- 16 11月, 2014 4 次提交
-
-
由 Wanpeng Li 提交于
Introduce start_hrtick_dl for !CONFIG_SCHED_HRTICK to align with the fair class. Signed-off-by: NWanpeng Li <wanpeng.li@linux.intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Juri Lelli <juri.lelli@arm.com> Cc: Kirill Tkhai <ktkhai@parallels.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/1415670747-58726-1-git-send-email-wanpeng.li@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Wanpeng Li 提交于
Do not call dequeue_pushable_dl_task() when failing to push an eligible task, as it remains pushable, merely not at this particular moment. Actually the patch is the same behavior as commit 311e800e ("sched, rt: Fix rq->rt.pushable_tasks bug in push_rt_task()" in -rt side. Signed-off-by: NWanpeng Li <wanpeng.li@linux.intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Juri Lelli <juri.lelli@arm.com> Cc: Kirill Tkhai <ktkhai@parallels.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/1415258564-8573-1-git-send-email-wanpeng.li@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Wanpeng Li 提交于
Move the p->nr_cpus_allowed check into kernel/sched/core.c: select_task_rq(). This change will make fair.c, rt.c, and deadline.c all start with the same logic. Suggested-and-Acked-by: NSteven Rostedt <rostedt@goodmis.org> Signed-off-by: NWanpeng Li <wanpeng.li@linux.intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: "pang.xunlei" <pang.xunlei@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/1415150077-59053-1-git-send-email-wanpeng.li@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Stanislaw Gruszka 提交于
Commit d670ec13 "posix-cpu-timers: Cure SMP wobbles" fixes one glibc test case in cost of breaking another one. After that commit, calling clock_nanosleep(TIMER_ABSTIME, X) and then clock_gettime(&Y) can result of Y time being smaller than X time. Reproducer/tester can be found further below, it can be compiled and ran by: gcc -o tst-cpuclock2 tst-cpuclock2.c -pthread while ./tst-cpuclock2 ; do : ; done This reproducer, when running on a buggy kernel, will complain about "clock_gettime difference too small". Issue happens because on start in thread_group_cputimer() we initialize sum_exec_runtime of cputimer with threads runtime not yet accounted and then add the threads runtime to running cputimer again on scheduler tick, making it's sum_exec_runtime bigger than actual threads runtime. KOSAKI Motohiro posted a fix for this problem, but that patch was never applied: https://lkml.org/lkml/2013/5/26/191 . This patch takes different approach to cure the problem. It calls update_curr() when cputimer starts, that assure we will have updated stats of running threads and on the next schedule tick we will account only the runtime that elapsed from cputimer start. That also assure we have consistent state between cpu times of individual threads and cpu time of the process consisted by those threads. Full reproducer (tst-cpuclock2.c): #define _GNU_SOURCE #include <unistd.h> #include <sys/syscall.h> #include <stdio.h> #include <time.h> #include <pthread.h> #include <stdint.h> #include <inttypes.h> /* Parameters for the Linux kernel ABI for CPU clocks. */ #define CPUCLOCK_SCHED 2 #define MAKE_PROCESS_CPUCLOCK(pid, clock) \ ((~(clockid_t) (pid) << 3) | (clockid_t) (clock)) static pthread_barrier_t barrier; /* Help advance the clock. */ static void *chew_cpu(void *arg) { pthread_barrier_wait(&barrier); while (1) ; return NULL; } /* Don't use the glibc wrapper. */ static int do_nanosleep(int flags, const struct timespec *req) { clockid_t clock_id = MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED); return syscall(SYS_clock_nanosleep, clock_id, flags, req, NULL); } static int64_t tsdiff(const struct timespec *before, const struct timespec *after) { int64_t before_i = before->tv_sec * 1000000000ULL + before->tv_nsec; int64_t after_i = after->tv_sec * 1000000000ULL + after->tv_nsec; return after_i - before_i; } int main(void) { int result = 0; pthread_t th; pthread_barrier_init(&barrier, NULL, 2); if (pthread_create(&th, NULL, chew_cpu, NULL) != 0) { perror("pthread_create"); return 1; } pthread_barrier_wait(&barrier); /* The test. */ struct timespec before, after, sleeptimeabs; int64_t sleepdiff, diffabs; const struct timespec sleeptime = {.tv_sec = 0,.tv_nsec = 100000000 }; /* The relative nanosleep. Not sure why this is needed, but its presence seems to make it easier to reproduce the problem. */ if (do_nanosleep(0, &sleeptime) != 0) { perror("clock_nanosleep"); return 1; } /* Get the current time. */ if (clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &before) < 0) { perror("clock_gettime[2]"); return 1; } /* Compute the absolute sleep time based on the current time. */ uint64_t nsec = before.tv_nsec + sleeptime.tv_nsec; sleeptimeabs.tv_sec = before.tv_sec + nsec / 1000000000; sleeptimeabs.tv_nsec = nsec % 1000000000; /* Sleep for the computed time. */ if (do_nanosleep(TIMER_ABSTIME, &sleeptimeabs) != 0) { perror("absolute clock_nanosleep"); return 1; } /* Get the time after the sleep. */ if (clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &after) < 0) { perror("clock_gettime[3]"); return 1; } /* The time after sleep should always be equal to or after the absolute sleep time passed to clock_nanosleep. */ sleepdiff = tsdiff(&sleeptimeabs, &after); if (sleepdiff < 0) { printf("absolute clock_nanosleep woke too early: %" PRId64 "\n", sleepdiff); result = 1; printf("Before %llu.