- 24 2月, 2013 1 次提交
-
-
由 Tang Chen 提交于
When implementing movablemem_map boot option, we introduced an array movablemem_map.map[] to store the memory ranges to be set as ZONE_MOVABLE. Since ZONE_MOVABLE is the latst zone of a node, if user didn't specify the whole node memory range, we need to extend it to the node end so that we can use it to prevent memblock from allocating memory in the ranges user didn't specify. We now implement movablemem_map boot option like this: /* * For movablemem_map=nn[KMG]@ss[KMG]: * * SRAT: |_____| |_____| |_________| |_________| ...... * node id: 0 1 1 2 * user specified: |__| |___| * movablemem_map: |___| |_________| |______| ...... * * Using movablemem_map, we can prevent memblock from allocating memory * on ZONE_MOVABLE at boot time. * * NOTE: In this case, SRAT info will be ingored. */ [akpm@linux-foundation.org: clean up code, fix build warning] Signed-off-by: NTang Chen <tangchen@cn.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Jianguo Wu <wujianguo@huawei.com> Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Wu Jianguo <wujianguo@huawei.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Len Brown <lenb@kernel.org> Cc: "Brown, Len" <len.brown@intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 24 1月, 2013 1 次提交
-
-
由 Davidlohr Bueso 提交于
The acpi_numa_memory_affinity_init() function can fail in several scenarios, use a single point of error return. Signed-off-by: NDavidlohr Bueso <davidlohr.bueso@hp.com> Link: http://lkml.kernel.org/r/1357690721.1890.15.camel@buesod1.americas.hpqcorp.net [ Cleaned up the label naming a bit. ] Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 03 8月, 2012 1 次提交
-
-
由 Thomas Renninger 提交于
Otherwise you could run into: WARN_ON in numa_register_memblks(), because node_possible_map is zero References: https://bugzilla.novell.com/show_bug.cgi?id=757888 On this machine (ProLiant ML570 G3) the SRAT table contains: - No processor affinities - One memory affinity structure (which is set disabled) CC: Per Jessen <per@opensuse.org> CC: Andi Kleen <andi@firstfloor.org> Signed-off-by: NThomas Renninger <trenn@suse.de> Signed-off-by: NLen Brown <len.brown@intel.com>
-
- 06 6月, 2012 1 次提交
-
-
由 Yasuaki Ishimatsu 提交于
When hot-adding a CPU, the system outputs following messages since node_to_cpumask_map[2] was not allocated memory. Booting Node 2 Processor 32 APIC 0xc0 node_to_cpumask_map[2] NULL Pid: 0, comm: swapper/32 Tainted: G A 3.3.5-acd #21 Call Trace: [<ffffffff81048845>] debug_cpumask_set_cpu+0x155/0x160 [<ffffffff8105e28a>] ? add_timer_on+0xaa/0x120 [<ffffffff8150665f>] numa_add_cpu+0x1e/0x22 [<ffffffff815020bb>] identify_cpu+0x1df/0x1e4 [<ffffffff815020d6>] identify_econdary_cpu+0x16/0x1d [<ffffffff81504614>] smp_store_cpu_info+0x3c/0x3e [<ffffffff81505263>] smp_callin+0x139/0x1be [<ffffffff815052fb>] start_secondary+0x13/0xeb The reason is that the bit of node 2 was not set at numa_nodes_parsed. numa_nodes_parsed is set by only acpi_numa_processor_affinity_init / acpi_numa_x2apic_affinity_init. Thus even if hot-added memory which is same PXM as hot-added CPU is written in ACPI SRAT Table, if the hot-added CPU is not written in ACPI SRAT table, numa_nodes_parsed is not set. But according to ACPI Spec Rev 5.0, it says about ACPI SRAT table as follows: This optional table provides information that allows OSPM to associate processors and memory ranges, including ranges of memory provided by hot-added memory devices, with system localities / proximity domains and clock domains. It means that ACPI SRAT table only provides information for CPUs present at boot time and for memory including hot-added memory. So hot-added memory is written in ACPI SRAT table, but hot-added CPU is not written in it. Thus numa_nodes_parsed should be set by not only acpi_numa_processor_affinity_init / acpi_numa_x2apic_affinity_init but also acpi_numa_memory_affinity_init for the case. Additionally, if system has cpuless memory node, acpi_numa_processor_affinity_init / acpi_numa_x2apic_affinity_init cannot set numa_nodes_parseds since these functions cannot find cpu description for the node. In this case, numa_nodes_parsed needs to be set by acpi_numa_memory_affinity_init. Signed-off-by: NYasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Acked-by: NDavid Rientjes <rientjes@google.com> Acked-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: liuj97@gmail.com Cc: kosaki.motohiro@gmail.com Link: http://lkml.kernel.org/r/4FCC2098.4030007@jp.fujitsu.com [ merged it ] Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 30 5月, 2012 1 次提交
-
