- 19 10月, 2010 7 次提交
-
-
由 Venkatesh Pallipadi 提交于
Scheduler accounts both softirq and interrupt processing times to the currently running task. This means, if the interrupt processing was for some other task in the system, then the current task ends up being penalized as it gets shorter runtime than otherwise. Change sched task accounting to acoount only actual task time from currently running task. Now update_curr(), modifies the delta_exec to depend on rq->clock_task. Note that this change only handles CONFIG_IRQ_TIME_ACCOUNTING case. We can extend this to CONFIG_VIRT_CPU_ACCOUNTING with minimal effort. But, thats for later. This change will impact scheduling behavior in interrupt heavy conditions. Tested on a 4-way system with eth0 handled by CPU 2 and a network heavy task (nc) running on CPU 3 (and no RSS/RFS). With that I have CPU 2 spending 75%+ of its time in irq processing. CPU 3 spending around 35% time running nc task. Now, if I run another CPU intensive task on CPU 2, without this change /proc/<pid>/schedstat shows 100% of time accounted to this task. With this change, it rightly shows less than 25% accounted to this task as remaining time is actually spent on irq processing. Signed-off-by: NVenkatesh Pallipadi <venki@google.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1286237003-12406-7-git-send-email-venki@google.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Venkatesh Pallipadi 提交于
s390/powerpc/ia64 have support for CONFIG_VIRT_CPU_ACCOUNTING which does the fine granularity accounting of user, system, hardirq, softirq times. Adding that option on archs like x86 will be challenging however, given the state of TSC reliability on various platforms and also the overhead it will add in syscall entry exit. Instead, add a lighter variant that only does finer accounting of hardirq and softirq times, providing precise irq times (instead of timer tick based samples). This accounting is added with a new config option CONFIG_IRQ_TIME_ACCOUNTING so that there won't be any overhead for users not interested in paying the perf penalty. This accounting is based on sched_clock, with the code being generic. So, other archs may find it useful as well. This patch just adds the core logic and does not enable this logic yet. Signed-off-by: NVenkatesh Pallipadi <venki@google.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1286237003-12406-5-git-send-email-venki@google.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Venkatesh Pallipadi 提交于
Peter Zijlstra found a bug in the way softirq time is accounted in VIRT_CPU_ACCOUNTING on this thread: http://lkml.indiana.edu/hypermail//linux/kernel/1009.2/01366.html The problem is, softirq processing uses local_bh_disable internally. There is no way, later in the flow, to differentiate between whether softirq is being processed or is it just that bh has been disabled. So, a hardirq when bh is disabled results in time being wrongly accounted as softirq. Looking at the code a bit more, the problem exists in !VIRT_CPU_ACCOUNTING as well. As account_system_time() in normal tick based accouting also uses softirq_count, which will be set even when not in softirq with bh disabled. Peter also suggested solution of using 2*SOFTIRQ_OFFSET as irq count for local_bh_{disable,enable} and using just SOFTIRQ_OFFSET while softirq processing. The patch below does that and adds API in_serving_softirq() which returns whether we are currently processing softirq or not. Also changes one of the usages of softirq_count in net/sched/cls_cgroup.c to in_serving_softirq. Looks like many usages of in_softirq really want in_serving_softirq. Those changes can be made individually on a case by case basis. Signed-off-by: NVenkatesh Pallipadi <venki@google.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1286237003-12406-2-git-send-email-venki@google.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Nikhil Rao 提交于
This patch adds a check in task_hot to return if the task has SCHED_IDLE policy. SCHED_IDLE tasks have very low weight, and when run with regular workloads, are typically scheduled many milliseconds apart. There is no need to consider these tasks hot for load balancing. Signed-off-by: NNikhil Rao <ncrao@google.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1287173550-30365-2-git-send-email-ncrao@google.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Linus Walleij 提交于