%09llu\n", before.tv_sec, before.tv_nsec); printf("After %llu.%09llu\n", after.tv_sec, after.tv_nsec); printf("Sleep %llu.%09llu\n", sleeptimeabs.tv_sec, sleeptimeabs.tv_nsec); } /* The difference between the timestamps taken before and after the clock_nanosleep call should be equal to or more than the duration of the sleep. */ diffabs = tsdiff(&before, &after); if (diffabs < sleeptime.tv_nsec) { printf("clock_gettime difference too small: %" PRId64 "\n", diffabs); result = 1; } pthread_cancel(th); return result; } Signed-off-by: NStanislaw Gruszka <sgruszka@redhat.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/20141112155843.GA24803@redhat.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 04 11月, 2014 6 次提交
-
-
由 Wanpeng Li 提交于
There are both UP and SMP version of pull_dl_task(), so don't need to check CONFIG_SMP in switched_from_dl(); Signed-off-by: NWanpeng Li <wanpeng.li@linux.intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Juri Lelli <juri.lelli@arm.com> Cc: Kirill Tkhai <ktkhai@parallels.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/1414708776-124078-6-git-send-email-wanpeng.li@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Wanpeng Li 提交于
In switched_from_dl() we have to issue a resched if we successfully pulled some task from other cpus. This patch also aligns the behavior with -rt. Suggested-by: NJuri Lelli <juri.lelli@arm.com> Signed-off-by: NWanpeng Li <wanpeng.li@linux.intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Kirill Tkhai <ktkhai@parallels.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/1414708776-124078-5-git-send-email-wanpeng.li@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Wanpeng Li 提交于
This patch pushes task away if the dealine of the task is equal to current during wake up. The same behavior as rt class. Signed-off-by: NWanpeng Li <wanpeng.li@linux.intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Juri Lelli <juri.lelli@arm.com> Cc: Kirill Tkhai <ktkhai@parallels.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/1414708776-124078-4-git-send-email-wanpeng.li@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Wanpeng Li 提交于
This patch add deadline rq status print. Signed-off-by: NWanpeng Li <wanpeng.li@linux.intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Juri Lelli <juri.lelli@arm.com> Cc: Kirill Tkhai <ktkhai@parallels.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/1414708776-124078-3-git-send-email-wanpeng.li@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Wanpeng Li 提交于
The yield semantic of deadline class is to reduce remaining runtime to zero, and then update_curr_dl() will stop it. However, comsumed bandwidth is reduced from the budget of yield task again even if it has already been set to zero which leads to artificial overrun. This patch fix it by make sure we don't steal some more time from the task that yielded in update_curr_dl(). Suggested-by: NJuri Lelli <juri.lelli@arm.com> Signed-off-by: NWanpeng Li <wanpeng.li@linux.intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Kirill Tkhai <ktkhai@parallels.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/1414708776-124078-2-git-send-email-wanpeng.li@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Kirill Tkhai 提交于
Currently used hrtimer_try_to_cancel() is racy: raw_spin_lock(&rq->lock) ... dl_task_timer raw_spin_lock(&rq->lock) ... raw_spin_lock(&rq->lock) ... switched_from_dl() ... ... hrtimer_try_to_cancel() ... ... switched_to_fair() ... ... ... ... ... ... ... ... raw_spin_unlock(&rq->lock) ... (asquired) ... ... ... ... ... ... do_exit() ... ... schedule() ... ... raw_spin_lock(&rq->lock) ... raw_spin_unlock(&rq->lock) ... ... ... raw_spin_unlock(&rq->lock) ... raw_spin_lock(&rq->lock) ... ... (asquired) put_task_struct() ... ... free_task_struct() ... ... ... ... raw_spin_unlock(&rq->lock) ... (asquired) ... ... ... ... ... (use after free) ... So, let's implement 100% guaranteed way to cancel the timer and let's be sure we are safe even in very unlikely situations. rq unlocking does not limit the area of switched_from_dl() use, because this has already been possible in pull_dl_task() below. Let's consider the safety of of this unlocking. New code in the patch is working when hrtimer_try_to_cancel() fails. This means the callback is running. In this case hrtimer_cancel() is just waiting till the callback is finished. Two 1) Since we are in switched_from_dl(), new class is not dl_sched_class and new prio is not less MAX_DL_PRIO. So, the callback returns early; it's right after !dl_task() check. After that hrtimer_cancel() returns back too. The above is: raw_spin_lock(rq->lock); ... ... dl_task_timer() ... raw_spin_lock(rq->lock); switched_from_dl() ... hrtimer_try_to_cancel() ... raw_spin_unlock(rq->lock); ... hrtimer_cancel() ... ... raw_spin_unlock(rq->lock); ... return HRTIMER_NORESTART; ... ... raw_spin_lock(rq->lock); ... 