5-git-send-email-ross.zwisler@linux.intel.comSigned-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: NJan Kara <jack@suse.cz> Acked-by: NSteven Rostedt <rostedt@goodmis.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Ross Zwisler 提交于
Tracepoints are the standard way to capture debugging and tracing information in many parts of the kernel, including the XFS and ext4 filesystems. Create a tracepoint header for FS DAX and add the first DAX tracepoints to the PMD fault handler. This allows the tracing for DAX to be done in the same way as the filesystem tracing so that developers can look at them together and get a coherent idea of what the system is doing. I added both an entry and exit tracepoint because future patches will add tracepoints to child functions of dax_iomap_pmd_fault() like dax_pmd_load_hole() and dax_pmd_insert_mapping(). We want those messages to be wrapped by the parent function tracepoints so the code flow is more easily understood. Having entry and exit tracepoints for faults also allows us to easily see what filesystems functions were called during the fault. These filesystem functions get executed via iomap_begin() and iomap_end() calls, for example, and will have their own tracepoints. For PMD faults we primarily want to understand the type of mapping, the fault flags, the faulting address and whether it fell back to 4k faults. If it fell back to 4k faults the tracepoints should let us understand why. I named the new tracepoint header file "fs_dax.h" to allow for device DAX to have its own separate tracing header in the same directory at some point. Here is an example output for these events from a successful PMD fault: big-1441 [005] .... 32.582758: xfs_filemap_pmd_fault: dev 259:0 ino 0x1003 big-1441 [005] .... 32.582776: dax_pmd_fault: dev 259:0 ino 0x1003 shared WRITE|ALLOW_RETRY|KILLABLE|USER address 0x10505000 vm_start 0x10200000 vm_end 0x10700000 pgoff 0x200 max_pgoff 0x1400 big-1441 [005] .... 32.583292: dax_pmd_fault_done: dev 259:0 ino 0x1003 shared WRITE|ALLOW_RETRY|KILLABLE|USER address 0x10505000 vm_start 0x10200000 vm_end 0x10700000 pgoff 0x200 max_pgoff 0x1400 NOPAGE Link: http://lkml.kernel.org/r/1484085142-2297-3-git-send-email-ross.zwisler@linux.intel.comSigned-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Suggested-by: NDave Chinner <david@fromorbit.com> Reviewed-by: NJan Kara <jack@suse.cz> Acked-by: NSteven Rostedt <rostedt@goodmis.org> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 09 2月, 2017 1 次提交
-
-
由 Christoph Hellwig 提交于
Make sure all callers follow the same locking protocol, given that DAX transparantly replaced the normal buffered I/O path. Signed-off-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NTheodore Ts'o <tytso@mit.edu> Reviewed-by: NJan Kara <jack@suse.cz>
-
- 04 2月, 2017 1 次提交
-
-
由 Michal Hocko 提交于
Tetsuo has noticed that an OOM stress test which performs large write requests can cause the full memory reserves depletion. He has tracked this down to the following path __alloc_pages_nodemask+0x436/0x4d0 alloc_pages_current+0x97/0x1b0 __page_cache_alloc+0x15d/0x1a0 mm/filemap.c:728 pagecache_get_page+0x5a/0x2b0 mm/filemap.c:1331 grab_cache_page_write_begin+0x23/0x40 mm/filemap.c:2773 iomap_write_begin+0x50/0xd0 fs/iomap.c:118 iomap_write_actor+0xb5/0x1a0 fs/iomap.c:190 ? iomap_write_end+0x80/0x80 fs/iomap.c:150 iomap_apply+0xb3/0x130 fs/iomap.c:79 iomap_file_buffered_write+0x68/0xa0 fs/iomap.c:243 ? iomap_write_end+0x80/0x80 xfs_file_buffered_aio_write+0x132/0x390 [xfs] ? remove_wait_queue+0x59/0x60 xfs_file_write_iter+0x90/0x130 [xfs] __vfs_write+0xe5/0x140 vfs_write+0xc7/0x1f0 ? syscall_trace_enter+0x1d0/0x380 SyS_write+0x58/0xc0 do_syscall_64+0x6c/0x200 entry_SYSCALL64_slow_path+0x25/0x25 the oom victim has access to all memory reserves to make a forward progress to exit easier. But iomap_file_buffered_write and other callers of iomap_apply loop to complete the full request. We need to check for fatal signals and back off with a short write instead. As the iomap_apply delegates all the work down to the actor we have to hook into those. All callers that work with the page cache are calling iomap_write_begin so we will check for signals there. dax_iomap_actor has to handle the situation explicitly because it copies data to the userspace directly. Other callers like iomap_page_mkwrite work on a single page or iomap_fiemap_actor do not allocate memory based on the given len. Fixes: 68a9f5e7 ("xfs: implement iomap based buffered write path") Link: http://lkml.kernel.org/r/20170201092706.9966-2-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com> Reported-by: NTetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Reviewed-by: NChristoph Hellwig <hch@lst.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: <stable@vger.kernel.org> [4.8+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 31 1月, 2017 1 次提交