Load weights are for the CFS, they do not belong in the RT task. This makes all RT scheduling classes leave the CFS weights alone. This fixes a real bug as well: I noticed the following phonomena: a process elevated to SCHED_RR forks with SCHED_RESET_ON_FORK set, and the child is indeed SCHED_OTHER, and the niceval is indeed reset to 0. However the weight inserted by set_load_weight() remains at 0, giving the task insignificat priority. With this fix, the weight is reset to what the task had before being elevated to SCHED_RR/SCHED_FIFO. Cc: Lennart Poettering <lennart@poettering.net> Cc: stable@kernel.org Signed-off-by: NLinus Walleij <linus.walleij@stericsson.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1286807811-10568-1-git-send-email-linus.walleij@stericsson.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
In order to separate the stop/migrate work thread from the SCHED_FIFO implementation, create a special class for it that is of higher priority than SCHED_FIFO itself. This currently solves a problem where cpu-hotplug consumes so much cpu-time that the SCHED_FIFO class gets throttled, but has the bandwidth replenishment timer pending on the now dead cpu. It is also required for when we add the planned deadline scheduling class above SCHED_FIFO, as the stop/migrate thread still needs to transcent those tasks. Tested-by: NHeiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1285165776.2275.1022.camel@laptop> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
Labels should be on column 0. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <new-submission> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 21 9月, 2010 1 次提交
-
-
由 Steven Rostedt 提交于
Add a tracepoint that shows the priority of a task being boosted via priority inheritance. Cc: Gregory Haskins <ghaskins@novell.com> Acked-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
- 16 9月, 2010 1 次提交
-
-
由 Heiko Carstens 提交于
With 710390d9 "sched: Optimize branch hint in context_switch()" the branch hint logic within context_switch() got inversed. In fact the hints "if (likely(!mm))" and "if (likely(!prev->mm))" mean that it is likely that the previous and next task are kernel threads. That assumption is certainly counter intuitive, but Tim has shown that at least with his workload this is true. Nevertheless the truth is: it depends on the current workload. So just remove the annotations which also improves readability. Reported-by: NTim Blechmann <tim@klingt.org> Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Mike Galbraith <efault@gmx.de> LKML-Reference: <20100916124225.GA2209@osiris.boeblingen.de.ibm.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 15 9月, 2010 1 次提交
-
-
由 Stanislaw Gruszka 提交于
We have 32-bit variable overflow possibility when multiply in task_times() and thread_group_times() functions. When the overflow happens then the scaled utime value becomes erroneously small and the scaled stime becomes i erroneously big. Reported here: https://bugzilla.redhat.com/show_bug.cgi?id=633037 https://bugzilla.kernel.org/show_bug.cgi?id=16559Reported-by: NMichael Chapman <redhat-bugzilla@very.puzzling.org> Reported-by: NCiriaco Garcia de Celis <sysman@etherpilot.com> Signed-off-by: NStanislaw Gruszka <sgruszka@redhat.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> Cc: <stable@kernel.org> # 2.6.32.19+ (partially) and 2.6.33+ LKML-Reference: <20100914143513.GB8415@redhat.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 14 9月, 2010 1 次提交
-
-
由 Mathieu Desnoyers 提交于
Fix incorrect handling of the following case: INTERACTIVE INTERACTIVE_SOMETHING_ELSE The comparison only checks up to each element's length. Changelog since v1: - Embellish using some Rostedtisms. [ mingo: ^^ == smaller and cleaner ] Signed-off-by: NMathieu Desnoyers <mathieu.desnoyers@efficios.com> Reviewed-by: NSteven Rostedt <rostedt@goodmis.org> Cc: <stable@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Tony Lindgren <tony@atomide.com> LKML-Reference: <20100913214700.GB16118@Krystal> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 10 9月, 2010 3 次提交
-
-
由 Heiko Carstens 提交于