-
由 Bjorn Helgaas 提交于
Print physical address info in a style consistent with the %pR style used elsewhere in the kernel. For example: -found SMP MP-table at [ffff8800000fce90] fce90 +found SMP MP-table at [mem 0x000fce90-0x000fce9f] mapped at [ffff8800000fce90] -initial memory mapped : 0 - 20000000 +initial memory mapped: [mem 0x00000000-0x1fffffff] -Base memory trampoline at [ffff88000009c000] 9c000 size 8192 +Base memory trampoline [mem 0x0009c000-0x0009dfff] mapped at [ffff88000009c000] -SRAT: Node 0 PXM 0 0-80000000 +SRAT: Node 0 PXM 0 [mem 0x00000000-0x7fffffff] Signed-off-by: NBjorn Helgaas <bhelgaas@google.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 23 3月, 2012 1 次提交
-
-
由 Steffen Persvold 提交于
As suggested by Suresh Siddha and Yinghai Lu: For x2apic pre-enabled systems, apic driver is set already early through early_acpi_boot_init()/early_acpi_process_madt()/ acpi_parse_madt()/default_acpi_madt_oem_check() path so that apic_id_valid() checking will be sufficient during MADT and SRAT parsing. For non-x2apic pre-enabled systems, all apic ids should be less than 255. This allows us to substitute the checks in arch/x86/kernel/acpi/boot.c::acpi_parse_x2apic() and arch/x86/mm/srat.c::acpi_numa_x2apic_affinity_init() with apic->apic_id_valid(). In addition we can avoid feigning the x2apic cpu feature in the NumaChip apic code. The following apic drivers have separate apic_id_valid() functions which will accept x2apic type IDs : x2apic_phys x2apic_cluster x2apic_uv_x apic_numachip Signed-off-by: NSteffen Persvold <sp@numascale.com> Cc: Suresh Siddha <suresh.b.siddha@intel.com> Cc: Daniel J Blueman <daniel@numascale-asia.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Jack Steiner <steiner@sgi.com> Link: http://lkml.kernel.org/r/1331925935-13372-1-git-send-email-sp@numascale.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 17 1月, 2012 1 次提交
-
-
由 Kurt Garloff 提交于
In SRAT v1, we had 8bit proximity domain (PXM) fields; SRAT v2 provides 32bits for these. The new fields were reserved before. According to the ACPI spec, the OS must disregrard reserved fields. x86/x86-64 was rather inconsistent prior to this patch; it used 8 bits for the pxm field in cpu_affinity, but 32 bits in mem_affinity. This patch makes it consistent: Either use 8 bits consistently (SRAT rev 1 or lower) or 32 bits (SRAT rev 2 or higher). cc: x86@kernel.org Signed-off-by: NKurt Garloff <kurt@garloff.de> Signed-off-by: NLen Brown <len.brown@intel.com>
-
- 24 12月, 2011 1 次提交
-
-
由 Yinghai Lu 提交于
If the x2apic feature is not present (either the cpu is not capable of it or the user has disabled the feature using boot-parameter etc), ignore the x2apic MADT and SRAT entries provided by the ACPI tables. Signed-off-by: NYinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/20111222014632.540896503@sbsiddha-desk.sc.intel.comSigned-off-by: NSuresh Siddha <suresh.b.siddha@intel.com> Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
- 02 5月, 2011 3 次提交
-
-
由 Tejun Heo 提交于
Make srat.c 32bit safe by removing the assumption that unsigned long is 64bit. Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com>
-
由 Tejun Heo 提交于
Rename srat_64.c to srat.c. This is to prepare for unification of NUMA init paths between 32 and 64bit. Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com>
-
由 Tejun Heo 提交于
The only special handling NUMA needs to do for hotadd memory is determining the node for the hotadd memory given the address of it and there's nothing specific to specific config method used. srat_64.c does somewhat elaborate error checking on ACPI_SRAT_MEM_HOT_PLUGGABLE regions, remembers them and implements memory_add_physaddr_to_nid() which determines the node for given hotadd address. This is almost completely redundant. All the information is already available to the generic NUMA code which already performs all the sanity checking and merging. All that's necessary is not using __initdata from numa_meminfo and providing a function which uses it to map address to node. Drop the specific implementation from srat_64.c and add generic memory_add_physaddr_to_nid() in numa_64.c, which is enabled if CONFIG_MEMORY_HOTPLUG is set. Other than dropping the code, srat_64.c doesn't need any change as it already calls numa_add_memblk() for hot pluggable regions which is enough. While at it, change CONFIG_MEMORY_HOTPLUG_SPARSE in srat_64.c to CONFIG_MEMORY_HOTPLUG, for NUMA on x86-64, the two are always the same. Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com>
-
- 17 2月, 2011 11 次提交
-
-
由 Tejun Heo 提交于
