1. 29 7月, 2009 4 次提交
    • J
      USB: xhci: Scratchpad buffer allocation · 254c80a3
      John Youn 提交于
      Allocates and initializes the scratchpad buffer array (XHCI 4.20).  This is an
      array of 64-bit DMA addresses to scratch pages that the controller may use
      during operation.  The number of pages is specified in the "Max Scratchpad
      Buffers" field of HCSPARAMS2.  The DMA address of this array is written into
      slot 0 of the DCBAA.
      Signed-off-by: NJohn Youn <johnyoun@synopsys.com>
      Acked-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
      254c80a3
    • S
      USB: xhci: Fail gracefully if there's no SS ep companion descriptor. · b7d6d998
      Sarah Sharp 提交于
      This is a work around for a bug in the SuperSpeed Endpoint Companion Descriptor
      parsing code.  It fails in some corner cases, which means ep->ss_ep_comp may be
      NULL.
      Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
      b7d6d998
    • S
      USB: xhci: Setup HW retries correctly. · 47692d17
      Sarah Sharp 提交于
      The xHCI host controller can be programmed to retry a transfer a certain number
      of times per endpoint before it passes back an error condition to the host
      controller driver.  The xHC will return an error code when the error count
      transitions from 1 to 0.  Programming an error count of 3 means the xHC tries
      the transfer 3 times, programming it with a 1 means it tries to transfer once,
      and programming it with 0 means the HW tries the transfer infinitely.
      
      We want isochronous transfers to only be tried once, so set the error count to
      one.
      Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
      47692d17
    • S
      USB: xhci: Represent 64-bit addresses with one u64. · 8e595a5d
      Sarah Sharp 提交于
      There are several xHCI data structures that use two 32-bit fields to
      represent a 64-bit address.  Since some architectures don't support 64-bit
      PCI writes, the fields need to be written in two 32-bit writes.  The xHCI
      specification says that if a platform is incapable of generating 64-bit
      writes, software must write the low 32-bits first, then the high 32-bits.
      Hardware that supports 64-bit addressing will wait for the high 32-bit
      write before reading the revised value, and hardware that only supports
      32-bit writes will ignore the high 32-bit write.
      
      Previous xHCI code represented 64-bit addresses with two u32 values.  This
      lead to buggy code that would write the 32-bits in the wrong order, or
      forget to write the upper 32-bits.  Change the two u32s to one u64 and
      create a function call to write all 64-bit addresses in the proper order.
      This new function could be modified in the future if all platforms support
      64-bit writes.
      Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
      8e595a5d
  2. 16 6月, 2009 15 次提交
    • S
      USB: xhci: Respect critical sections. · f88ba78d
      Sarah Sharp 提交于
      Narrow down time spent holding the xHCI spinlock so that it's only used to
      protect the xHCI rings, not as mutual exclusion.  Stop allocating memory
      while holding the spinlock and calling xhci_alloc_virt_device() and
      xhci_endpoint_init().
      
      The USB core should have locking in it to prevent device state to be
      manipulated by more than one kernel thread.  E.g. you can't free a device
      while you're in the middle of setting a new configuration.  So removing
      the locks from the sections where xhci_alloc_dev() and
      xhci_reset_bandwidth() touch xHCI's representation of the device should be
      OK.
      Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
      f88ba78d
    • S
      USB: xhci: Make xhci-mem.c include linux/dmapool.h · 527c6d7f
      Sarah Sharp 提交于
      xhci-mem.c includes calls to dma_pool_alloc() and other functions defined
      in linux/dmapool.h.  Make sure to include that header file.
      Reported-by: NRandy Dunlap <randy.dunlap@oracle.com>
      Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
      527c6d7f
    • S
      USB: Change names of SuperSpeed ep companion descriptor structs. · f0058c62
      Sarah Sharp 提交于
      Differentiate between SuperSpeed endpoint companion descriptor and the
      wireless USB endpoint companion descriptor.  Make all structure names for
      this descriptor have "ss" (SuperSpeed) in them.  David Vrabel asked for
      this change in http://marc.info/?l=linux-usb&m=124091465109367&w=2Reported-by: NDavid Vrabel <david.vrabel@csr.com>
      Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
      f0058c62
    • S
      USB: xhci: Avoid global namespace pollution. · 23e3be11
      Sarah Sharp 提交于
      Make all globally visible functions start with xhci_ and mark functions as
      static if they're only called within the same C file.  Fix some long lines
      while we're at it.
      Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
      23e3be11
    • S
      USB: xhci: Fix register write order. · 3841d56e
      Sarah Sharp 提交于
      The 0.95 xHCI spec says that if the xHCI HW support 64-bit addressing, you
      must write the whole 64-bit address as one atomic operation, or write the
      low 32 bits, and then the high 32 bits.  I had the register writes
      swapped in some places.
      Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
      3841d56e
    • G
      USB: xhci: fix lots of compiler warnings. · 700e2052
      Greg Kroah-Hartman 提交于
      Turns out someone never built this code on a 64bit platform.
      
