1. 06 12月, 2012 2 次提交
    • M
      KVM: PPC: booke: Get/set guest EPCR register using ONE_REG interface · 352df1de
      Mihai Caraman 提交于
      Implement ONE_REG interface for EPCR register adding KVM_REG_PPC_EPCR to
      the list of ONE_REG PPC supported registers.
      Signed-off-by: NMihai Caraman <mihai.caraman@freescale.com>
      [agraf: remove HV dependency, use get/put_user]
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      352df1de
    • P
      KVM: PPC: Book3S HV: Provide a method for userspace to read and write the HPT · a2932923
      Paul Mackerras 提交于
      A new ioctl, KVM_PPC_GET_HTAB_FD, returns a file descriptor.  Reads on
      this fd return the contents of the HPT (hashed page table), writes
      create and/or remove entries in the HPT.  There is a new capability,
      KVM_CAP_PPC_HTAB_FD, to indicate the presence of the ioctl.  The ioctl
      takes an argument structure with the index of the first HPT entry to
      read out and a set of flags.  The flags indicate whether the user is
      intending to read or write the HPT, and whether to return all entries
      or only the "bolted" entries (those with the bolted bit, 0x10, set in
      the first doubleword).
      
      This is intended for use in implementing qemu's savevm/loadvm and for
      live migration.  Therefore, on reads, the first pass returns information
      about all HPTEs (or all bolted HPTEs).  When the first pass reaches the
      end of the HPT, it returns from the read.  Subsequent reads only return
      information about HPTEs that have changed since they were last read.
      A read that finds no changed HPTEs in the HPT following where the last
      read finished will return 0 bytes.
      
      The format of the data provides a simple run-length compression of the
      invalid entries.  Each block of data starts with a header that indicates
      the index (position in the HPT, which is just an array), the number of
      valid entries starting at that index (may be zero), and the number of
      invalid entries following those valid entries.  The valid entries, 16
      bytes each, follow the header.  The invalid entries are not explicitly
      represented.
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      [agraf: fix documentation]
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      a2932923
  2. 30 10月, 2012 1 次提交
  3. 11 10月, 2012 1 次提交
  4. 06 10月, 2012 5 次提交
    • P
      KVM: PPC: Book3S HV: Provide a way for userspace to get/set per-vCPU areas · 55b665b0
      Paul Mackerras 提交于
      The PAPR paravirtualization interface lets guests register three
      different types of per-vCPU buffer areas in its memory for communication
      with the hypervisor.  These are called virtual processor areas (VPAs).
      Currently the hypercalls to register and unregister VPAs are handled
      by KVM in the kernel, and userspace has no way to know about or save
      and restore these registrations across a migration.
      
      This adds "register" codes for these three areas that userspace can
      use with the KVM_GET/SET_ONE_REG ioctls to see what addresses have
      been registered, and to register or unregister them.  This will be
      needed for guest hibernation and migration, and is also needed so
      that userspace can unregister them on reset (otherwise we corrupt
      guest memory after reboot by writing to the VPAs registered by the
      previous kernel).
      
      The "register" for the VPA is a 64-bit value containing the address,
      since the length of the VPA is fixed.  The "registers" for the SLB
      shadow buffer and dispatch trace log (DTL) are 128 bits long,
      consisting of the guest physical address in the high (first) 64 bits
      and the length in the low 64 bits.
      
      This also fixes a bug where we were calling init_vpa unconditionally,
      leading to an oops when unregistering the VPA.
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      55b665b0
    • P
      KVM: PPC: Book3S: Get/set guest FP regs using the GET/SET_ONE_REG interface · a8bd19ef
      Paul Mackerras 提交于
      This enables userspace to get and set all the guest floating-point
      state using the KVM_[GS]ET_ONE_REG ioctls.  The floating-point state
      includes all of the traditional floating-point registers and the
      FPSCR (floating point status/control register), all the VMX/Altivec
      vector registers and the VSCR (vector status/control register), and
      on POWER7, the vector-scalar registers (note that each FP register
      is the high-order half of the corresponding VSR).
      