NUMA emulation needs to update node distance information. It did it by remapping apicid to PXM mapping, even when amdtopology is being used. There is no reason to go through such convolution. The generic code has all the information necessary to transform the distance table to the emulated nid space. Implement generic distance table transformation in numa_emulation() and drop private implementations in srat_64 and amdtopology_64. This makes find_node_by_addr() and fake_physnodes() and related functions unnecessary, drop them. Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Brian Gerst <brgerst@gmail.com> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Shaohui Zheng <shaohui.zheng@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: H. Peter Anvin <hpa@linux.intel.com>
-
由 Tejun Heo 提交于
NUMA emulation changes node mappings and thus apicid -> node mapping needs to be updated accordingly. srat_64 and amdtopology_64 did this separately; however, all the necessary information is the mapping from emulated nodes to physical nodes which is available in emu_nid_to_phys[]. Implement common __apicid_to_node[] transformation in numa_emulation() and drop duplicate implementations. Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Brian Gerst <brgerst@gmail.com> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Shaohui Zheng <shaohui.zheng@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: H. Peter Anvin <hpa@linux.intel.com>
-
由 Tejun Heo 提交于
Node distance either used direct node comparison, ACPI PXM comparison or ACPI SLIT table lookup. This patch implements generic node distance handling. NUMA init methods can call numa_set_distance() to set distance between nodes and the common __node_distance() implementation will report the set distance. Due to the way NUMA emulation is implemented, the generic node distance handling is used only when emulation is not used. Later patches will update NUMA emulation to use the generic distance mechanism. Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Brian Gerst <brgerst@gmail.com> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Shaohui Zheng <shaohui.zheng@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: H. Peter Anvin <hpa@linux.intel.com>
-
由 Tejun Heo 提交于
With all memory configuration information now carried in numa_meminfo, there's no need to keep mem_nodes_parsed separate. Drop it and use numa_nodes_parsed for CPU / memory-less nodes. A new helper numa_nodemask_from_meminfo() is added to calculate memnode mask on the fly which is currently used to set node_possible_map. This simplifies NUMA init methods a bit and removes a source of possible inconsistencies. Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Brian Gerst <brgerst@gmail.com> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Shaohui Zheng <shaohui.zheng@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: H. Peter Anvin <hpa@linux.intel.com>
-
由 Tejun Heo 提交于
It's no longer necessary to keep both cpu_nodes_parsed and mem_nodes_parsed. In preparation for merge, rename cpu_nodes_parsed to numa_nodes_parsed. Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Brian Gerst <brgerst@gmail.com> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Shaohui Zheng <shaohui.zheng@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: H. Peter Anvin <hpa@linux.intel.com>
-
由 Tejun Heo 提交于
numa_nodes[] doesn't carry any information which isn't present in numa_meminfo. Each entry is simply min/max range of all the memblks for the node. This is not only redundant but also inaccurate when memblks for different nodes interleave - for example, find_node_by_addr() can return the wrong nodeid. Kill numa_nodes[] and always use numa_meminfo instead. * nodes_cover_memory() is renamed to numa_meminfo_cover_memory() and now operations on numa_meminfo and returns bool. * setup_node_bootmem() needs min/max range. Compute the range on the fly. setup_node_bootmem() invocation is restructured to use outer loop instead of hardcoding the double invocations. * find_node_by_addr() now operates on numa_meminfo. * setup_physnodes() builds physnodes[] from memblks. This will go away when emulation code is updated to use struct numa_meminfo. This patch also makes the following misc changes. * Clearing of nodes_add[] clearing is converted to memset(). * numa_add_memblk() in amd_numa_init() is moved down a bit for consistency. Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Brian Gerst <brgerst@gmail.com> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Shaohui Zheng <shaohui.zheng@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: H. Peter Anvin <hpa@linux.intel.com>