-
-
由 Christoph Hellwig 提交于
Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com>
-
- 25 1月, 2017 1 次提交
-
-
由 Ross Zwisler 提交于
As reported by Arnd: https://lkml.org/lkml/2017/1/10/756 Compiling with the following configuration: # CONFIG_EXT2_FS is not set # CONFIG_EXT4_FS is not set # CONFIG_XFS_FS is not set # CONFIG_FS_IOMAP depends on the above filesystems, as is not set CONFIG_FS_DAX=y generates build warnings about unused functions in fs/dax.c: fs/dax.c:878:12: warning: `dax_insert_mapping' defined but not used [-Wunused-function] static int dax_insert_mapping(struct address_space *mapping, ^~~~~~~~~~~~~~~~~~ fs/dax.c:572:12: warning: `copy_user_dax' defined but not used [-Wunused-function] static int copy_user_dax(struct block_device *bdev, sector_t sector, size_t size, ^~~~~~~~~~~~~ fs/dax.c:542:12: warning: `dax_load_hole' defined but not used [-Wunused-function] static int dax_load_hole(struct address_space *mapping, void **entry, ^~~~~~~~~~~~~ fs/dax.c:312:14: warning: `grab_mapping_entry' defined but not used [-Wunused-function] static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index, ^~~~~~~~~~~~~~~~~~ Now that the struct buffer_head based DAX fault paths and I/O path have been removed we really depend on iomap support being present for DAX. Make this explicit by selecting FS_IOMAP if we compile in DAX support. This allows us to remove conditional selections of FS_IOMAP when FS_DAX was present for ext2 and ext4, and to remove an #ifdef in fs/dax.c. Link: http://lkml.kernel.org/r/1484087383-29478-1-git-send-email-ross.zwisler@linux.intel.comSigned-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Reported-by: NArnd Bergmann <arnd@arndb.de> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NJan Kara <jack@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 11 1月, 2017 1 次提交
-
-
由 Ross Zwisler 提交于
Currently dax_mapping_entry_mkclean() fails to clean and write protect the pmd_t of a DAX PMD entry during an *sync operation. This can result in data loss in the following sequence: 1) mmap write to DAX PMD, dirtying PMD radix tree entry and making the pmd_t dirty and writeable 2) fsync, flushing out PMD data and cleaning the radix tree entry. We currently fail to mark the pmd_t as clean and write protected. 3) more mmap writes to the PMD. These don't cause any page faults since the pmd_t is dirty and writeable. The radix tree entry remains clean. 4) fsync, which fails to flush the dirty PMD data because the radix tree entry was clean. 5) crash - dirty data that should have been fsync'd as part of 4) could still have been in the processor cache, and is lost. Fix this by marking the pmd_t clean and write protected in dax_mapping_entry_mkclean(), which is called as part of the fsync operation 2). This will cause the writes in step 3) above to generate page faults where we'll re-dirty the PMD radix tree entry, resulting in flushes in the fsync that happens in step 4). Fixes: 4b4bb46d ("dax: clear dirty entry tags on cache flush") Link: http://lkml.kernel.org/r/1482272586-21177-3-git-send-email-ross.zwisler@linux.intel.comSigned-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: NJan Kara <jack@suse.cz> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@lst.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jan Kara <jack@suse.cz> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Dave Hansen <dave.hansen@intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 27 12月, 2016 4 次提交
-
-
由 Jan Kara 提交于
Currently ->iomap_begin() handler is called with entry lock held. If the filesystem held any locks between ->iomap_begin() and ->iomap_end() (such as ext4 which will want to hold transaction open), this would cause lock inversion with the iomap_apply() from standard IO path which first calls ->iomap_begin() and only then calls ->actor() callback which grabs entry locks for DAX (if it faults when copying from/to user provided buffers). Fix the problem by nesting grabbing of entry lock inside ->iomap_begin() - ->iomap_end() pair. Reviewed-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: NJan Kara <jack@suse.cz> Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
由 Jan Kara 提交于
The only case when we do not finish the page fault completely is when we are loading hole pages into a radix tree. Avoid this special case and finish the fault in that case as well inside the DAX fault handler. It will allow us for easier iomap handling. Reviewed-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: NJan Kara <jack@suse.cz> Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