      Most of these are implemented in common Book 3S code, except for VSX
      on POWER7.  Because HV and PR differ in how they store the FP and VSX
      registers on POWER7, the code for these cases is not common.  On POWER7,
      the FP registers are the upper halves of the VSX registers vsr0 - vsr31.
      PR KVM stores vsr0 - vsr31 in two halves, with the upper halves in the
      arch.fpr[] array and the lower halves in the arch.vsr[] array, whereas
      HV KVM on POWER7 stores the whole VSX register in arch.vsr[].
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      [agraf: fix whitespace, vsx compilation]
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      a8bd19ef
    • P
      KVM: PPC: Book3S: Get/set guest SPRs using the GET/SET_ONE_REG interface · a136a8bd
      Paul Mackerras 提交于
      This enables userspace to get and set various SPRs (special-purpose
      registers) using the KVM_[GS]ET_ONE_REG ioctls.  With this, userspace
      can get and set all the SPRs that are part of the guest state, either
      through the KVM_[GS]ET_REGS ioctls, the KVM_[GS]ET_SREGS ioctls, or
      the KVM_[GS]ET_ONE_REG ioctls.
      
      The SPRs that are added here are:
      
      - DABR:  Data address breakpoint register
      - DSCR:  Data stream control register
      - PURR:  Processor utilization of resources register
      - SPURR: Scaled PURR
      - DAR:   Data address register
      - DSISR: Data storage interrupt status register
      - AMR:   Authority mask register
      - UAMOR: User authority mask override register
      - MMCR0, MMCR1, MMCRA: Performance monitor unit control registers
      - PMC1..PMC8: Performance monitor unit counter registers
      
      In order to reduce code duplication between PR and HV KVM code, this
      moves the kvm_vcpu_ioctl_[gs]et_one_reg functions into book3s.c and
      centralizes the copying between user and kernel space there.  The
      registers that are handled differently between PR and HV, and those
      that exist only in one flavor, are handled in kvmppc_[gs]et_one_reg()
      functions that are specific to each flavor.
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      [agraf: minimal style fixes]
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      a136a8bd
    • B
      Document IACx/DACx registers access using ONE_REG API · 2e232702
      Bharat Bhushan 提交于
      Patch to access the debug registers (IACx/DACx) using ONE_REG api
      was sent earlier. But that missed the respective documentation.
      
      Also corrected the index number referencing in section 4.69
      Signed-off-by: NBharat Bhushan <bharat.bhushan@freescale.com>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      2e232702
    • L
      KVM: PPC: Add support for ePAPR idle hcall in host kernel · 9202e076
      Liu Yu-B13201 提交于
      And add a new flag definition in kvm_ppc_pvinfo to indicate
      whether the host supports the EV_IDLE hcall.
      Signed-off-by: NLiu Yu <yu.liu@freescale.com>
      [stuart.yoder@freescale.com: cleanup,fixes for conditions allowing idle]
      Signed-off-by: NStuart Yoder <stuart.yoder@freescale.com>
      [agraf: fix typo]
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      9202e076
  5. 23 9月, 2012 1 次提交
    • A
      KVM: Add resampling irqfds for level triggered interrupts · 7a84428a
      Alex Williamson 提交于
      To emulate level triggered interrupts, add a resample option to
      KVM_IRQFD.  When specified, a new resamplefd is provided that notifies
      the user when the irqchip has been resampled by the VM.  This may, for
      instance, indicate an EOI.  Also in this mode, posting of an interrupt
      through an irqfd only asserts the interrupt.  On resampling, the
      interrupt is automatically de-asserted prior to user notification.
      This enables level triggered interrupts to be posted and re-enabled
      from vfio with no userspace intervention.
      
      All resampling irqfds can make use of a single irq source ID, so we
      reserve a new one for this interface.
      Signed-off-by: NAlex Williamson <alex.williamson@redhat.com>
      Signed-off-by: NAvi Kivity <avi@redhat.com>
      7a84428a
  6. 09 9月, 2012 1 次提交
  7. 22 8月, 2012 1 次提交
  8. 03 7月, 2012 1 次提交
  9. 30 5月, 2012 1 次提交
    • P
      KVM: PPC: Book3S HV: Make the guest hash table size configurable · 32fad281
      Paul Mackerras 提交于
      This adds a new ioctl to enable userspace to control the size of the guest
      hashed page table (HPT) and to clear it out when resetting the guest.
      The KVM_PPC_ALLOCATE_HTAB ioctl is a VM ioctl and takes as its parameter
      a pointer to a u32 containing the desired order of the HPT (log base 2
      of the size in bytes), which is updated on successful return to the
      actual order of the HPT which was allocated.
      