-
由 Tejun Heo 提交于
srat_64.c and amdtopology_64.c had their own versions of find_node_by_addr() which were basically the same. Add common one in numa_64.c and remove the duplicates. Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Brian Gerst <brgerst@gmail.com> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Shaohui Zheng <shaohui.zheng@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: H. Peter Anvin <hpa@linux.intel.com>
-
由 Tejun Heo 提交于
They are empty now. Kill them. Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Brian Gerst <brgerst@gmail.com> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Shaohui Zheng <shaohui.zheng@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: H. Peter Anvin <hpa@linux.intel.com>
-
由 Tejun Heo 提交于
Move the remaining memblk registration logic from acpi_scan_nodes() to numa_register_memblks() and initmem_init(). This applies nodes_cover_memory() sanity check, memory node sorting and node_online() checking, which were only applied to acpi, to all init methods. As all memblk registration is moved to common code, active range clearing is moved to initmem_init() too and removed from bad_srat(). Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Brian Gerst <brgerst@gmail.com> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Shaohui Zheng <shaohui.zheng@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: H. Peter Anvin <hpa@linux.intel.com>
-
由 Tejun Heo 提交于
Make both amd and dummy use numa_add_memblk() to describe the detected memory blocks. This allows initmem_init() to call numa_register_memblk() regardless of init method in use. Drop custom memory registration codes from amd and dummy. After this change, memblk merge/cleanup in numa_register_memblks() is applied to all init methods. As this makes compute_hash_shift() and numa_register_memblks() used only inside numa_64.c, make them static. Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Brian Gerst <brgerst@gmail.com> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Shaohui Zheng <shaohui.zheng@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: H. Peter Anvin <hpa@linux.intel.com>
-
由 Tejun Heo 提交于
Factor out memblk handling from srat_64.c into two functions in numa_64.c. This patch doesn't introduce any behavior change. The next patch will make all init methods use these functions. - v2: Fixed build failure on 32bit due to misplaced NR_NODE_MEMBLKS. Reported by Ingo. Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Brian Gerst <brgerst@gmail.com> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Shaohui Zheng <shaohui.zheng@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: H. Peter Anvin <hpa@linux.intel.com>
-
- 16 2月, 2011 7 次提交
-
-
由 Tejun Heo 提交于
With common numa_nodes[], common code in numa_64.c can access it directly. Copy directly and kill {acpi|amd}_get_nodes(). Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Brian Gerst <brgerst@gmail.com> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Shaohui Zheng <shaohui.zheng@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: H. Peter Anvin <hpa@linux.intel.com>
-
由 Tejun Heo 提交于
ACPI and amd are using separate nodes[] array. Add numa_nodes[] and use them in all NUMA init methods. cutoff_node() cleanup is moved from srat_64.c to numa_64.c and applied in initmem_init() regardless of init methods. Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Brian Gerst <brgerst@gmail.com> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Shaohui Zheng <shaohui.zheng@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: H. Peter Anvin <hpa@linux.intel.com>
-
由 Tejun Heo 提交于
ACPI and amd are using separate nodes_parsed masks. Add {cpu|mem}_nodes_parsed and use them in all NUMA init methods. Initialization of the masks and building node_possible_map are now handled commonly by initmem_init(). dummy_numa_init() is updated to set node 0 on both masks. While at it, move the info messages from scan to init. Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Brian Gerst <brgerst@gmail.com> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Shaohui Zheng <shaohui.zheng@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: H. Peter Anvin <hpa@linux.intel.com>
-
由 Tejun Heo 提交于