由 Jan Kara 提交于
Currently dax_iomap_rw() takes care of invalidating page tables and evicting hole pages from the radix tree when write(2) to the file happens. This invalidation is only necessary when there is some block allocation resulting from write(2). Furthermore in current place the invalidation is racy wrt page fault instantiating a hole page just after we have invalidated it. So perform the page invalidation inside dax_iomap_actor() where we can do it only when really necessary and after blocks have been allocated so nobody will be instantiating new hole pages anymore. Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: NJan Kara <jack@suse.cz> Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
由 Jan Kara 提交于
Currently invalidate_inode_pages2_range() and invalidate_mapping_pages() just delete all exceptional radix tree entries they find. For DAX this is not desirable as we track cache dirtiness in these entries and when they are evicted, we may not flush caches although it is necessary. This can for example manifest when we write to the same block both via mmap and via write(2) (to different offsets) and fsync(2) then does not properly flush CPU caches when modification via write(2) was the last one. Create appropriate DAX functions to handle invalidation of DAX entries for invalidate_inode_pages2_range() and invalidate_mapping_pages() and wire them up into the corresponding mm functions. Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Reviewed-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: NJan Kara <jack@suse.cz> Signed-off-by: NDan Williams <dan.j.williams@intel.com>
-
- 15 12月, 2016 5 次提交
-
-
由 Jan Kara 提交于
Currently we never clear dirty tags in DAX mappings and thus address ranges to flush accumulate. Now that we have locking of radix tree entries, we have all the locking necessary to reliably clear the radix tree dirty tag when flushing caches for corresponding address range. Similarly to page_mkclean() we also have to write-protect pages to get a page fault when the page is next written to so that we can mark the entry dirty again. Link: http://lkml.kernel.org/r/1479460644-25076-21-git-send-email-jack@suse.czSigned-off-by: NJan Kara <jack@suse.cz> Reviewed-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jan Kara 提交于
Currently PTE gets updated in wp_pfn_shared() after dax_pfn_mkwrite() has released corresponding radix tree entry lock. When we want to writeprotect PTE on cache flush, we need PTE modification to happen under radix tree entry lock to ensure consistent updates of PTE and radix tree (standard faults use page lock to ensure this consistency). So move update of PTE bit into dax_pfn_mkwrite(). Link: http://lkml.kernel.org/r/1479460644-25076-20-git-send-email-jack@suse.czSigned-off-by: NJan Kara <jack@suse.cz> Reviewed-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jan Kara 提交于
Currently, flushing of caches for DAX mappings was ignoring entry lock. So far this was ok (modulo a bug that a difference in entry lock could cause cache flushing to be mistakenly skipped) but in the following patches we will write-protect PTEs on cache flushing and clear dirty tags. For that we will need more exclusion. So do cache flushing under an entry lock. This allows us to remove one lock-unlock pair of mapping->tree_lock as a bonus. Link: http://lkml.kernel.org/r/1479460644-25076-19-git-send-email-jack@suse.czSigned-off-by: NJan Kara <jack@suse.cz> Reviewed-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jan Kara 提交于
Move final handling of COW faults from generic code into DAX fault handler. That way generic code doesn't have to be aware of peculiarities of DAX locking so remove that knowledge and make locking functions private to fs/dax.c. Link: http://lkml.kernel.org/r/1479460644-25076-11-git-send-email-jack@suse.czSigned-off-by: NJan Kara <jack@suse.cz> Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jan Kara 提交于
Every single user of vmf->virtual_address typed that entry to unsigned long before doing anything with it so the type of virtual_address does not really provide us any additional safety. Just use masked vmf->address which already has the appropriate type. Link: http://lkml.kernel.org/r/1479460644-25076-3-git-send-email-jack@suse.czSigned-off-by: NJan Kara <jack@suse.cz> Acked-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 13 12月, 2016 4 次提交
-
-
由 Johannes Weiner 提交于