      There must be no vcpus running at the time of this ioctl.  To enforce
      this, we now keep a count of the number of vcpus running in
      kvm->arch.vcpus_running.
      
      If the ioctl is called when a HPT has already been allocated, we don't
      reallocate the HPT but just clear it out.  We first clear the
      kvm->arch.rma_setup_done flag, which has two effects: (a) since we hold
      the kvm->lock mutex, it will prevent any vcpus from starting to run until
      we're done, and (b) it means that the first vcpu to run after we're done
      will re-establish the VRMA if necessary.
      
      If userspace doesn't call this ioctl before running the first vcpu, the
      kernel will allocate a default-sized HPT at that point.  We do it then
      rather than when creating the VM, as the code did previously, so that
      userspace has a chance to do the ioctl if it wants.
      
      When allocating the HPT, we can allocate either from the kernel page
      allocator, or from the preallocated pool.  If userspace is asking for
      a different size from the preallocated HPTs, we first try to allocate
      using the kernel page allocator.  Then we try to allocate from the
      preallocated pool, and then if that fails, we try allocating decreasing
      sizes from the kernel page allocator, down to the minimum size allowed
      (256kB).  Note that the kernel page allocator limits allocations to
      1 << CONFIG_FORCE_MAX_ZONEORDER pages, which by default corresponds to
      16MB (on 64-bit powerpc, at least).
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      [agraf: fix module compilation]
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      32fad281
  10. 06 5月, 2012 1 次提交
  11. 28 4月, 2012 3 次提交
  12. 24 4月, 2012 1 次提交
  13. 08 4月, 2012 1 次提交
  14. 08 3月, 2012 1 次提交
  15. 05 3月, 2012 9 次提交
  16. 27 12月, 2011 1 次提交
  17. 26 12月, 2011 2 次提交
    • J
      KVM: Don't automatically expose the TSC deadline timer in cpuid · 4d25a066
      Jan Kiszka 提交于
      Unlike all of the other cpuid bits, the TSC deadline timer bit is set
      unconditionally, regardless of what userspace wants.
      
      This is broken in several ways:
       - if userspace doesn't use KVM_CREATE_IRQCHIP, and doesn't emulate the TSC
         deadline timer feature, a guest that uses the feature will break
       - live migration to older host kernels that don't support the TSC deadline
         timer will cause the feature to be pulled from under the guest's feet;
         breaking it
       - guests that are broken wrt the feature will fail.
      
      Fix by not enabling the feature automatically; instead report it to userspace.
      Because the feature depends on KVM_CREATE_IRQCHIP, which we cannot guarantee
      will be called, we expose it via a KVM_CAP_TSC_DEADLINE_TIMER and not
      KVM_GET_SUPPORTED_CPUID.
      
      Fixes the Illumos guest kernel, which uses the TSC deadline timer feature.
      
      [avi: add the KVM_CAP + documentation]
      Reported-by: NAlexey Zaytsev <alexey.zaytsev@gmail.com>
      Tested-by: NAlexey Zaytsev <alexey.zaytsev@gmail.com>
      Signed-off-by: NJan Kiszka <jan.kiszka@siemens.com>
      Signed-off-by: NAvi Kivity <avi@redhat.com>
      4d25a066
    • A
      KVM: Device assignment permission checks · 3d27e23b
      Alex Williamson 提交于
      Only allow KVM device assignment to attach to devices which:
      
       - Are not bridges
       - Have BAR resources (assume others are special devices)
       - The user has permissions to use
      
      Assigning a bridge is a configuration error, it's not supported, and
      typically doesn't result in the behavior the user is expecting anyway.
      Devices without BAR resources are typically chipset components that
      also don't have host drivers.  We don't want users to hold such devices
      captive or cause system problems by fencing them off into an iommu
      domain.  We determine "permission to use" by testing whether the user
      has access to the PCI sysfs resource files.  By default a normal user
      will not have access to these files, so it provides a good indication
      that an administration agent has granted the user access to the device.
      