      Someone owes me a beer...
      Reported-by: NStephen Rothwell <sfr@canb.auug.org.au>
      Cc: Sarah Sharp <sarah.a.sharp@linux.intel.com>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
      700e2052
    • S
      USB: xhci: URB cancellation support. · ae636747
      Sarah Sharp 提交于
      Add URB cancellation support to the xHCI host controller driver.  This
      currently supports cancellation for endpoints that do not have streams
      enabled.
      
      An URB is represented by a number of Transaction Request Buffers (TRBs),
      that are chained together to make one (or more) Transaction Descriptors
      (TDs) on an endpoint ring.  The ring is comprised of contiguous segments,
      linked together with Link TRBs (which may or may not be chained into a TD).
      
      To cancel an URB, we must stop the endpoint ring, make the hardware skip
      over the TDs in the URB (either by turning them into No-op TDs, or by
      moving the hardware's ring dequeue pointer past the last TRB in the last
      TD), and then restart the ring.
      
      There are times when we must drop the xHCI lock during this process, like
      when we need to complete cancelled URBs.  We must ensure that additional
      URBs can be marked as cancelled, and that new URBs can be enqueued (since
      the URB completion handlers can do either).  The new endpoint ring
      variables cancels_pending and state (which can only be modified while
      holding the xHCI lock) ensure that future cancellation and enqueueing do
      not interrupt any pending cancellation code.
      
      To facilitate cancellation, we must keep track of the starting ring
      segment, first TRB, and last TRB for each URB.  We also need to keep track
      of the list of TDs that have been marked as cancelled, separate from the
      list of TDs that are queued for this endpoint.  The new variables and
      cancellation list are stored in the xhci_td structure.
      Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
      ae636747
    • S
      USB: xhci: Bulk transfer support · b10de142
      Sarah Sharp 提交于
      Allow device drivers to submit URBs to bulk endpoints on devices under an
      xHCI host controller.  Share code between the control and bulk enqueueing
      functions when it makes sense.
      
      To get the best performance out of bulk transfers, SuperSpeed devices must
      have the bMaxBurst size copied from their endpoint companion controller
      into the xHCI device context.  This allows the host controller to "burst"
      up to 16 packets before it has to wait for the device to acknowledge the
      first packet.
      
      The buffers in Transfer Request Blocks (TRBs) can cross page boundaries,
      but they cannot cross 64KB boundaries.  The buffer must be broken into
      multiple TRBs if a 64KB boundary is crossed.
      
      The sum of buffer lengths in all the TRBs in a Transfer Descriptor (TD)
      cannot exceed 64MB.  To work around this, the enqueueing code must enqueue
      multiple TDs.  The transfer event handler may incorrectly give back the
      URB in this case, if it gets a transfer event that points somewhere in the
      first TD.  FIXME later.
      Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
      b10de142
    • S
      USB: xhci: Bandwidth allocation support · f94e0186
      Sarah Sharp 提交于
      Since the xHCI host controller hardware (xHC) has an internal schedule, it
      needs a better representation of what devices are consuming bandwidth on
      the bus.  Each device is represented by a device context, with data about
      the device, endpoints, and pointers to each endpoint ring.
      