Support handing __radix_tree_replace() a callback that gets invoked for all leaf nodes that change or get freed as a result of the slot replacement, to assist users tracking nodes with node->private_list. This prepares for putting page cache shadow entries into the radix tree root again and drastically simplifying the shadow tracking. Link: http://lkml.kernel.org/r/20161117193134.GD23430@cmpxchg.orgSigned-off-by: NJohannes Weiner <hannes@cmpxchg.org> Suggested-by: NJan Kara <jack@suse.cz> Reviewed-by: NJan Kara <jack@suse.cz> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox <mawilcox@linuxonhyperv.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
The bug in khugepaged fixed earlier in this series shows that radix tree slot replacement is fragile; and it will become more so when not only NULL<->!NULL transitions need to be caught but transitions from and to exceptional entries as well. We need checks. Re-implement radix_tree_replace_slot() on top of the sanity-checked __radix_tree_replace(). This requires existing callers to also pass the radix tree root, but it'll warn us when somebody replaces slots with contents that need proper accounting (transitions between NULL entries, real entries, exceptional entries) and where a replacement through the slot pointer would corrupt the radix tree node counts. Link: http://lkml.kernel.org/r/20161117193021.GB23430@cmpxchg.orgSigned-off-by: NJohannes Weiner <hannes@cmpxchg.org> Suggested-by: NJan Kara <jack@suse.cz> Reviewed-by: NJan Kara <jack@suse.cz> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox <mawilcox@linuxonhyperv.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
The way the page cache is sneaking shadow entries of evicted pages into the radix tree past the node entry accounting and tracking them manually in the upper bits of node->count is fraught with problems. These shadow entries are marked in the tree as exceptional entries, which are a native concept to the radix tree. Maintain an explicit counter of exceptional entries in the radix tree node. Subsequent patches will switch shadow entry tracking over to that counter. DAX and shmem are the other users of exceptional entries. Since slot replacements that change the entry type from regular to exceptional must now be accounted, introduce a __radix_tree_replace() function that does replacement and accounting, and switch DAX and shmem over. The increase in radix tree node size is temporary. A followup patch switches the shadow tracking to this new scheme and we'll no longer need the upper bits in node->count and shrink that back to one byte. Link: http://lkml.kernel.org/r/20161117192945.GA23430@cmpxchg.orgSigned-off-by: NJohannes Weiner <hannes@cmpxchg.org> Reviewed-by: NJan Kara <jack@suse.cz> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox <mawilcox@linuxonhyperv.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jan Kara 提交于
Commit 642261ac: "dax: add struct iomap based DAX PMD support" has introduced unmapping of page tables if huge page needs to be split in grab_mapping_entry(). However the unmapping happens after radix_tree_preload() call which disables preemption and thus unmap_mapping_range() tries to acquire i_mmap_lock in atomic context which is a bug. Fix the problem by moving unmapping before radix_tree_preload() call. Fixes: 642261acSigned-off-by: NJan Kara <jack@suse.cz> Signed-off-by: NTheodore Ts'o <tytso@mit.edu>
-
- 21 11月, 2016 1 次提交
-
-
由 Jan Kara 提交于
No one uses functions using the get_block callback anymore. Rip them out and update documentation. Reviewed-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: NJan Kara <jack@suse.cz> Signed-off-by: NTheodore Ts'o <tytso@mit.edu>
-
- 10 11月, 2016 1 次提交
-
-
由 Jan Kara 提交于
Introduce a flag telling iomap operations whether they are handling a fault or other IO. That may influence behavior wrt inode size and similar things. Signed-off-by: NJan Kara <jack@suse.cz> Reviewed-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 08 11月, 2016 12 次提交
-
-
由 Ross Zwisler 提交于
DAX PMDs have been disabled since Jan Kara introduced DAX radix tree based locking. This patch allows DAX PMDs to participate in the DAX radix tree based locking scheme so that they can be re-enabled using the new struct iomap based fault handlers. There are currently three types of DAX 4k entries: 4k zero pages, 4k DAX mappings that have an associated block allocation, and 4k DAX empty entries. The empty entries exist to provide locking for the duration of a given page fault. This patch adds three equivalent 2MiB DAX entries: Huge Zero Page (HZP) entries, PMD DAX entries that have associated block allocations, and 2 MiB DAX empty entries. Unlike the 4k case where we insert a struct page* into the radix tree for 4k zero pages, for HZP we insert a DAX exceptional entry with the new RADIX_DAX_HZP flag set. This is because we use a single 2 MiB zero page in every 2MiB hole mapping, and it doesn't make sense