On top of the SMT and MC scheduling domains this adds the BOOK scheduling domain. This is useful for NUMA like machines which do not have an interface which tells which piece of memory is attached to which node or where the hardware performs striping. Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <20100831082844.253053798@de.ibm.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Heiko Carstens 提交于
Merge and simplify the two cpu_to_core_group variants so that the resulting function follows the same pattern like cpu_to_phys_group. Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <20100831082843.953617555@de.ibm.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Suresh Siddha 提交于
Currently sched_avg_update() (which updates rt_avg stats in the rq) is getting called from scale_rt_power() (in the load balance context) which doesn't take rq->lock. Fix it by moving the sched_avg_update() to more appropriate update_cpu_load() where the CFS load gets updated as well. Signed-off-by: NSuresh Siddha <suresh.b.siddha@intel.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1282596171.2694.3.camel@sbsiddha-MOBL3> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 08 9月, 2010 1 次提交
-
-
由 Christian Dietrich 提交于
The CONFIG_SMP ifdef isn't necessary at this point, because it is checked in an outer ifdef level already and has no effect here. Cleanup only, no functional effect. Signed-off-by: NChristian Dietrich <qy03fugy@stud.informatik.uni-erlangen.de> Cc: vamos-dev@i4.informatik.uni-erlangen.de Cc: Peter Zijlstra <peterz@infradead.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Tejun Heo <tj@kernel.org> LKML-Reference: <7a3a39ef3f765a4473cb026b1f204059568a7098.1283782701.git.qy03fugy@stud.informatik.uni-erlangen.de> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 23 8月, 2010 1 次提交
-
-
由 Tim Chen 提交于
There is a scalability issue for current implementation of optimistic mutex spin in the kernel. It is found on a 8 node 64 core Nehalem-EX system (HT mode). The intention of the optimistic mutex spin is to busy wait and spin on a mutex if the owner of the mutex is running, in the hope that the mutex will be released soon and be acquired, without the thread trying to acquire mutex going to sleep. However, when we have a large number of threads, contending for the mutex, we could have the mutex grabbed by other thread, and then another ……, and we will keep spinning, wasting cpu cycles and adding to the contention. One possible fix is to quit spinning and put the current thread on wait-list if mutex lock switch to a new owner while we spin, indicating heavy contention (see the patch included). I did some testing on a 8 socket Nehalem-EX system with a total of 64 cores. Using Ingo's test-mutex program that creates/delete files with 256 threads (http://lkml.org/lkml/2006/1/8/50) , I see the following speed up after putting in the mutex spin fix: ./mutex-test V 256 10 Ops/sec 2.6.34 62864 With fix 197200 Repeating the test with Aim7 fserver workload, again there is a speed up with the fix: Jobs/min 2.6.34 91657 With fix 149325 To look at the impact on the distribution of mutex acquisition time, I collected the mutex acquisition time on Aim7 fserver workload with some instrumentation. The average acquisition time is reduced by 48% and number of contentions reduced by 32%. #contentions Time to acquire mutex (cycles) 2.6.34 72973 44765791 With fix 49210 23067129 The histogram of mutex acquisition time is listed below. The acquisition time is in 2^bin cycles. We see that without the fix, the acquisition time is mostly around 2^26 cycles. With the fix, we the distribution get spread out a lot more towards the lower cycles, starting from 2^13. However, there is an increase of the tail distribution with the fix at 2^28 and 2^29 cycles. It seems a small price to pay for the reduced average acquisition time and also getting the cpu to do useful work. Mutex acquisition time distribution (acq time = 2^bin cycles): 2.6.34 With Fix bin #occurrence % #occurrence % 11 2 0.00% 120 0.24% 12 10 0.01% 790 1.61% 13 14 0.02% 2058 4.18% 14 86 0.12% 3378 6.86% 15 393 0.54% 4831 9.82% 16 710 0.97% 4893 9.94% 17 815 1.12% 4667 9.48% 18 790 1.08% 5147 10.46% 19 580 0.80% 6250 12.70% 20 429 0.59% 6870 13.96% 21 311 0.43% 1809 3.68% 22 255 0.35% 2305 4.68% 23 317 0.44% 916 1.86% 24 610 0.84% 233 0.47% 25 