2) But the below is also possible: dl_task_timer() raw_spin_lock(rq->lock); ... raw_spin_unlock(rq->lock); raw_spin_lock(rq->lock); ... switched_from_dl() ... hrtimer_try_to_cancel() ... ... return HRTIMER_NORESTART; raw_spin_unlock(rq->lock); ... hrtimer_cancel(); ... raw_spin_lock(rq->lock); ... In this case hrtimer_cancel() returns immediately. Very unlikely case, just to mention. Nobody can manipulate the task, because check_class_changed() is always called with pi_lock locked. Nobody can force the task to participate in (concurrent) priority inheritance schemes (the same reason). All concurrent task operations require pi_lock, which is held by us. No deadlocks with dl_task_timer() are possible, because it returns right after !dl_task() check (it does nothing). If we receive a new dl_task during the time of unlocked rq, we just don't have to do pull_dl_task() in switched_from_dl() further. Signed-off-by: NKirill Tkhai <ktkhai@parallels.com> [ Added comments] Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Acked-by: NJuri Lelli <juri.lelli@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/1414420852.19914.186.camel@tkhaiSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 28 10月, 2014 7 次提交
-
-
由 Wanpeng Li 提交于
Use nr_cpus_allowed to bail from select_task_rq() when only one cpu can be used, and saves some cycles for pinned tasks. Signed-off-by: NWanpeng Li <wanpeng.li@linux.intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/1413253360-5318-2-git-send-email-wanpeng.li@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Wanpeng Li 提交于
There is no need to do balance during fork since SCHED_DEADLINE tasks can't fork. This patch avoid the SD_BALANCE_FORK check. Signed-off-by: NWanpeng Li <wanpeng.li@linux.intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Link: http://lkml.kernel.org/r/1413253360-5318-1-git-send-email-wanpeng.li@linux.intel.com Cc: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Juri Lelli 提交于
Exclusive cpusets are the only way users can restrict SCHED_DEADLINE tasks affinity (performing what is commonly called clustered scheduling). Unfortunately, such thing is currently broken for two reasons: - No check is performed when the user tries to attach a task to an exlusive cpuset (recall that exclusive cpusets have an associated maximum allowed bandwidth). - Bandwidths of source and destination cpusets are not correctly updated after a task is migrated between them. This patch fixes both things at once, as they are opposite faces of the same coin. The check is performed in cpuset_can_attach(), as there aren't any points of failure after that function. The updated is split in two halves. We first reserve bandwidth in the destination cpuset, after we pass the check in cpuset_can_attach(). And we then release bandwidth from the source cpuset when the task's affinity is actually changed. Even if there can be time windows when sched_setattr() may erroneously fail in the source cpuset, we are fine with it, as we can't perfom an atomic update of both cpusets at once. Reported-by: NDaniel Wagner <daniel.wagner@bmw-carit.de> Reported-by: NVincent Legout <vincent@legout.info> Signed-off-by: NJuri Lelli <juri.lelli@arm.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Dario Faggioli <raistlin@linux.it> Cc: Michael Trimarchi <michael@amarulasolutions.com> Cc: Fabio Checconi <fchecconi@gmail.com> Cc: michael@amarulasolutions.com Cc: luca.abeni@unitn.it Cc: Li Zefan <lizefan@huawei.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: cgroups@vger.kernel.org Link: http://lkml.kernel.org/r/1411118561-26323-3-git-send-email-juri.lelli@arm.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Wanpeng Li 提交于
As Kirill mentioned (https://lkml.org/lkml/2013/1/29/118): | If rq has already had 2 or more pushable tasks and we try to add a | pinned task then call of push_rt_task will just waste a time. Just switched pinned task is not able to be pushed. If the rq has had several dl tasks before they have already been considered as candidates to be pushed (or pulled). This patch implements the same behavior as rt class which introduced by commit 10447917 ("sched/rt: Do not try to push tasks if pinned task switches to RT"). Suggested-by: NKirill V Tkhai <tkhai@yandex.ru> Acked-by: NJuri Lelli <juri.lelli@arm.com> Signed-off-by: NWanpeng Li <wanpeng.li@linux.intel.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/1413938203-224610-1-git-send-email-wanpeng.li@linux.intel.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Kirill Tkhai 提交于
1) switched_to_dl() check is wrong. We reschedule only if rq->curr is deadline task, and we do not reschedule if it's a lower priority task. But we must always preempt a task of other classes. 2) dl_task_timer(): Policy does not change in case of priority inheritance. rt_mutex_setprio() changes prio, while policy remains old. So we lose some balancing logic in dl_task_timer() and switched_to_dl() when we check policy instead of priority. Boosted task may be rq->curr. (I didn't change switched_from_dl() because no check is necessary there at all). I've looked at this place(switched_to_dl) several times and even fixed this function, but found just now... I suppose some performance tests may work better after this. Signed-off-by: NKirill Tkhai <ktkhai@parallels.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Juri Lelli <juri.lelli@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/1413909356.19914.128.camel@tkhaiSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Juri Lelli 提交于