Reorganize initmem_init() such that, * Different NUMA init methods are iterated in a consistent way. * Each iteration re-initializes all the parameters and different method can be tried after a failure. * Dummy init is handled the same as other methods. Apart from how retry after failure, this patch doesn't change the behavior. The call sequences are kept equivalent across the conversion. After the change, bad_srat() doesn't need to clear apic to node mapping or worry about numa_off. Simplified accordingly. Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Brian Gerst <brgerst@gmail.com> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Shaohui Zheng <shaohui.zheng@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: H. Peter Anvin <hpa@linux.intel.com>
-
由 Tejun Heo 提交于
Because of the way ACPI tables are parsed, the generic acpi_numa_init() couldn't return failure when error was detected by arch hooks. Instead, the failure state was recorded and later arch dependent init hook - acpi_scan_nodes() - would fail. Wrap acpi_numa_init() with x86_acpi_numa_init() so that failure can be indicated as return value immediately. This is in preparation for further NUMA init cleanups. Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Brian Gerst <brgerst@gmail.com> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Shaohui Zheng <shaohui.zheng@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: H. Peter Anvin <hpa@linux.intel.com>
-
由 Tejun Heo 提交于
The functions used during NUMA initialization - *_numa_init() and *_scan_nodes() - have different arguments and return values. Unify them such that they all take no argument and return 0 on success and -errno on failure. This is in preparation for further NUMA init cleanups. Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Brian Gerst <brgerst@gmail.com> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Shaohui Zheng <shaohui.zheng@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: H. Peter Anvin <hpa@linux.intel.com>
-
由 Tejun Heo 提交于
Hotplug node handling in acpi_numa_memory_affinity_init() was unnecessarily complicated with storing the original nodes[] entry and restoring it afterwards. Simplify it by not modifying the nodes[] entry for hotplug nodes from the beginning. Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Brian Gerst <brgerst@gmail.com> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Shaohui Zheng <shaohui.zheng@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: H. Peter Anvin <hpa@linux.intel.com>
-
- 28 1月, 2011 1 次提交
-
-
由 Tejun Heo 提交于
The mapping between cpu/apicid and node is done via apicid_to_node[] on 64bit and apicid_2_node[] + apic->x86_32_numa_cpu_node() on 32bit. This difference makes it difficult to further unify 32 and 64bit NUMA handling. This patch unifies it by replacing both apicid_to_node[] and apicid_2_node[] with __apicid_to_node[] array, which is accessed by two accessors - set_apicid_to_node() and numa_cpu_node(). On 64bit, numa_cpu_node() always consults __apicid_to_node[] directly while 32bit goes through apic->numa_cpu_node() method to allow apic implementations to override it. srat_detect_node() for amd cpus contains workaround for broken NUMA configuration which assumes relationship between APIC ID, HT node ID and NUMA topology. Leave it to access __apicid_to_node[] directly as mapping through CPU might result in undesirable behavior change. The comment is reformatted and updated to note the ugliness. Signed-off-by: NTejun Heo <tj@kernel.org> Reviewed-by: NPekka Enberg <penberg@kernel.org> Cc: eric.dumazet@gmail.com Cc: yinghai@kernel.org Cc: brgerst@gmail.com Cc: gorcunov@gmail.com Cc: shaohui.zheng@intel.com Cc: rientjes@google.com LKML-Reference: <1295789862-25482-14-git-send-email-tj@kernel.org> Signed-off-by: NIngo Molnar <mingo@elte.hu> Cc: David Rientjes <rientjes@google.com>
-
- 30 12月, 2010 1 次提交
-
-
由 Yinghai Lu 提交于
Introduce init_memory_mapping_high(), and use it with 64bit. It will go with every memory segment above 4g to create page table to the memory range itself. before this patch all page tables was on one node. with this patch, one RED-PEN is killed debug out for 8 sockets system after patch [ 0.000000] initial memory mapped : 0 - 20000000 [ 0.000000] init_memory_mapping: [0x00000000000000-0x0000007f74ffff] [ 0.000000] 0000000000 - 007f600000 page 2M [ 0.000000] 007f600000 - 007f750000 page 4k [ 0.000000] kernel direct mapping tables up to 7f750000 @ [0x7f74c000-0x7f74ffff] [ 0.000000] RAMDISK: 7bc84000 - 7f745000 .... [ 0.000000] Adding active range (0, 0x10, 0x95) 0 entries of 3200 used [ 0.000000] Adding active range (0, 0x100, 0x7f750) 1 entries of 3200 used [ 0.000000] Adding active range (0, 0x100000, 0x1080000) 2 entries of 3200 used [ 0.000000] Adding active range (1, 0x1080000, 0x2080000) 3 entries of 3200 used [ 0.000000] Adding active range (2, 0x2080000, 