3128 4.29% 95 0.19% 26 63902 87.69% 122 0.25% 27 619 0.85% 286 0.58% 28 0 0.00% 3536 7.19% 29 0 0.00% 903 1.83% 30 0 0.00% 0 0.00% I've done similar experiments with 2.6.35 kernel on smaller boxes as well. One is on a dual-socket Westmere box (12 cores total, with HT). Another experiment is on an old dual-socket Core 2 box (4 cores total, no HT) On the 12-core Westmere box, I see a 250% increase for Ingo's mutex-test program with my mutex patch but no significant difference in aim7's fserver workload. On the 4-core Core 2 box, I see the difference with the patch for both mutex-test and aim7 fserver are negligible. So far, it seems like the patch has not caused regression on smaller systems. Signed-off-by: NTim Chen <tim.c.chen@linux.intel.com> Acked-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: <stable@kernel.org> # .35.x LKML-Reference: <1282168827.9542.72.camel@schen9-DESK> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 17 7月, 2010 2 次提交
-
-
由 Pekka Enberg 提交于
As of commit dcce284a ("mm: Extend gfp masking to the page allocator") and commit 7e85ee0c ("slab,slub: don't enable interrupts during early boot"), the slab allocator makes sure we don't attempt to sleep during boot. Therefore, remove bootmem special cases from the scheduler and use plain GFP_KERNEL instead. Signed-off-by: NPekka Enberg <penberg@cs.helsinki.fi> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1279225102-2572-1-git-send-email-penberg@cs.helsinki.fi> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
Norbert reported that nohz_ratelimit() causes his laptop to burn about 4W (40%) extra. For now back out the change and see if we can adjust the power management code to make better decisions. Reported-by: NNorbert Preining <preining@logic.at> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: NMike Galbraith <efault@gmx.de> Cc: Arjan van de Ven <arjan@infradead.org> LKML-Reference: <new-submission> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 01 7月, 2010 1 次提交
-
-
由 Peter Zijlstra 提交于
Commit 0224cf4c (sched: Intoduce get_cpu_iowait_time_us()) broke things by not making sure preemption was indeed disabled by the callers of nr_iowait_cpu() which took the iowait value of the current cpu. This resulted in a heap of preempt warnings. Cure this by making nr_iowait_cpu() take a cpu number and fix up the callers to pass in the right number. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Arjan van de Ven <arjan@infradead.org> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Rafael J. Wysocki <rjw@sisk.pl> Cc: Maxim Levitsky <maximlevitsky@gmail.com> Cc: Len Brown <len.brown@intel.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Jiri Slaby <jslaby@suse.cz> Cc: linux-pm@lists.linux-foundation.org LKML-Reference: <1277968037.1868.120.camel@laptop> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 25 6月, 2010 1 次提交
-
-
由 Will Deacon 提交于
GCC 4.4.1 on ARM has been observed to replace the while loop in sched_avg_update with a call to uldivmod, resulting in the following build failure at link-time: kernel/built-in.o: In function `sched_avg_update': kernel/sched.c:1261: undefined reference to `__aeabi_uldivmod' kernel/sched.c:1261: undefined reference to `__aeabi_uldivmod' make: *** [.tmp_vmlinux1] Error 1 This patch introduces a fake data hazard to the loop body to prevent the compiler optimising the loop away. Signed-off-by: NWill Deacon <will.deacon@arm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Acked-by: NPeter Zijlstra <peterz@infradead.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: <stable@kernel.org> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 24 6月, 2010 1 次提交
-
-
由 Peter Zijlstra 提交于
Because cgroup_fork() is ran before sched_fork() [ from copy_process() ] and the child's pid is not yet visible the child is pinned to its cgroup. Therefore we can silence this warning. A nicer solution would be moving cgroup_fork() to right after dup_task_struct() and exclude PF_STARTING from task_subsys_state(). Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Reviewed-by: NLi Zefan <lizf@cn.fujitsu.com> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
- 22 6月, 2010 1 次提交
-
-
由 Tejun Heo 提交于