dl_task_timer() is racy against several paths. Daniel noticed that the replenishment timer may experience a race condition against an enqueue_dl_entity() called from rt_mutex_setprio(). With his own words: rt_mutex_setprio() resets p->dl.dl_throttled. So the pattern is: start_dl_timer() throttled = 1, rt_mutex_setprio() throlled = 0, sched_switch() -> enqueue_task(), dl_task_timer-> enqueue_task() throttled is 0 => BUG_ON(on_dl_rq(dl_se)) fires as the scheduling entity is already enqueued on the -deadline runqueue. As we do for the other races, we just bail out in the replenishment timer code. Reported-by: NDaniel Wagner <daniel.wagner@bmw-carit.de> Tested-by: NDaniel Wagner <daniel.wagner@bmw-carit.de> Signed-off-by: NJuri Lelli <juri.lelli@arm.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: vincent@legout.info Cc: Dario Faggioli <raistlin@linux.it> Cc: Michael Trimarchi <michael@amarulasolutions.com> Cc: Fabio Checconi <fchecconi@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/1414142198-18552-5-git-send-email-juri.lelli@arm.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Juri Lelli 提交于
In the deboost path, right after the dl_boosted flag has been reset, we can currently end up replenishing using -deadline parameters of a !SCHED_DEADLINE entity. This of course causes a bug, as those parameters are empty. In the case depicted above it is safe to simply bail out, as the deboosted task is going to be back to its original scheduling class anyway. Reported-by: NDaniel Wagner <daniel.wagner@bmw-carit.de> Tested-by: NDaniel Wagner <daniel.wagner@bmw-carit.de> Signed-off-by: NJuri Lelli <juri.lelli@arm.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: vincent@legout.info Cc: Dario Faggioli <raistlin@linux.it> Cc: Michael Trimarchi <michael@amarulasolutions.com> Cc: Fabio Checconi <fchecconi@gmail.com> Link: http://lkml.kernel.org/r/1414142198-18552-4-git-send-email-juri.lelli@arm.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 24 9月, 2014 2 次提交
-
-
由 Juri Lelli 提交于
Users can perform clustered scheduling using the cpuset facility. After an exclusive cpuset is created, task migrations happen only between CPUs belonging to the same cpuset. Inter- cpuset migrations can only happen when the user requires so, moving a task between different cpusets. This behaviour is broken in SCHED_DEADLINE, as currently spurious inter- cpuset migration may happen without user intervention. This patch fix the problem (and shuffles the code a bit to improve clarity). Signed-off-by: NJuri Lelli <juri.lelli@arm.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: raistlin@linux.it Cc: michael@amarulasolutions.com Cc: fchecconi@gmail.com Cc: daniel.wagner@bmw-carit.de Cc: vincent@legout.info Cc: luca.abeni@unitn.it Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/1411118561-26323-4-git-send-email-juri.lelli@arm.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Juri Lelli 提交于
When a task is using SCHED_DEADLINE and the user setschedules it to a different class its sched_dl_entity static parameters are not cleaned up. This causes a bug if the user sets it back to SCHED_DEADLINE with the same parameters again. The problem resides in the check we perform at the very beginning of dl_overflow(): if (new_bw == p->dl.dl_bw) return 0; This condition is met in the case depicted above, so the function returns and dl_b->total_bw is not updated (the p->dl.dl_bw is not added to it). After this, admission control is broken. This patch fixes the thing, properly clearing static parameters for a task that ceases to use SCHED_DEADLINE. Reported-by: NDaniele Alessandrelli <daniele.alessandrelli@gmail.com> Reported-by: NDaniel Wagner <daniel.wagner@bmw-carit.de> Reported-by: NVincent Legout <vincent@legout.info> Tested-by: NLuca Abeni <luca.abeni@unitn.it> Tested-by: NDaniel Wagner <daniel.wagner@bmw-carit.de> Tested-by: NVincent Legout <vincent@legout.info> Signed-off-by: NJuri Lelli <juri.lelli@arm.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Fabio Checconi <fchecconi@gmail.com> Cc: Dario Faggioli <raistlin@linux.it> Cc: Michael Trimarchi <michael@amarulasolutions.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/1411118561-26323-2-git-send-email-juri.lelli@arm.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 19 9月, 2014 1 次提交
-
-
由 Kirill Tkhai 提交于
1) Nobody calls pick_dl_task() with negative cpu, it's old RT leftover. 2) If p->nr_cpus_allowed is 1, than the affinity has just been changed in set_cpus_allowed_ptr(); we'll pick it just earlier than migration thread. Signed-off-by: NKirill Tkhai <ktkhai@parallels.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Link: http://lkml.kernel.org/r/1410529340.3569.27.camel@tkhaiSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 07 9月, 2014 1 次提交