to have that same struct page* with multiple entries in multiple trees. This would cause contention on the single page lock for the one Huge Zero Page, and it would break the page->index and page->mapping associations that are assumed to be valid in many other places in the kernel. One difficult use case is when one thread is trying to use 4k entries in radix tree for a given offset, and another thread is using 2 MiB entries for that same offset. The current code handles this by making the 2 MiB user fall back to 4k entries for most cases. This was done because it is the simplest solution, and because the use of 2MiB pages is already opportunistic. If we were to try to upgrade from 4k pages to 2MiB pages for a given range, we run into the problem of how we lock out 4k page faults for the entire 2MiB range while we clean out the radix tree so we can insert the 2MiB entry. We can solve this problem if we need to, but I think that the cases where both 2MiB entries and 4K entries are being used for the same range will be rare enough and the gain small enough that it probably won't be worth the complexity. Signed-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: NJan Kara <jack@suse.cz> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Ross Zwisler 提交于
No functional change. The static functions put_locked_mapping_entry() and put_unlocked_mapping_entry() will soon be used in error cases in grab_mapping_entry(), so move their definitions above this function. Signed-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: NJan Kara <jack@suse.cz> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Ross Zwisler 提交于
The RADIX_DAX_* defines currently mostly live in fs/dax.c, with just RADIX_DAX_ENTRY_LOCK being in include/linux/dax.h so it can be used in mm/filemap.c. When we add PMD support, though, mm/filemap.c will also need access to the RADIX_DAX_PTE type so it can properly construct a 4k sized empty entry. Instead of shifting the defines between dax.c and dax.h as they are individually used in other code, just move them wholesale to dax.h so they'll be available when we need them. Signed-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NJan Kara <jack@suse.cz> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Ross Zwisler 提交于
Currently iomap_end() doesn't do anything for DAX page faults for both ext2 and XFS. ext2_iomap_end() just checks for a write underrun, and xfs_file_iomap_end() checks to see if it needs to finish a delayed allocation. However, in the future iomap_end() calls might be needed to make sure we have balanced allocations, locks, etc. So, add calls to iomap_end() with appropriate error handling to dax_iomap_fault(). Signed-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Suggested-by: NJan Kara <jack@suse.cz> Reviewed-by: NJan Kara <jack@suse.cz> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Ross Zwisler 提交于
To be able to correctly calculate the sector from a file position and a struct iomap there is a complex little bit of logic that currently happens in both dax_iomap_actor() and dax_iomap_fault(). This will need to be repeated yet again in the DAX PMD fault handler when it is added, so break it out into a helper function. Signed-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NJan Kara <jack@suse.cz> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Ross Zwisler 提交于
The recently added DAX functions that use the new struct iomap data structure were named iomap_dax_rw(), iomap_dax_fault() and iomap_dax_actor(). These are actually defined in fs/dax.c, though, so should be part of the "dax" namespace and not the "iomap" namespace. Rename them to dax_iomap_rw(), dax_iomap_fault() and dax_iomap_actor() respectively. Signed-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Suggested-by: NDave Chinner <david@fromorbit.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NJan Kara <jack@suse.cz> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Ross Zwisler 提交于
dax_pmd_fault() is the old struct buffer_head + get_block_t based 2 MiB DAX fault handler. This fault handler has been disabled for several kernel releases, and support for PMDs will be reintroduced using the struct iomap interface instead. Signed-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NJan Kara <jack@suse.cz> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Ross Zwisler 提交于
DAX radix tree locking currently locks entries based on the unique combination of the 'mapping' pointer and the pgoff_t 'index' for the entry. This works for PTEs, but as we move to PMDs we will need to have all the offsets within the range covered by the PMD to map to the same bit lock. To accomplish this, for ranges covered by a PMD entry we will instead lock based on the page offset of the beginning of the PMD entry. The 'mapping' pointer is still used in the same way. Signed-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NJan Kara <jack@suse.cz> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Ross Zwisler 提交于