Commit 3a101d05 (sched: adjust when cpu_active and cpuset configurations are updated during cpu on/offlining) added hotplug notifiers marked with __cpuexit; however, ia64 drops text in __cpuexit during link unlike x86. This means that functions which are referenced during init but used only for cpu hot unplugging afterwards shouldn't be marked with __cpuexit. Drop __cpuexit from those functions. Reported-by: NTony Luck <tony.luck@intel.com> Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NTony Luck <tony.luck@intel.com> Cc: Peter Zijlstra <peterz@infradead.org> LKML-Reference: <4C1FDF5B.1040301@kernel.org> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 18 6月, 2010 2 次提交
-
-
由 Oleg Nesterov 提交于
__sched_setscheduler() takes lock_task_sighand() to access task->signal. This is not needed since ea6d290c, ->signal can't go away. Signed-off-by: NOleg Nesterov <oleg@redhat.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <20100610230944.GA25903@redhat.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Alex,Shi 提交于
Commit e7097159 ("sched: Optimize unused cgroup configuration") introduced an imbalanced scheduling bug. If we do not use CGROUP, function update_h_load won't update h_load. When the system has a large number of tasks far more than logical CPU number, the incorrect cfs_rq[cpu]->h_load value will cause load_balance() to pull too many tasks to the local CPU from the busiest CPU. So the busiest CPU keeps going in a round robin. That will hurt performance. The issue was found originally by a scientific calculation workload that developed by Yanmin. With that commit, the workload performance drops about 40%. CPU before after 00 : 2 : 7 01 : 1 : 7 02 : 11 : 6 03 : 12 : 7 04 : 6 : 6 05 : 11 : 7 06 : 10 : 6 07 : 12 : 7 08 : 11 : 6 09 : 12 : 6 10 : 1 : 6 11 : 1 : 6 12 : 6 : 6 13 : 2 : 6 14 : 2 : 6 15 : 1 : 6 Reviewed-by: NYanmin zhang <yanmin.zhang@intel.com> Signed-off-by: NAlex Shi <alex.shi@intel.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1276754893.9452.5442.camel@debian> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 09 6月, 2010 9 次提交
-
-
由 Venkatesh Pallipadi 提交于
In the new push model, all idle CPUs indeed go into nohz mode. There is still the concept of idle load balancer (performing the load balancing on behalf of all the idle cpu's in the system). Busy CPU kicks the nohz balancer when any of the nohz CPUs need idle load balancing. The kickee CPU does the idle load balancing on behalf of all idle CPUs instead of the normal idle balance. This addresses the below two problems with the current nohz ilb logic: * the idle load balancer continued to have periodic ticks during idle and wokeup frequently, even though it did not have any rebalancing to do on behalf of any of the idle CPUs. * On x86 and CPUs that have APIC timer stoppage on idle CPUs, this periodic wakeup can result in a periodic additional interrupt on a CPU doing the timer broadcast. Also currently we are migrating the unpinned timers from an idle to the cpu doing idle load balancing (when all the cpus in the system are idle, there is no idle load balancing cpu and timers get added to the same idle cpu where the request was made. So the existing optimization works only on semi idle system). And In semi idle system, we no longer have periodic ticks on the idle load balancer CPU. Using that cpu will add more delays to the timers than intended (as that cpu's timer base may not be uptodate wrt jiffies etc). This was causing mysterious slowdowns during boot etc. For now, in the semi idle case, use the nearest busy cpu for migrating timers from an idle cpu. This is good for power-savings anyway. Signed-off-by: NVenkatesh Pallipadi <venki@google.com> Signed-off-by: NSuresh Siddha <suresh.b.siddha@intel.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Thomas Gleixner <tglx@linutronix.de> LKML-Reference: <1274486981.2840.46.camel@sbs-t61.sc.intel.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Venkatesh Pallipadi 提交于