-
-
由 xiaofeng.yan 提交于
An overrun could happen in function start_hrtick_dl() when a task with SCHED_DEADLINE runs in the microseconds range. For example, if a task with SCHED_DEADLINE has the following parameters: Task runtime deadline period P1 200us 500us 500us The deadline and period from task P1 are less than 1ms. In order to achieve microsecond precision, we need to enable HRTICK feature by the next command: PC#echo "HRTICK" > /sys/kernel/debug/sched_features PC#trace-cmd record -e sched_switch & PC#./schedtool -E -t 200000:500000:500000 -e ./test The binary test is in an endless while(1) loop here. Some pieces of trace.dat are as follows: <idle>-0 157.603157: sched_switch: :R ==> 2481:4294967295: test test-2481 157.603203: sched_switch: 2481:R ==> 0:120: swapper/2 <idle>-0 157.605657: sched_switch: :R ==> 2481:4294967295: test test-2481 157.608183: sched_switch: 2481:R ==> 2483:120: trace-cmd trace-cmd-2483 157.609656: sched_switch:2483:R==>2481:4294967295: test We can get the runtime of P1 from the information above: runtime = 157.608183 - 157.605657 runtime = 0.002526(2.526ms) The correct runtime should be less than or equal to 200us at some point. The problem is caused by a conditional judgment "delta > 10000" in function start_hrtick_dl(). Because no hrtimer start up to control the rest of runtime when the reset of runtime is less than 10us. So the process will continue to run until tick-period is coming. Move the code with the limit of the least time slice from hrtick_start_fair() to hrtick_start() because the EDF schedule class also needs this function in start_hrtick_dl(). To fix this problem, we call hrtimer_start() unconditionally in start_hrtick_dl(), and make sure the scheduling slice won't be smaller than 10us in hrtimer_start(). Signed-off-by: NXiaofeng Yan <xiaofeng.yan@huawei.com> Reviewed-by: NLi Zefan <lizefan@huawei.com> Acked-by: NJuri Lelli <juri.lelli@arm.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/1409022941-5880-1-git-send-email-xiaofeng.yan@huawei.com [ Massaged the changelog and the code. ] Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 28 8月, 2014 1 次提交
-
-
由 Christoph Lameter 提交于
__get_cpu_var can paper over differences in the definitions of cpumask_var_t and either use the address of the cpumask variable directly or perform a fetch of the address of the struct cpumask allocated elsewhere. This is important particularly when using per cpu cpumask_var_t declarations because in one case we have an offset into a per cpu area to handle and in the other case we need to fetch a pointer from the offset. This patch introduces a new macro this_cpu_cpumask_var_ptr() that is defined where cpumask_var_t is defined and performs the proper actions. All use cases where __get_cpu_var is used with cpumask_var_t are converted to the use of this_cpu_cpumask_var_ptr(). Signed-off-by: NChristoph Lameter <cl@linux.com> Signed-off-by: NTejun Heo <tj@kernel.org>
-
- 20 8月, 2014 1 次提交
-
-
由 Kirill Tkhai 提交于
Implement task_on_rq_queued() and use it everywhere instead of on_rq check. No functional changes. The only exception is we do not use the wrapper in check_for_tasks(), because it requires to export task_on_rq_queued() in global header files. Next patch in series would return it back, so we do not twist it from here to there. Signed-off-by: NKirill Tkhai <ktkhai@parallels.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Paul Turner <pjt@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Mike Galbraith <umgwanakikbuti@gmail.com> Cc: Kirill Tkhai <tkhai@yandex.ru> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Nicolas Pitre <nicolas.pitre@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/1408528052.23412.87.camel@tkhaiSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 16 7月, 2014 2 次提交
-
-
由 xiaofeng.yan 提交于
Signed-off-by: Nxiaofeng.yan <xiaofeng.yan@huawei.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1404712744-16986-1-git-send-email-xiaofeng.yan@huawei.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Kirill Tkhai 提交于
We always use resched_task() with rq->curr argument. It's not possible to reschedule any task but rq's current. The patch introduces resched_curr(struct rq *) to replace all of the repeating patterns. The main aim is cleanup, but there is a little size profit too: (before) $ size kernel/sched/built-in.o text data bss dec hex filename 155274 16445 7042 178761 2ba49 kernel/sched/built-in.o $ size vmlinux text data bss dec hex filename 7411490 1178376 991232 9581098 92322a vmlinux (after) $ size kernel/sched/built-in.o text data bss dec hex filename 155130 16445 7042 178617 2b9b9 kernel/sched/built-in.o $ size vmlinux text data bss dec hex filename 7411362 1178376 991232 9580970 9231aa vmlinux I was choosing between resched_curr() and resched_rq(), and the first name looks better for me. A little lie in Documentation/trace/ftrace.txt. I have not actually collected the tracing again. With a hope the patch won't make execution times much worse :) Signed-off-by: NKirill Tkhai <tkhai@yandex.ru> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Link: http://lkml.kernel.org/r/20140628200219.1778.18735.stgit@localhostSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 05 6月, 2014 4 次提交
