1. 26 1月, 2008 7 次提交
    • A
      ARM kprobes: core code · 24ba613c
      Abhishek Sagar 提交于
      This is a full implementation of Kprobes including Jprobes and
      Kretprobes support.
      
      This ARM implementation does not follow the usual kprobes double-
      exception model. The traditional model is where the initial kprobes
      breakpoint calls kprobe_handler(), which returns from exception to
      execute the instruction in its original context, then immediately
      re-enters after a second breakpoint (or single-stepping exception)
      into post_kprobe_handler(), each time the probe is hit..  The ARM
      implementation only executes one kprobes exception per hit, so no
      post_kprobe_handler() phase. All side-effects from the kprobe'd
      instruction are resolved before returning from the initial exception.
      As a result, all instructions are _always_ effectively boosted
      regardless of the type of instruction, and even regardless of whether
      or not there is a post-handler for the probe.
      Signed-off-by: NAbhishek Sagar <sagar.abhishek@gmail.com>
      Signed-off-by: NQuentin Barnes <qbarnes@gmail.com>
      Signed-off-by: NNicolas Pitre <nico@marvell.com>
      24ba613c
    • Q
      ARM kprobes: instruction single-stepping support · 35aa1df4
      Quentin Barnes 提交于
      This is the code implementing instruction single-stepping for kprobes
      on ARM.
      
      To get around the limitation of no Next-PC and no hardware single-
      stepping, all kprobe'd instructions are split into three camps:
      simulation, emulation, and rejected. "Simulated" instructions are
      those instructions which behavior is reproduced by straight C code.
      "Emulated" instructions are ones that are copied, slightly altered
      and executed directly in the instruction slot to reproduce their
      behavior.  "Rejected" instructions are ones that could be simulated,
      but work hasn't been put into simulating them. These instructions
      should be very rare, if not unencountered, in the kernel. If ever
      needed, code could be added to simulate them.
      
      One might wonder why this and the ptrace singlestep facility are not
      sharing some code.  Both approaches are fundamentally different because
      the ptrace code regains control after the stepped instruction by installing
      a breakpoint after the instruction itself, and possibly at the location
      where the instruction might be branching to, instead of simulating or
      emulating the target instruction.
      
      The ptrace approach isn't suitable for kprobes because the breakpoints
      would have to be moved back, and the icache flushed, everytime the
      probe is hit to let normal code execution resume, which would have a
      significant performance impact. It is also racy on SMP since another
      CPU could, with the right timing, sail through the probe point without
      being caught.  Because ptrace single-stepping always result in a
      different process to be scheduled, the concern for performance is much
      less significant.
      
      On the other hand, the kprobes approach isn't (currently) suitable for
      ptrace because it has no provision for proper user space memory
      protection and translation, and even if that was implemented, the gain
      wouldn't be worth the added complexity in the ptrace path compared to
      the current approach.
      
      So, until kprobes does support user space, both kprobes and ptrace are
      best kept independent and separate.
      Signed-off-by: NQuentin Barnes <qbarnes@gmail.com>
      Signed-off-by: NAbhishek Sagar <sagar.abhishek@gmail.com>
      Signed-off-by: NNicolas Pitre <nico@marvell.com>
      35aa1df4
    • A
      sched: latencytop support · 9745512c
      Arjan van de Ven 提交于
      LatencyTOP kernel infrastructure; it measures latencies in the
      scheduler and tracks it system wide and per process.
      Signed-off-by: NArjan van de Ven <arjan@linux.intel.com>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      9745512c
    • P
      sched: high-res preemption tick · 8f4d37ec
      Peter Zijlstra 提交于
      Use HR-timers (when available) to deliver an accurate preemption tick.
      
      The regular scheduler tick that runs at 1/HZ can be too coarse when nice
      level are used. The fairness system will still keep the cpu utilisation 'fair'
      by then delaying the task that got an excessive amount of CPU time but try to
      minimize this by delivering preemption points spot-on.
      
      The average frequency of this extra interrupt is sched_latency / nr_latency.
      Which need not be higher than 1/HZ, its just that the distribution within the
      sched_latency period is important.
      Signed-off-by: NPeter Zijlstra <a.p.zijlstra@chello.nl>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      8f4d37ec
    • G
      cpu-hotplug: replace lock_cpu_hotplug() with get_online_cpus() · 86ef5c9a
      Gautham R Shenoy 提交于
      Replace all lock_cpu_hotplug/unlock_cpu_hotplug from the kernel and use
      get_online_cpus and put_online_cpus instead as it highlights the
      refcount semantics in these operations.
      
      The new API guarantees protection against the cpu-hotplug operation, but
      it doesn't guarantee serialized access to any of the local data
      structures. Hence the changes needs to be reviewed.
      
      In case of pseries_add_processor/pseries_remove_processor, use
      cpu_maps_update_begin()/cpu_maps_update_done() as we're modifying the
      cpu_present_map there.
      Signed-off-by: NGautham R Shenoy <ego@in.ibm.com>
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      86ef5c9a
    • I
      sched: remove printk_clock references from ia64 · 86faf39d
      Ingo Molnar 提交于
      remove remaining printk_clock references from ia64.
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      86faf39d
    • I
      sched: remove printk_clock() · b842271f
      Ingo Molnar 提交于
      printk_clock() is obsolete - it has been replaced with cpu_clock().
      Signed-off-by: NIngo Molnar <mingo@elte.hu>
      b842271f
  2. 25 1月, 2008 33 次提交