tickless idle has a negative side effect on update_cpu_load(), which in turn can affect load balancing behavior. update_cpu_load() is supposed to be called every tick, to keep track of various load indicies. With tickless idle, there are no scheduler ticks called on the idle CPUs. Idle CPUs may still do load balancing (with idle_load_balance CPU) using the stale cpu_load. It will also cause problems when all CPUs go idle for a while and become active again. In this case loads would not degrade as expected. This is how rq->nr_load_updates change looks like under different conditions: <cpu_num> <nr_load_updates change> All CPUS idle for 10 seconds (HZ=1000) 0 1621 10 496 11 139 12 875 13 1672 14 12 15 21 1 1472 2 2426 3 1161 4 2108 5 1525 6 701 7 249 8 766 9 1967 One CPU busy rest idle for 10 seconds 0 10003 10 601 11 95 12 966 13 1597 14 114 15 98 1 3457 2 93 3 6679 4 1425 5 1479 6 595 7 193 8 633 9 1687 All CPUs busy for 10 seconds 0 10026 10 10026 11 10026 12 10026 13 10025 14 10025 15 10025 1 10026 2 10026 3 10026 4 10026 5 10026 6 10026 7 10026 8 10026 9 10026 That is update_cpu_load works properly only when all CPUs are busy. If all are idle, all the CPUs get way lower updates. And when few CPUs are busy and rest are idle, only busy and ilb CPU does proper updates and rest of the idle CPUs will do lower updates. The patch keeps track of when a last update was done and fixes up the load avg based on current time. On one of my test system SPECjbb with warehouse 1..numcpus, patch improves throughput numbers by ~1% (average of 6 runs). On another test system (with different domain hierarchy) there is no noticable change in perf. Signed-off-by: NVenkatesh Pallipadi <venki@google.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Thomas Gleixner <tglx@linutronix.de> LKML-Reference: <AANLkTilLtDWQsAUrIxJ6s04WTgmw9GuOODc5AOrYsaR5@mail.gmail.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Oleg Nesterov 提交于
- Contrary to what 6d558c3a says, there is no need to reload prev = rq->curr after the context switch. You always schedule back to where you came from, prev must be equal to current even if cpu/rq was changed. - This also means reacquire_kernel_lock() can use prev instead of current. - No need to reassign switch_count if reacquire_kernel_lock() reports need_resched(), we can just move the initial assignment down, under the "need_resched_nonpreemptible:" label. - Try to update the comment after context_switch(). Signed-off-by: NOleg Nesterov <oleg@redhat.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <20100519125711.GA30199@redhat.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Peter Zijlstra 提交于
For people who otherwise get to write: cpu_clock(smp_processor_id()), there is now: local_clock(). Also, as per suggestion from Andrew, provide some documentation on the various clock interfaces, and minimize the unsigned long long vs u64 mess. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jens Axboe <jaxboe@fusionio.com> LKML-Reference: <1275052414.1645.52.camel@laptop> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
由 Tejun Heo 提交于
Concurrency managed workqueue needs to know when workers are going to sleep and waking up. Using these two hooks, cmwq keeps track of the current concurrency level and throttles execution of new works if it's too high and wakes up another worker from the sleep hook if it becomes too low. This patch introduces PF_WQ_WORKER to identify workqueue workers and adds the following two hooks. * wq_worker_waking_up(): called when a worker is woken up. * wq_worker_sleeping(): called when a worker is going to sleep and may return a pointer to a local task which should be woken up. The returned task is woken up using try_to_wake_up_local() which is simplified ttwu which is called under rq lock and can only wake up local tasks. Both hooks are currently defined as noop in kernel/workqueue_sched.h. Later cmwq implementation will replace them with proper implementation. These hooks are hard coded as they'll always be enabled. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NPeter Zijlstra <peterz@infradead.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Ingo Molnar <mingo@elte.hu>
-
由 Tejun Heo 提交于
Factor ttwu_activate() and ttwu_woken_up() out of try_to_wake_up(). The factoring out doesn't affect try_to_wake_up() much code-generation-wise. Depending on configuration options, it ends up generating the same object code as before or slightly different one due to different register assignment. This is to help future implementation of try_to_wake_up_local(). Mike Galbraith suggested rename to ttwu_post_activation() from ttwu_woken_up() and comment update in try_to_wake_up(). Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NPeter Zijlstra <peterz@infradead.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Ingo Molnar <mingo@elte.hu>