-
-
由 Paul Gortmaker 提交于
There was a prototype for it added to kernel/sched/sched.h at the same time the extern was added, so the extern in the C file was never really ever needed. See commit 332ac17e ("sched/deadline: Add bandwidth management for SCHED_DEADLINE tasks") for details. Signed-off-by: NPaul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Dario Faggioli <raistlin@linux.it> Link: http://lkml.kernel.org/r/1400013605-18717-1-git-send-email-paul.gortmaker@windriver.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Kirill Tkhai 提交于
Throttled task is still on rq, and it may be moved to other cpu if user is playing with sched_setaffinity(). Therefore, unlocked task_rq() access makes the race. Juri Lelli reports he got this race when dl_bandwidth_enabled() was not set. Other thing, pointed by Peter Zijlstra: "Now I suppose the problem can still actually happen when you change the root domain and trigger a effective affinity change that way". To fix that we do the same as made in __task_rq_lock(). We do not use __task_rq_lock() itself, because it has a useful lockdep check, which is not correct in case of dl_task_timer(). We do not need pi_lock locked here. This case is an exception (PeterZ): "The only reason we don't strictly need ->pi_lock now is because we're guaranteed to have p->state == TASK_RUNNING here and are thus free of ttwu races". Signed-off-by: NKirill Tkhai <tkhai@yandex.ru> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Cc: <stable@vger.kernel.org> # v3.14+ Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/3056991400578422@web14g.yandex.ruSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 John Stultz 提交于
Two of the three prink_deferred uses are really printk_once style uses, so add a printk_deferred_once macro to simplify those call sites. Signed-off-by: NJohn Stultz <john.stultz@linaro.org> Reviewed-by: NSteven Rostedt <rostedt@goodmis.org> Reviewed-by: NJan Kara <jack@suse.cz> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Jiri Bohac <jbohac@suse.cz> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 John Stultz 提交于
After learning we'll need some sort of deferred printk functionality in the timekeeping core, Peter suggested we rename the printk_sched function so it can be reused by needed subsystems. This only changes the function name. No logic changes. Signed-off-by: NJohn Stultz <john.stultz@linaro.org> Reviewed-by: NSteven Rostedt <rostedt@goodmis.org> Cc: Jan Kara <jack@suse.cz> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Jiri Bohac <jbohac@suse.cz> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 22 5月, 2014 2 次提交
-
-
由 xiaofeng.yan 提交于
sched/rt: Fix 'struct sched_dl_entity' and dl_task_time() comments, to match the current upstream code Signed-off-by: Nxiaofeng.yan <xiaofeng.yan@huawei.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1399605687-18094-1-git-send-email-xiaofeng.yan@huawei.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Kirill Tkhai 提交于
Sometimes ->nr_running may cross 2 but interrupt is not being sent to rq's cpu. In this case we don't reenable the timer. Looks like this may be the reason for rare unexpected effects, if nohz is enabled. Patch replaces all places of direct changing of nr_running and makes add_nr_running() caring about crossing border. Signed-off-by: NKirill Tkhai <tkhai@yandex.ru> Acked-by: NFrederic Weisbecker <fweisbec@gmail.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20140508225830.2469.97461.stgit@localhostSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 07 5月, 2014 1 次提交
-
-
由 Juri Lelli 提交于
yield_task_dl() is broken: o it forces current to be throttled setting its runtime to zero; o it sets current's dl_se->dl_new to one, expecting that dl_task_timer() will queue it back with proper parameters at replenish time. Unfortunately, dl_task_timer() has this check at the very beginning: if (!dl_task(p) || dl_se->dl_new) goto unlock; So, it just bails out and the task is never replenished. It actually yielded forever. To fix this, introduce a new flag indicating that the task properly yielded the CPU before its current runtime expired. While this is a little overdoing at the moment, the flag would be useful in the future to discriminate between "good" jobs (of which remaining runtime could be reclaimed, i.e. recycled) and "bad" jobs (for which dl_throttled task has been set) that needed to be stopped. Reported-by: Nyjay.kim <yjay.kim@lge.com> Signed-off-by: NJuri Lelli <juri.lelli@gmail.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20140429103953.e68eba1b2ac3309214e3dc5a@gmail.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 17 4月, 2014 1 次提交
-
-
由 Kirill Tkhai 提交于
We need to do it like we do for the other higher priority classes.. Signed-off-by: NKirill Tkhai <tkhai@yandex.ru> Cc: Michael wang <wangyun@linux.vnet.ibm.com> Cc: Sasha Levin <sasha.levin@oracle.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/336561397137116@web27h.yandex.ruSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 11 3月, 2014 1 次提交