      [Yang Bai: add missing #include]
      [avi: fix comment style]
      Signed-off-by: NAlex Williamson <alex.williamson@redhat.com>
      Signed-off-by: NYang Bai <hamo.by@gmail.com>
      Signed-off-by: NMarcelo Tosatti <mtosatti@redhat.com>
      3d27e23b
  18. 25 12月, 2011 1 次提交
  19. 26 9月, 2011 3 次提交
  20. 12 7月, 2011 3 次提交
    • P
      KVM: PPC: Allocate RMAs (Real Mode Areas) at boot for use by guests · aa04b4cc
      Paul Mackerras 提交于
      This adds infrastructure which will be needed to allow book3s_hv KVM to
      run on older POWER processors, including PPC970, which don't support
      the Virtual Real Mode Area (VRMA) facility, but only the Real Mode
      Offset (RMO) facility.  These processors require a physically
      contiguous, aligned area of memory for each guest.  When the guest does
      an access in real mode (MMU off), the address is compared against a
      limit value, and if it is lower, the address is ORed with an offset
      value (from the Real Mode Offset Register (RMOR)) and the result becomes
      the real address for the access.  The size of the RMA has to be one of
      a set of supported values, which usually includes 64MB, 128MB, 256MB
      and some larger powers of 2.
      
      Since we are unlikely to be able to allocate 64MB or more of physically
      contiguous memory after the kernel has been running for a while, we
      allocate a pool of RMAs at boot time using the bootmem allocator.  The
      size and number of the RMAs can be set using the kvm_rma_size=xx and
      kvm_rma_count=xx kernel command line options.
      
      KVM exports a new capability, KVM_CAP_PPC_RMA, to signal the availability
      of the pool of preallocated RMAs.  The capability value is 1 if the
      processor can use an RMA but doesn't require one (because it supports
      the VRMA facility), or 2 if the processor requires an RMA for each guest.
      
      This adds a new ioctl, KVM_ALLOCATE_RMA, which allocates an RMA from the
      pool and returns a file descriptor which can be used to map the RMA.  It
      also returns the size of the RMA in the argument structure.
      
      Having an RMA means we will get multiple KMV_SET_USER_MEMORY_REGION
      ioctl calls from userspace.  To cope with this, we now preallocate the
      kvm->arch.ram_pginfo array when the VM is created with a size sufficient
      for up to 64GB of guest memory.  Subsequently we will get rid of this
      array and use memory associated with each memslot instead.
      
      This moves most of the code that translates the user addresses into
      host pfns (page frame numbers) out of kvmppc_prepare_vrma up one level
      to kvmppc_core_prepare_memory_region.  Also, instead of having to look
      up the VMA for each page in order to check the page size, we now check
      that the pages we get are compound pages of 16MB.  However, if we are
      adding memory that is mapped to an RMA, we don't bother with calling
      get_user_pages_fast and instead just offset from the base pfn for the
      RMA.
      
      Typically the RMA gets added after vcpus are created, which makes it
      inconvenient to have the LPCR (logical partition control register) value
      in the vcpu->arch struct, since the LPCR controls whether the processor
      uses RMA or VRMA for the guest.  This moves the LPCR value into the
      kvm->arch struct and arranges for the MER (mediated external request)
      bit, which is the only bit that varies between vcpus, to be set in
      assembly code when going into the guest if there is a pending external
      interrupt request.
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      aa04b4cc
    • P
      KVM: PPC: Allow book3s_hv guests to use SMT processor modes · 371fefd6
      Paul Mackerras 提交于
      This lifts the restriction that book3s_hv guests can only run one
      hardware thread per core, and allows them to use up to 4 threads
      per core on POWER7.  The host still has to run single-threaded.
      