0x3080000) 4 entries of 3200 used [ 0.000000] Adding active range (3, 0x3080000, 0x4080000) 5 entries of 3200 used [ 0.000000] Adding active range (4, 0x4080000, 0x5080000) 6 entries of 3200 used [ 0.000000] Adding active range (5, 0x5080000, 0x6080000) 7 entries of 3200 used [ 0.000000] Adding active range (6, 0x6080000, 0x7080000) 8 entries of 3200 used [ 0.000000] Adding active range (7, 0x7080000, 0x8080000) 9 entries of 3200 used [ 0.000000] init_memory_mapping: [0x00000100000000-0x0000107fffffff] [ 0.000000] 0100000000 - 1080000000 page 2M [ 0.000000] kernel direct mapping tables up to 1080000000 @ [0x107ffbd000-0x107fffffff] [ 0.000000] memblock_x86_reserve_range: [0x107ffc2000-0x107fffffff] PGTABLE [ 0.000000] init_memory_mapping: [0x00001080000000-0x0000207fffffff] [ 0.000000] 1080000000 - 2080000000 page 2M [ 0.000000] kernel direct mapping tables up to 2080000000 @ [0x207ff7d000-0x207fffffff] [ 0.000000] memblock_x86_reserve_range: [0x207ffc0000-0x207fffffff] PGTABLE [ 0.000000] init_memory_mapping: [0x00002080000000-0x0000307fffffff] [ 0.000000] 2080000000 - 3080000000 page 2M [ 0.000000] kernel direct mapping tables up to 3080000000 @ [0x307ff3d000-0x307fffffff] [ 0.000000] memblock_x86_reserve_range: [0x307ffc0000-0x307fffffff] PGTABLE [ 0.000000] init_memory_mapping: [0x00003080000000-0x0000407fffffff] [ 0.000000] 3080000000 - 4080000000 page 2M [ 0.000000] kernel direct mapping tables up to 4080000000 @ [0x407fefd000-0x407fffffff] [ 0.000000] memblock_x86_reserve_range: [0x407ffc0000-0x407fffffff] PGTABLE [ 0.000000] init_memory_mapping: [0x00004080000000-0x0000507fffffff] [ 0.000000] 4080000000 - 5080000000 page 2M [ 0.000000] kernel direct mapping tables up to 5080000000 @ [0x507febd000-0x507fffffff] [ 0.000000] memblock_x86_reserve_range: [0x507ffc0000-0x507fffffff] PGTABLE [ 0.000000] init_memory_mapping: [0x00005080000000-0x0000607fffffff] [ 0.000000] 5080000000 - 6080000000 page 2M [ 0.000000] kernel direct mapping tables up to 6080000000 @ [0x607fe7d000-0x607fffffff] [ 0.000000] memblock_x86_reserve_range: [0x607ffc0000-0x607fffffff] PGTABLE [ 0.000000] init_memory_mapping: [0x00006080000000-0x0000707fffffff] [ 0.000000] 6080000000 - 7080000000 page 2M [ 0.000000] kernel direct mapping tables up to 7080000000 @ [0x707fe3d000-0x707fffffff] [ 0.000000] memblock_x86_reserve_range: [0x707ffc0000-0x707fffffff] PGTABLE [ 0.000000] init_memory_mapping: [0x00007080000000-0x0000807fffffff] [ 0.000000] 7080000000 - 8080000000 page 2M [ 0.000000] kernel direct mapping tables up to 8080000000 @ [0x807fdfc000-0x807fffffff] [ 0.000000] memblock_x86_reserve_range: [0x807ffbf000-0x807fffffff] PGTABLE [ 0.000000] Initmem setup node 0 [0000000000000000-000000107fffffff] [ 0.000000] NODE_DATA [0x0000107ffbd000-0x0000107ffc1fff] [ 0.000000] Initmem setup node 1 [0000001080000000-000000207fffffff] [ 0.000000] NODE_DATA [0x0000207ffbb000-0x0000207ffbffff] [ 0.000000] Initmem setup node 2 [0000002080000000-000000307fffffff] [ 0.000000] NODE_DATA [0x0000307ffbb000-0x0000307ffbffff] [ 0.000000] Initmem setup node 3 [0000003080000000-000000407fffffff] [ 0.000000] NODE_DATA [0x0000407ffbb000-0x0000407ffbffff] [ 0.000000] Initmem setup node 4 [0000004080000000-000000507fffffff] [ 0.000000] NODE_DATA [0x0000507ffbb000-0x0000507ffbffff] [ 0.000000] Initmem setup node 5 [0000005080000000-000000607fffffff] [ 0.000000] NODE_DATA [0x0000607ffbb000-0x0000607ffbffff] [ 0.000000] Initmem setup node 6 [0000006080000000-000000707fffffff] [ 0.000000] NODE_DATA [0x0000707ffbb000-0x0000707ffbffff] [ 0.000000] Initmem setup node 7 [0000007080000000-000000807fffffff] [ 0.000000] NODE_DATA [0x0000807ffba000-0x0000807ffbefff] Signed-off-by: NYinghai Lu <yinghai@kernel.org> LKML-Reference: <4D1933D1.9020609@kernel.org> Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
- 24 12月, 2010 4 次提交
-
-
由 David Rientjes 提交于
NUMA boot code assumes that physical node ids start at 0, but the DIMMs that the apic id represents may not be reachable. If this is the case, node 0 is never online and cpus never end up getting appropriately assigned to a node. This causes the cpumask of all online nodes to be empty and machines crash with kernel code assuming online nodes have valid cpus. The fix is to appropriately map all the address ranges for physical nodes and ensure the cpu to node mapping function checks all possible nodes (up to MAX_NUMNODES) instead of simply checking nodes 0-N, where N is the number of physical nodes, for valid address ranges. This requires no longer "compressing" the address ranges of nodes in the physical