-
-
由 Kirill Tkhai 提交于
The problems: 1) We check for rt_nr_running before call of put_prev_task(). If previous task is RT, its rt_rq may become throttled and dequeued after this call. In case of p is from rt->rq this just causes picking a task from throttled queue, but in case of its rt_rq is child we are guaranteed catch BUG_ON. 2) The same with deadline class. The only difference we operate on only dl_rq. This patch fixes all the above problems and it adds a small skip in the DL update like we've already done for RT class: if (unlikely((s64)delta_exec <= 0)) return; This will optimize sequential update_curr_dl() calls a little. Signed-off-by: NKirill Tkhai <ktkhai@parallels.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Cc: Juri Lelli <juri.lelli@gmail.com> Link: http://lkml.kernel.org/r/1393946746.3643.3.camel@tkhaiSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 27 2月, 2014 2 次提交
-
-
由 Juri Lelli 提交于
Kirill Tkhai noted: Since deadline tasks share rt bandwidth, we must care about bandwidth timer set. Otherwise rt_time may grow up to infinity in update_curr_dl(), if there are no other available RT tasks on top level bandwidth. RT task were in fact throttled right after they got enqueued, and never executed again (rt_time never again went below rt_runtime). Peter then proposed to accrue DL execution on rt_time only when rt timer is active, and proposed a patch (this patch is a slight modification of that) to implement that behavior. While this solves Kirill problem, it has a drawback. Indeed, Kirill noted again: It looks we may get into a situation, when all CPU time is shared between RT and DL tasks: rt_runtime = n rt_period = 2n | RT working, DL sleeping | DL working, RT sleeping | ----------------------------------------------------------- | (1) duration = n | (2) duration = n | (repeat) |--------------------------|------------------------------| | (rt_bw timer is running) | (rt_bw timer is not running) | No time for fair tasks at all. While this can happen during the first period, if rq is always backlogged, RT tasks won't have the opportunity to execute anymore: rt_time reached rt_runtime during (1), suppose after (2) RT is enqueued back, it gets throttled since rt timer didn't fire, replenishment is from now on eaten up by DL tasks that accrue their execution on rt_time (while rt timer is active - we have an RT task waiting for replenishment). FAIR tasks are not touched after this first period. Ok, this is not ideal, and the situation is even worse! What above (the nice case), practically never happens in reality, where your rt timer is not aligned to tasks periods, tasks are in general not periodic, etc.. Long story short, you always risk to overload your system. This patch is based on Peter's idea, but exploits an additional fact: if you don't have RT tasks enqueued, it makes little sense to continue incrementing rt_time once you reached the upper limit (DL tasks have their own mechanism for throttling). This cures both problems: - no matter how many DL instances in the past, you'll have an rt_time slightly above rt_runtime when an RT task is enqueued, and from that point on (after the first replenishment), the task will normally execute; - you can still eat up all bandwidth during the first period, but not anymore after that, remember that DL execution will increment rt_time till the upper limit is reached. The situation is still not perfect! But, we have a simple solution for now, that limits how much you can jeopardize your system, as we keep working towards the right answer: RT groups scheduled using deadline servers. Reported-by: NKirill Tkhai <tkhai@yandex.ru> Signed-off-by: NJuri Lelli <juri.lelli@gmail.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Link: http://lkml.kernel.org/r/20140225151515.617714e2f2cd6c558531ba61@gmail.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Kirill Tkhai 提交于
In deadline class we do not have group scheduling. So, let's remove unnecessary X = X; equations. Signed-off-by: NKirill Tkhai <ktkhai@parallels.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Cc: Juri Lelli <juri.lelli@gmail.com> Link: http://lkml.kernel.org/r/1393343543.4089.5.camel@tkhaiSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 22 2月, 2014 4 次提交
-
-
由 Peter Zijlstra 提交于
Remove a few gratuitous #ifdefs in pick_next_task*(). Cc: Ingo Molnar <mingo@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Juri Lelli <juri.lelli@gmail.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/n/tip-nnzddp5c4fijyzzxxrwlxghf@git.kernel.orgSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
由 Peter Zijlstra 提交于