      We need to update the endpoint information for a device context before a
      new configuration or alternate interface setting is selected.  We setup an
      input device context with modified endpoint information and newly
      allocated endpoint rings, and then submit a Configure Endpoint Command to
      the hardware.
      
      The host controller can reject the new configuration if it exceeds the bus
      bandwidth, or the host controller doesn't have enough internal resources
      for the configuration.  If the command fails, we still have the older
      device context with the previous configuration.  If the command succeeds,
      we free the old endpoint rings.
      
      The root hub isn't a real device, so always say yes to any bandwidth
      changes for it.
      
      The USB core will enable, disable, and then enable endpoint 0 several
      times during the initialization sequence.  The device will always have an
      endpoint ring for endpoint 0 and bandwidth allocated for that, unless the
      device is disconnected or gets a SetAddress 0 request.  So we don't pay
      attention for when xhci_check_bandwidth() is called for a re-add of
      endpoint 0.
      Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
      f94e0186
    • S
      USB: xhci: Control transfer support. · d0e96f5a
      Sarah Sharp 提交于
      Allow device drivers to enqueue URBs to control endpoints on devices under
      an xHCI host controller.  Each control transfer is represented by a
      series of Transfer Descriptors (TDs) written to an endpoint ring.  There
      is one TD for the Setup phase, (optionally) one TD for the Data phase, and
      one TD for the Status phase.
      
      Enqueue these TDs onto the endpoint ring that represents the control
      endpoint.  The host controller hardware will return an event on the event
      ring that points to the (DMA) address of one of the TDs on the endpoint
      ring.  If the transfer was successful, the transfer event TRB will have a
      completion code of success, and it will point to the Status phase TD.
      Anything else is considered an error.
      
      This should work for control endpoints besides the default endpoint, but
      that hasn't been tested.
      Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
      d0e96f5a
    • S
      USB: xhci: Allocate and address USB devices · 3ffbba95
      Sarah Sharp 提交于
      xHCI needs to get a "Slot ID" from the host controller and allocate other
      data structures for every USB device.  Make usb_alloc_dev() and
      usb_release_dev() allocate and free these device structures.  After
      setting up the xHC device structures, usb_alloc_dev() must wait for the
      hardware to respond to an Enable Slot command.  usb_alloc_dev() fires off
      a Disable Slot command and does not wait for it to complete.
      
      When the USB core wants to choose an address for the device, the xHCI
      driver must issue a Set Address command and wait for an event for that
      command.
      Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
      3ffbba95
    • S
      USB: xhci: No-op command queueing and irq handler. · 7f84eef0
      Sarah Sharp 提交于
      xHCI host controllers can optionally implement a no-op test.  This
      simple test ensures the OS has correctly setup all basic data structures
      and can correctly respond to interrupts from the host controller
      hardware.
      
      There are two rings exercised by the no-op test:  the command ring, and
      the event ring.
      
      The host controller driver writes a no-op command TRB to the command
      ring, and rings the doorbell for the command ring (the first entry in
      the doorbell array).  The hardware receives this event, places a command
      completion event on the event ring, and fires an interrupt.
      
      The host controller driver sees the interrupt, and checks the event ring
      for TRBs it can process, and sees the command completion event.  (See
      the rules in xhci-ring.c for who "owns" a TRB.  This is a simplified set
      of rules, and may not contain all the details that are in the xHCI 0.95
      spec.)
      
      A timer fires every 60 seconds to debug the state of the hardware and
      command and event rings.  This timer only runs if
      CONFIG_USB_XHCI_HCD_DEBUGGING is 'y'.
      Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
      7f84eef0
    • S
      USB: xhci: Device context array allocation. · a74588f9
      Sarah Sharp 提交于
      Instead of keeping a "frame list" like older host controllers, the xHCI
      host controller keeps internal representations of the USB devices, with a
      transfer ring per endpoint.  The host controller queues Transfer Request
      Blocks (TRBs) to the endpoint ring, and then "rings the doorbell" for that
      device.  The host controller processes the transfer, places a transfer
      completion event on the event ring, and interrupts the system.
      