node map from 0-N, but rather leave indices in physnodes[] to represent the actual node id of the physical node. Accordingly, the topology exported by both amd_get_nodes() and acpi_get_nodes() no longer must return the number of nodes to iterate through; all such iterations will now be to MAX_NUMNODES. This change also passes the end address of system RAM (which may be different from normal operation if mem= is specified on the command line) before the physnodes[] array is populated. ACPI parsed nodes are truncated to fit within the address range that respect the mem= boundaries and even some physical nodes may become unreachable in such cases. When NUMA emulation does succeed, any apicid to node mapping that exists for unreachable nodes are given default values so that proximity domains can still be assigned. This is important for node_distance() to function as desired. Signed-off-by: NDavid Rientjes <rientjes@google.com> LKML-Reference: <alpine.DEB.2.00.1012221702090.3701@chino.kir.corp.google.com> Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
由 David Rientjes 提交于
This patch adds the equivalent of acpi_fake_nodes() for AMD Northbridge platforms. The goal is to fake the apicid-to-node mappings for NUMA emulation so the physical topology of the machine is correctly maintained within the kernel. This change also fakes proximity domains for both ACPI and k8 code so the physical distance between emulated nodes is maintained via node_distance(). This exports the correct distances via /sys/devices/system/node/.../distance based on the underlying topology. A new helper function, fake_physnodes(), is introduced to correctly invoke the correct NUMA code to fake these two mappings based on the system type. If there is no underlying NUMA configuration, all cpus are mapped to node 0 for local distance. Since acpi_fake_nodes() is no longer called with CONFIG_ACPI_NUMA, it's prototype can be removed from the header file for such a configuration. Signed-off-by: NDavid Rientjes <rientjes@google.com> LKML-Reference: <alpine.DEB.2.00.1012221701360.3701@chino.kir.corp.google.com> Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
由 David Rientjes 提交于
Both acpi_get_nodes() and amd_get_nodes() are only necessary when CONFIG_NUMA_EMU is enabled, so avoid compiling them when the option is disabled. Signed-off-by: NDavid Rientjes <rientjes@google.com> LKML-Reference: <alpine.DEB.2.00.1012221701210.3701@chino.kir.corp.google.com> Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
由 Yinghai Lu 提交于
Recent Intel new system have different order in MADT, aka will list all thread0 at first, then all thread1. But SRAT table still old order, it will list cpus in one socket all together. If the user have compiled limited NR_CPUS or boot with nr_cpus=, could have missed to put some cpus apic id to node mapping into apicid_to_node[]. for example for 4 sockets system with 64 cpus with nr_cpus=32 will get crash... [ 9.106288] Total of 32 processors activated (136190.88 BogoMIPS). [ 9.235021] divide error: 0000 [#1] SMP [ 9.235315] last sysfs file: [ 9.235481] CPU 1 [ 9.235592] Modules linked in: [ 9.245398] [ 9.245478] Pid: 2, comm: kthreadd Not tainted 2.6.37-rc1-tip-yh-01782-ge92ef79-dirty #274 /Sun Fire x4800 [ 9.265415] RIP: 0010:[<ffffffff81075a8f>] [<ffffffff81075a8f>] select_task_rq_fair+0x4f0/0x623 ... [ 9.645938] RIP [<ffffffff81075a8f>] select_task_rq_fair+0x4f0/0x623 [ 9.665356] RSP <ffff88103f8d1c40> [ 9.665568] ---[ end trace 2296156d35fdfc87 ]--- So let just parse all cpu entries in SRAT. Also add apicid checking with MAX_LOCAL_APIC, in case We could out of boundaries of apicid_to_node[]. it fixes following bug too. https://bugzilla.kernel.org/show_bug.cgi?id=22662 -v2: expand to 32bit according to hpa need to add MAX_LOCAL_APIC for 32bit Reported-and-Tested-by: NWu Fengguang <fengguang.wu@intel.com> Reported-by: NBjorn Helgaas <bjorn.helgaas@hp.com> Tested-by: NMyron Stowe <myron.stowe@hp.com> Signed-off-by: NYinghai Lu <yinghai@kernel.org> LKML-Reference: <4D0AD486.9020704@kernel.org> Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
- 12 10月, 2010 1 次提交
-
-
由 Yinghai Lu 提交于