Dan Carpenter reported: > kernel/sched/rt.c:1347 pick_next_task_rt() warn: variable dereferenced before check 'prev' (see line 1338) > kernel/sched/deadline.c:1011 pick_next_task_dl() warn: variable dereferenced before check 'prev' (see line 1005) Kirill also spotted that migrate_tasks() will have an instant NULL deref because pick_next_task() will immediately deref prev. Instead of fixing all the corner cases because migrate_tasks() can pass in a NULL prev task in the unlikely case of hot-un-plug, provide a fake task such that we can remove all the NULL checks from the far more common paths. A further problem; not previously spotted; is that because we pushed pre_schedule() and idle_balance() into pick_next_task() we now need to avoid those getting called and pulling more tasks on our dying CPU. We avoid pull_{dl,rt}_task() by setting fake_task.prio to MAX_PRIO+1. We also note that since we call pick_next_task() exactly the amount of times we have runnable tasks present, we should never land in idle_balance(). Fixes: 38033c37 ("sched: Push down pre_schedule() and idle_balance()") Cc: Juri Lelli <juri.lelli@gmail.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Reported-by: NKirill Tkhai <tkhai@yandex.ru> Reported-by: NDan Carpenter <dan.carpenter@oracle.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20140212094930.GB3545@laptop.programming.kicks-ass.netSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
由 Kirill Tkhai 提交于
In deadline class we do not have group scheduling like in RT. dl_nr_total is the same as dl_nr_running. So, one of them should be removed. Cc: Ingo Molnar <mingo@redhat.com> Cc: Juri Lelli <juri.lelli@gmail.com> Signed-off-by: NKirill Tkhai <tkhai@yandex.ru> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/368631392675853@web20h.yandex.ruSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
由 Juri Lelli 提交于
Rostedt writes: My test suite was locking up hard when enabling mmiotracer. This was due to the mmiotracer placing all but one CPU offline. I found this out when I was able to reproduce the bug with just my stress-cpu-hotplug test. This bug baffled me because it would not always trigger, and would only trigger on the first run after boot up. The stress-cpu-hotplug test would crash hard the first run, or never crash at all. But a new reboot may cause it to crash on the first run again. I spent all week bisecting this, as I couldn't find a consistent reproducer. I finally narrowed it down to the sched deadline patches, and even more peculiar, to the commit that added the sched deadline boot up self test to the latency tracer. Then it dawned on me to what the bug was. All it took was to run a task under sched deadline to screw up the CPU hot plugging. This explained why it would lock up only on the first run of the stress-cpu-hotplug test. The bug happened when the boot up self test of the schedule latency tracer would test a deadline task. The deadline task would corrupt something that would cause CPU hotplug to fail. If it didn't corrupt it, the stress test would always work (there's no other sched deadline tasks that would run to cause problems). If it did corrupt on boot up, the first test would lockup hard. I proved this theory by running my deadline test program on another box, and then run the stress-cpu-hotplug test, and it would now consistently lock up. I could run stress-cpu-hotplug over and over with no problem, but once I ran the deadline test, the next run of the stress-cpu-hotplug would lock hard. After adding lots of tracing to the code, I found the cause. The function tracer showed that migrate_tasks() was stuck in an infinite loop, where rq->nr_running never equaled 1 to break out of it. When I added a trace_printk() to see what that number was, it was 335 and never decrementing! Looking at the deadline code I found: static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) { dequeue_dl_entity(&p->dl); dequeue_pushable_dl_task(rq, p); } static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) { update_curr_dl(rq); __dequeue_task_dl(rq, p, flags); dec_nr_running(rq); } And this: if (dl_runtime_exceeded(rq, dl_se)) { __dequeue_task_dl(rq, curr, 0); if (likely(start_dl_timer(dl_se, curr->dl.dl_boosted))) dl_se->dl_throttled = 1; else enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH); if (!is_leftmost(curr, &rq->dl)) resched_task(curr); } Notice how we call __dequeue_task_dl() and in the else case we call enqueue_task_dl()? Also notice that dequeue_task_dl() has underscores where enqueue_task_dl() does not. The enqueue_task_dl() calls inc_nr_running(rq), but __dequeue_task_dl() does not. This is where we get nr_running out of sync. [snip] Another point where nr_running can get out of sync is when the dl_timer fires: dl_se->dl_throttled = 0; if (p->on_rq) { enqueue_task_dl(rq, p, ENQUEUE_REPLENISH); if (task_has_dl_policy(rq->curr)) check_preempt_curr_dl(rq, p, 0); else resched_task(rq->curr); This patch does two things: - correctly accounts for throttled tasks (that are now considered !running); - fixes the bug, updating nr_running from {inc,dec}_dl_tasks(), since we risk to update it twice in some situations (e.g., a task is dequeued while it has exceeded its budget). Cc: mingo@redhat.com Cc: torvalds@linux-foundation.org Cc: akpm@linux-foundation.org Reported-by: NSteven Rostedt <rostedt@goodmis.org> Reviewed-by: NSteven Rostedt <rostedt@goodmis.org> Tested-by: NSteven Rostedt <rostedt@goodmis.org> Signed-off-by: NJuri Lelli <juri.lelli@gmail.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1392884379-13744-1-git-send-email-juri.lelli@gmail.comSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-