- 20 9月, 2011 1 次提交
-
-
由 Dimitris Papastamos 提交于
This patch adds support for LZO compression when storing the register cache. For a typical device whose register map would normally occupy 25kB or 50kB by using the LZO compression technique, one can get down to ~5-7kB. There might be a performance penalty associated with each individual read/write due to decompressing/compressing the underlying cache, however that should not be noticeable. These memory benefits depend on whether the target architecture can get rid of the memory occupied by the original register defaults cache which is marked as __devinitconst. Nevertheless there will be some memory gain even if the target architecture can't get rid of the original register map, this should be around ~30-32kB instead of 50kB. Signed-off-by: NDimitris Papastamos <dp@opensource.wolfsonmicro.com> Signed-off-by: NMark Brown <broonie@opensource.wolfsonmicro.com>
-
- 23 7月, 2011 3 次提交
-
-
由 Mark Brown 提交于
Signed-off-by: NMark Brown <broonie@opensource.wolfsonmicro.com> Acked-by: NLiam Girdwood <lrg@ti.com> Acked-by: NWolfram Sang <w.sang@pengutronix.de> Acked-by: NGrant Likely <grant.likely@secretlab.ca>
-
由 Mark Brown 提交于
Signed-off-by: NMark Brown <broonie@opensource.wolfsonmicro.com> Acked-by: NLiam Girdwood <lrg@ti.com> Acked-by: NWolfram Sang <w.sang@pengutronix.de> Acked-by: NGrant Likely <grant.likely@secretlab.ca>
-
由 Mark Brown 提交于
There are many places in the tree where we implement register access for devices on non-memory mapped buses, especially I2C and SPI. Since hardware designers seem to have settled on a relatively consistent set of register interfaces this can be effectively factored out into shared code. There are a standard set of formats for marshalling data for exchange with the device, with the actual I/O mechanisms generally being simple byte streams. We create an abstraction for marshaling data into formats which can be sent on the control interfaces, and create a standard method for plugging in actual transport underneath that. This is mostly a refactoring and renaming of the bottom level of the existing code for sharing register I/O which we have in ASoC. A subsequent patch in this series converts ASoC to use this. The main difference in interface is that reads return values by writing to a location provided by a pointer rather than in the return value, ensuring we can use the full range of the type for register data. We also use unsigned types rather than ints for the same reason. As some of the devices can have very large register maps the existing ASoC code also contains infrastructure for managing register caches. This cache work will be moved over in a future stage to allow for separate review, the current patch only deals with the physical I/O. Signed-off-by: NMark Brown <broonie@opensource.wolfsonmicro.com> Acked-by: NLiam Girdwood <lrg@ti.com> Acked-by: NGreg Kroah-Hartman <gregkh@suse.de> Acked-by: NWolfram Sang <w.sang@pengutronix.de> Acked-by: NGrant Likely <grant.likely@secretlab.ca>
-