Russ reported SGI UV is broken recently. He said: | The SRAT table shows that memory range is spread over two nodes. | | SRAT: Node 0 PXM 0 100000000-800000000 | SRAT: Node 1 PXM 1 800000000-1000000000 | SRAT: Node 0 PXM 0 1000000000-1080000000 | |Previously, the kernel early_node_map[] would show three entries |with the proper node. | |[ 0.000000] 0: 0x00100000 -> 0x00800000 |[ 0.000000] 1: 0x00800000 -> 0x01000000 |[ 0.000000] 0: 0x01000000 -> 0x01080000 | |The problem is recent community kernel early_node_map[] shows |only two entries with the node 0 entry overlapping the node 1 |entry. | | 0: 0x00100000 -> 0x01080000 | 1: 0x00800000 -> 0x01000000 After looking at the changelog, Found out that it has been broken for a while by following commit |commit 8716273c |Author: David Rientjes <rientjes@google.com> |Date: Fri Sep 25 15:20:04 2009 -0700 | | x86: Export srat physical topology Before that commit, register_active_regions() is called for every SRAT memory entry right away. Use nodememblk_range[] instead of nodes[] in order to make sure we capture the actual memory blocks registered with each node. nodes[] contains an extended range which spans all memory regions associated with a node, but that does not mean that all the memory in between are included. Reported-by: NRuss Anderson <rja@sgi.com> Tested-by: NRuss Anderson <rja@sgi.com> Signed-off-by: NYinghai Lu <yinghai@kernel.org> LKML-Reference: <4CB27BDF.5000800@kernel.org> Acked-by: NDavid Rientjes <rientjes@google.com> Cc: <stable@kernel.org> 2.6.33 .34 .35 .36 Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
- 28 8月, 2010 1 次提交
-
-
由 Yinghai Lu 提交于
1.include linux/memblock.h directly. so later could reduce e820.h reference. 2 this patch is done by sed scripts mainly -v2: use MEMBLOCK_ERROR instead of -1ULL or -1UL Signed-off-by: NYinghai Lu <yinghai@kernel.org> Signed-off-by: NH. Peter Anvin <hpa@zytor.com>
-
- 06 5月, 2010 1 次提交
-
-
由 David Rientjes 提交于
With NUMA emulation, it's possible for a single cpu to be bound to multiple nodes since more than one may have affinity if allocated on a physical node that is local to the cpu. APIC ids must therefore be mapped to the lowest node ids to maintain generic kernel use of functions such as cpu_to_node() that determine device affinity. For example, if a device has proximity to physical node 1, for instance, and a cpu happens to be mapped to a higher emulated node id 8, the proximity may not be correctly determined by comparison in generic code even though the cpu may be truly local and allocated on physical node 1. When this happens, the true topology of the machine isn't accurately represented in the emulated environment; although this isn't critical to the system's uptime, any generic code that is NUMA aware benefits from the physical topology being accurately represented. This can affect any system that maps multiple APIC ids to a single node and is booted with numa=fake=N where N is greater than the number of physical nodes. Signed-off-by: NDavid Rientjes <rientjes@google.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Suresh Siddha <suresh.b.siddha@intel.com> LKML-Reference: <alpine.DEB.2.00.1005060224140.19473@chino.kir.corp.google.com> Signed-off-by: NIngo Molnar <mingo@elte.hu>
-
- 29 4月, 2010 1 次提交
-
-
由 Jan Beulich 提交于
... i.e. when the hole between two regions isn't occupied by memory on another node. This reduces the memory->node table size, thus reducing cache footprint of lookups, which got increased significantly some time ago, and things go back to how they were before that change on the systems I looked at. Signed-off-by: NJan Beulich <jbeulich@novell.com> LKML-Reference: <4BCF3230020000780003B3CA@vpn.id2.novell.com> Signed-off-by: NH. Peter Anvin <hpa@zytor.com>
-
- 23 1月, 2010 1 次提交
-
-
由 David Rientjes 提交于
nodes_possible_map does not currently include nodes that have SRAT entries that are all ACPI_SRAT_MEM_HOT_PLUGGABLE since the bit is cleared in nodes_parsed if it does not have an online address range. Unequivocally setting the bit in nodes_parsed is insufficient since existing code, such as acpi_get_nodes(), assumes all nodes in the map have online address ranges. In fact, all code using nodes_parsed assumes such nodes represent an address range of online memory. nodes_possible_map is created by unioning nodes_parsed and cpu_nodes_parsed; the former represents nodes with online memory and the latter represents memoryless nodes. We now set the bit for hotpluggable nodes in cpu_nodes_parsed so that it also gets set in nodes_possible_map. [ hpa: Haicheng Li points out that this makes the naming of the variable cpu_nodes_parsed somewhat counterintuitive. However, leave it as is in the interest of keeping the pure bug fix patch small. ] Signed-off-by: NDavid Rientjes <rientjes@google.com> Tested-by: NHaicheng Li <haicheng.li@linux.intel.com> LKML-Reference: <alpine.DEB.2.00.1001201152040.30528@chino.kir.corp.google.com> Cc: <stable@kernel.org> Signed-off-by: NH. Peter Anvin <hpa@zytor.com>
-