-
由 Tejun Heo 提交于
Currently, when a cpu goes down, cpu_active is cleared before CPU_DOWN_PREPARE starts and cpuset configuration is updated from a default priority cpu notifier. When a cpu is coming up, it's set before CPU_ONLINE but cpuset configuration again is updated from the same cpu notifier. For cpu notifiers, this presents an inconsistent state. Threads which a CPU_DOWN_PREPARE notifier expects to be bound to the CPU can be migrated to other cpus because the cpu is no more inactive. Fix it by updating cpu_active in the highest priority cpu notifier and cpuset configuration in the second highest when a cpu is coming up. Down path is updated similarly. This guarantees that all other cpu notifiers see consistent cpu_active and cpuset configuration. cpuset_track_online_cpus() notifier is converted to cpuset_update_active_cpus() which just updates the configuration and now called from cpuset_cpu_[in]active() notifiers registered from sched_init_smp(). If cpuset is disabled, cpuset_update_active_cpus() degenerates into partition_sched_domains() making separate notifier for !CONFIG_CPUSETS unnecessary. This problem is triggered by cmwq. During CPU_DOWN_PREPARE, hotplug callback creates a kthread and kthread_bind()s it to the target cpu, and the thread is expected to run on that cpu. * Ingo's test discovered __cpuinit/exit markups were incorrect. Fixed. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Ingo Molnar <mingo@elte.hu> Cc: Paul Menage <menage@google.com>
-
由 Tejun Heo 提交于
Instead of hardcoding priority 10 and 20 in sched and perf, collect them into CPU_PRI_* enums. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Paul Mackerras <paulus@samba.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
-
由 Peter Zijlstra 提交于
PROVE_RCU has a few issues with the cpu_cgroup because the scheduler typically holds rq->lock around the css rcu derefs but the generic cgroup code doesn't (and can't) know about that lock. Provide means to add extra checks to the css dereference and use that in the scheduler to annotate its users. The addition of rq->lock to these checks is correct because the cgroup_subsys::attach() method takes the rq->lock for each task it moves, therefore by holding that lock, we ensure the task is pinned to the current cgroup and the RCU derefence is valid. That leaves one genuine race in __sched_setscheduler() where we used task_group() without holding any of the required locks and thus raced with the cgroup code. Solve this by moving the check under the appropriate lock. Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> LKML-Reference: <new-submission> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 04 6月, 2010 1 次提交
-
-
由 Steven Rostedt 提交于
The function tracer code uses ftrace_preempt_disable() to disable preemption instead of normal preempt_disable(). But there's a slight race condition that may cause it to lose a preemption check. This was made to keep the function tracer from recursing on itself by disabling preemption then having the enable call the function tracer again, causing infinite recursion. The bug was assumed to happen if the call was just in schedule, but this is incorrect. The bug is caused by preempt_schedule() which is called by preempt_enable(). The calling of preempt_enable() when NEED_RESCHED was set would call preempt_schedule() which would call the function tracer again. By making the preempt_schedule() and add_preempt_count() notrace then this will prevent the inifinite recursion. This is because the add_preempt_count() would stop the preempt_enable() in the function tracer from calling preempt_schedule() again. The sub_preempt_count() is also made notrace just to keep it symmetric. Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
- 01 6月, 2010 1 次提交
-
-
由 Peter Zijlstra 提交于