No functional change. Consistently use the variable name 'entry' instead of 'ret' for DAX radix tree entries. This was already happening in most of the code, so update get_unlocked_mapping_entry(), grab_mapping_entry() and dax_unlock_mapping_entry(). Signed-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NJan Kara <jack@suse.cz> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Ross Zwisler 提交于
Don't take down the kernel if we get an invalid 'from' and 'length' argument pair. Just warn once and return an error. Signed-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NJan Kara <jack@suse.cz> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Ross Zwisler 提交于
The global 'wait_table' variable is only used within fs/dax.c, and generates the following sparse warning: fs/dax.c:39:19: warning: symbol 'wait_table' was not declared. Should it be static? Make it static so it has scope local to fs/dax.c, and to make sparse happy. Signed-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NJan Kara <jack@suse.cz> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Ross Zwisler 提交于
Now that ext4 properly sets bh.b_size when we call get_block() for a hole, rely on that value and remove the buffer_size_valid() sanity check. Signed-off-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: NJan Kara <jack@suse.cz> Reviewed-by: NChristoph Hellwig <hch@lst.de> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
- 08 10月, 2016 1 次提交
-
-
由 Aaron Lu 提交于
The global zero page is used to satisfy an anonymous read fault. If THP(Transparent HugePage) is enabled then the global huge zero page is used. The global huge zero page uses an atomic counter for reference counting and is allocated/freed dynamically according to its counter value. CPU time spent on that counter will greatly increase if there are a lot of processes doing anonymous read faults. This patch proposes a way to reduce the access to the global counter so that the CPU load can be reduced accordingly. To do this, a new flag of the mm_struct is introduced: MMF_USED_HUGE_ZERO_PAGE. With this flag, the process only need to touch the global counter in two cases: 1 The first time it uses the global huge zero page; 2 The time when mm_user of its mm_struct reaches zero. Note that right now, the huge zero page is eligible to be freed as soon as its last use goes away. With this patch, the page will not be eligible to be freed until the exit of the last process from which it was ever used. And with the use of mm_user, the kthread is not eligible to use huge zero page either. Since no kthread is using huge zero page today, there is no difference after applying this patch. But if that is not desired, I can change it to when mm_count reaches zero. Case used for test on Haswell EP: usemem -n 72 --readonly -j 0x200000 100G Which spawns 72 processes and each will mmap 100G anonymous space and then do read only access to that space sequentially with a step of 2MB. CPU cycles from perf report for base commit: 54.03% usemem [kernel.kallsyms] [k] get_huge_zero_page CPU cycles from perf report for this commit: 0.11% usemem [kernel.kallsyms] [k] mm_get_huge_zero_page Performance(throughput) of the workload for base commit: 1784430792 Performance(throughput) of the workload for this commit: 4726928591 164% increase. Runtime of the workload for base commit: 707592 us Runtime of the workload for this commit: 303970 us 50% drop. Link: http://lkml.kernel.org/r/fe51a88f-446a-4622-1363-ad1282d71385@intel.comSigned-off-by: NAaron Lu <aaron.lu@intel.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 19 9月, 2016 2 次提交
-
-
由 Christoph Hellwig 提交于
Very similar to the existing dax_fault function, but instead of using the get_block callback we rely on the iomap_ops vector from iomap.c. That also avoids having to do two calls into the file system for write faults. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-
由 Christoph Hellwig 提交于
This is a much simpler implementation of the DAX read/write path that makes use of the iomap infrastructure. It does not try to mirror the direct I/O calling conventions and thus doesn't have to deal with i_dio_count or the end_io handler, but instead leaves locking and filesystem-specific I/O completion to the caller. Signed-off-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NRoss Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: NDave Chinner <david@fromorbit.com>
-