      This capability is advertised to qemu through a new KVM_CAP_PPC_SMT
      capability.  The return value of the ioctl querying this capability
      is the number of vcpus per virtual CPU core (vcore), currently 4.
      
      To use this, the host kernel should be booted with all threads
      active, and then all the secondary threads should be offlined.
      This will put the secondary threads into nap mode.  KVM will then
      wake them from nap mode and use them for running guest code (while
      they are still offline).  To wake the secondary threads, we send
      them an IPI using a new xics_wake_cpu() function, implemented in
      arch/powerpc/sysdev/xics/icp-native.c.  In other words, at this stage
      we assume that the platform has a XICS interrupt controller and
      we are using icp-native.c to drive it.  Since the woken thread will
      need to acknowledge and clear the IPI, we also export the base
      physical address of the XICS registers using kvmppc_set_xics_phys()
      for use in the low-level KVM book3s code.
      
      When a vcpu is created, it is assigned to a virtual CPU core.
      The vcore number is obtained by dividing the vcpu number by the
      number of threads per core in the host.  This number is exported
      to userspace via the KVM_CAP_PPC_SMT capability.  If qemu wishes
      to run the guest in single-threaded mode, it should make all vcpu
      numbers be multiples of the number of threads per core.
      
      We distinguish three states of a vcpu: runnable (i.e., ready to execute
      the guest), blocked (that is, idle), and busy in host.  We currently
      implement a policy that the vcore can run only when all its threads
      are runnable or blocked.  This way, if a vcpu needs to execute elsewhere
      in the kernel or in qemu, it can do so without being starved of CPU
      by the other vcpus.
      
      When a vcore starts to run, it executes in the context of one of the
      vcpu threads.  The other vcpu threads all go to sleep and stay asleep
      until something happens requiring the vcpu thread to return to qemu,
      or to wake up to run the vcore (this can happen when another vcpu
      thread goes from busy in host state to blocked).
      
      It can happen that a vcpu goes from blocked to runnable state (e.g.
      because of an interrupt), and the vcore it belongs to is already
      running.  In that case it can start to run immediately as long as
      the none of the vcpus in the vcore have started to exit the guest.
      We send the next free thread in the vcore an IPI to get it to start
      to execute the guest.  It synchronizes with the other threads via
      the vcore->entry_exit_count field to make sure that it doesn't go
      into the guest if the other vcpus are exiting by the time that it
      is ready to actually enter the guest.
      
      Note that there is no fixed relationship between the hardware thread
      number and the vcpu number.  Hardware threads are assigned to vcpus
      as they become runnable, so we will always use the lower-numbered
      hardware threads in preference to higher-numbered threads if not all
      the vcpus in the vcore are runnable, regardless of which vcpus are
      runnable.
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      371fefd6
    • D
      KVM: PPC: Accelerate H_PUT_TCE by implementing it in real mode · 54738c09
      David Gibson 提交于
      This improves I/O performance for guests using the PAPR
      paravirtualization interface by making the H_PUT_TCE hcall faster, by
      implementing it in real mode.  H_PUT_TCE is used for updating virtual
      IOMMU tables, and is used both for virtual I/O and for real I/O in the
      PAPR interface.
      
      Since this moves the IOMMU tables into the kernel, we define a new
      KVM_CREATE_SPAPR_TCE ioctl to allow qemu to create the tables.  The
      ioctl returns a file descriptor which can be used to mmap the newly
      created table.  The qemu driver models use them in the same way as
      userspace managed tables, but they can be updated directly by the
      guest with a real-mode H_PUT_TCE implementation, reducing the number
      of host/guest context switches during guest IO.
      
      There are certain circumstances where it is useful for userland qemu
      to write to the TCE table even if the kernel H_PUT_TCE path is used
      most of the time.  Specifically, allowing this will avoid awkwardness
      when we need to reset the table.  More importantly, we will in the
      future need to write the table in order to restore its state after a
      checkpoint resume or migration.
      Signed-off-by: NDavid Gibson <david@gibson.dropbear.id.au>
      Signed-off-by: NPaul Mackerras <paulus@samba.org>
      Signed-off-by: NAlexander Graf <agraf@suse.de>
      54738c09