      The device context base address array must be allocated by the xHCI host
      controller driver, along with the device contexts it points to.
      Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
      a74588f9
    • S
      USB: xhci: Ring allocation and initialization. · 0ebbab37
      Sarah Sharp 提交于
      Allocate basic xHCI host controller data structures.  For every xHC, there
      is a command ring, an event ring, and a doorbell array.
      
      The doorbell array is used to notify the host controller that work has
      been enqueued onto one of the rings.  The host controller driver enqueues
      commands on the command ring.  The HW enqueues command completion events
      on the event ring and interrupts the system (currently using PCI
      interrupts, although the xHCI HW will use MSI interrupts eventually).
      
      All rings and the doorbell array must be allocated by the xHCI host
      controller driver.
      
      Each ring is comprised of one or more segments, which consists of 16-byte
      Transfer Request Blocks (TRBs) that can be chained to form a Transfer
      Descriptor (TD) that represents a multiple-buffer request.  Segments are
      linked into a ring using Link TRBs, which means they are dynamically
      growable.
      
      The producer of the ring enqueues a TD by writing one or more TRBs in the
      ring and toggling the TRB cycle bit for each TRB.  The consumer knows it
      can process the TRB when the cycle bit matches its internal consumer cycle
      state for the ring.  The consumer cycle state is toggled an odd amount of
      times in the ring.
      
      An example ring (a ring must have a minimum of 16 TRBs on it, but that's
      too big to draw in ASCII art):
      
                    chain  cycle
                     bit    bit
       ------------------------
      | TD A TRB 1 |  1  |  1  |<-------------  <-- consumer dequeue ptr
       ------------------------               |     consumer cycle state = 1
      | TD A TRB 2 |  1  |  1  |              |
       ------------------------               |
      | TD A TRB 3 |  0  |  1  |  segment 1   |
       ------------------------               |
      | TD B TRB 1 |  1  |  1  |              |
       ------------------------               |
      | TD B TRB 2 |  0  |  1  |              |
       ------------------------               |
      | Link TRB   |  0  |  1  |-----         |
       ------------------------     |         |
                                    |         |
                    chain  cycle    |         |
                     bit    bit     |         |
       ------------------------     |         |
      | TD C TRB 1 |  0  |  1  |<----         |
       ------------------------               |
      | TD D TRB 1 |  1  |  1  |              |
       ------------------------               |
      | TD D TRB 2 |  1  |  1  |   segment 2  |
       ------------------------               |
      | TD D TRB 3 |  1  |  1  |              |
       ------------------------               |
      | TD D TRB 4 |  1  |  1  |              |
       ------------------------               |
      | Link TRB   |  1  |  1  |-----         |
       ------------------------     |         |
                                    |         |
                    chain  cycle    |         |
                     bit    bit     |         |
       ------------------------     |         |
      | TD D TRB 5 |  1  |  1  |<----         |
       ------------------------               |
      | TD D TRB 6 |  0  |  1  |              |
       ------------------------               |
      | TD E TRB 1 |  0  |  1  |   segment 3  |
       ------------------------               |
      |            |  0  |  0  |              | <-- producer enqueue ptr
       ------------------------               |
      |            |  0  |  0  |              |
       ------------------------               |
      | Link TRB   |  0  |  0  |---------------
       ------------------------
      Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
      0ebbab37
    • S
      USB: xhci: BIOS handoff and HW initialization. · 66d4eadd
      Sarah Sharp 提交于
      Add PCI initialization code to take control of the xHCI host controller
      away from the BIOS, halt, and reset the host controller.  The xHCI spec
      says that BIOSes must give up the host controller within 5 seconds.
      
      Add some host controller glue functions to handle hardware initialization
      and memory allocation for the host controller.  The current xHCI
      prototypes use PCI interrupts, but the xHCI spec requires MSI-X
      interrupts.  Add code to support MSI-X interrupts, but use the PCI
      interrupts for now.
      Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
      Signed-off-by: NGreg Kroah-Hartman <gregkh@suse.de>
      66d4eadd