Mike reports that since e9e9250b (sched: Scale down cpu_power due to RT tasks), wake_affine() goes funny on RT tasks due to them still having a !0 weight and wake_affine() still subtracts that from the rq weight. Since nobody should be using se->weight for RT tasks, set the value to zero. Also, since we now use ->cpu_power to normalize rq weights to account for RT cpu usage, add that factor into the imbalance computation. Reported-by: NMike Galbraith <efault@gmx.de> Tested-by: NMike Galbraith <efault@gmx.de> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1275316109.27810.22969.camel@twins> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 30 5月, 2010 1 次提交
-
-
由 Sage Weil 提交于
Add missing _killable_timeout variant for wait_for_completion that will return when a timeout expires or the task is killed. CC: Ingo Molnar <mingo@elte.hu> CC: Andreas Herrmann <andreas.herrmann3@amd.com> CC: Thomas Gleixner <tglx@linutronix.de> CC: Mike Galbraith <efault@gmx.de> Acked-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: NSage Weil <sage@newdream.net>
-
- 28 5月, 2010 1 次提交
-
-
由 Oleg Nesterov 提交于
Now that task->signal can't go away we can revert the horrible hack added by ad474cac ("fix for account_group_exec_runtime(), make sure ->signal can't be freed under rq->lock"). And we can do more cleanups sched_stats.h/posix-cpu-timers.c later. Signed-off-by: NOleg Nesterov <oleg@redhat.com> Cc: Alan Cox <alan@linux.intel.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Acked-by: NRoland McGrath <roland@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 21 5月, 2010 2 次提交
-
-
由 Jason Wessel 提交于
This patch contains the hooks and instrumentation into kernel which live outside the kernel/debug directory, which the kdb core will call to run commands like lsmod, dmesg, bt etc... CC: linux-arch@vger.kernel.org Signed-off-by: NJason Wessel <jason.wessel@windriver.com> Signed-off-by: NMartin Hicks <mort@sgi.com>
-
由 Michal Nazarewicz 提交于
New wait_event_interruptible{,_exclusive}_locked{,_irq} macros added. They work just like versions without _locked* suffix but require the wait queue's lock to be held. Also __wake_up_locked() is now exported as to pair it with the above macros. The use case of this new facility is when one uses wait queue's lock to protect a data structure. This may be advantageous if the structure needs to be protected by a spinlock anyway. In particular, with additional spinlock the following code has to be used to wait for a condition: spin_lock(&data.lock); ... for (ret = 0; !ret && !(condition); ) { spin_unlock(&data.lock); ret = wait_event_interruptible(data.wqh, (condition)); spin_lock(&data.lock); } ... spin_unlock(&data.lock); This looks bizarre plus wait_event_interruptible() locks the wait queue's lock anyway so there is a unlock+lock sequence where it could be avoided. To avoid those problems and benefit from wait queue's lock, a code similar to the following should be used: /* Waiting */ spin_lock(&data.wqh.lock); ... ret = wait_event_interruptible_locked(data.wqh, (condition)); ... spin_unlock(&data.wqh.lock); /* Waiting exclusively */ spin_lock(&data.whq.lock); ... ret = wait_event_interruptible_exclusive_locked(data.whq, (condition)); ... spin_unlock(&data.whq.lock); /* Waking up */ spin_lock(&data.wqh.lock); ... wake_up_locked(&data.wqh); ... spin_unlock(&data.wqh.lock); When spin_lock_irq() is used matching versions of macros need to be used (*_locked_irq()). Signed-off-by: NMichal Nazarewicz <m.nazarewicz@samsung.com> Cc: Kyungmin Park <kyungmin.park@samsung.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Takashi Iwai <tiwai@suse.de> Cc: David Howells <dhowells@redhat.com> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Mike Galbraith <efault@gmx.de> Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
-
- 11 5月, 2010 1 次提交
-
-
由 Changli Gao 提交于
epoll should not touch flags in wait_queue_t. This patch introduces a new function __add_wait_queue_exclusive(), for the users, who use wait queue as a LIFO queue. __add_wait_queue_tail_exclusive() is introduced too instead of add_wait_queue_exclusive_locked(). remove_wait_queue_locked() is removed, as it is a duplicate of __remove_wait_queue(), disliked by users, and with less users. Signed-off-by: NChangli Gao <xiaosuo@gmail.com> Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Paul Menage <menage@google.com> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Davide Libenzi <davidel@xmailserver.org> Cc: <containers@lists.linux-foundation.org> LKML-Reference: <1273214006-2979-1-git-send-email-xiaosuo@gmail.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-