- 25 7月, 2008 40 次提交
-
-
由 Johannes Weiner 提交于
This only reorders functions so that further patches will be easier to read. No code changed. Signed-off-by: NJohannes Weiner <hannes@saeurebad.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Adam Litke 提交于
With shared reservations (and now also with private reservations), we reserve huge pages at mmap time. We also account for the mapping against fs quota to prevent a reservation from being preempted by quota exhaustion. When testing with the libhugetlbfs test suite, I found a problem with quota accounting. FS quota for allocated pages is handled correctly but we are not releasing quota for private pages that were reserved but never allocated. Do this in hugetlb_vm_op_close() at the same time as unused page reservations are released. Signed-off-by: NAdam Litke <agl@us.ibm.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@saeurebad.de> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Acked-by: NAndy Whitcroft <apw@shadowen.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
When removing a huge page from the hugepage pool for a fault the system checks to see if the mapping requires additional pages to be reserved, and if it does whether there are any unreserved pages remaining. If not, the allocation fails without even attempting to get a page. In order to determine whether to apply this check we call vma_has_private_reserves() which tells us if this vma is MAP_PRIVATE and is the owner. This incorrectly triggers the remaining reservation test for MAP_SHARED mappings which prevents allocation of the final page in the pool even though it is reserved for this mapping. In reality we only want to check this for MAP_PRIVATE mappings where the process is not the original mapper. Replace vma_has_private_reserves() with vma_has_reserves() which indicates whether further reserves are required, and update the caller. Signed-off-by: NMel Gorman <mel@csn.ul.ie> Acked-by: NAdam Litke <agl@us.ibm.com> Acked-by: NAndy Whitcroft <apw@shadowen.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jon Tollefson 提交于
Instead of using the variable mmu_huge_psize to keep track of the huge page size we use an array of MMU_PAGE_* values. For each supported huge page size we need to know the hugepte_shift value and have a pgtable_cache. The hstate or an mmu_huge_psizes index is passed to functions so that they know which huge page size they should use. The hugepage sizes 16M and 64K are setup(if available on the hardware) so that they don't have to be set on the boot cmd line in order to use them. The number of 16G pages have to be specified at boot-time though (e.g. hugepagesz=16G hugepages=5). Signed-off-by: NJon Tollefson <kniht@linux.vnet.ibm.com> Signed-off-by: NNick Piggin <npiggin@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jon Tollefson 提交于
Adds a check for an overflow in the filesystem size so if someone is checking with statfs() on a 16G blocksize hugetlbfs in a 32bit binary that it will report back EOVERFLOW instead of a size of 0. Acked-by: NNishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: NJon Tollefson <kniht@linux.vnet.ibm.com> Signed-off-by: NNick Piggin <npiggin@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jon Tollefson 提交于
The huge page size is defined for 16G pages. If a hugepagesz of 16G is specified at boot-time then it becomes the huge page size instead of the default 16M. The change in pgtable-64K.h is to the macro pte_iterate_hashed_subpages to make the increment to va (the 1 being shifted) be a long so that it is not shifted to 0. Otherwise it would create an infinite loop when the shift value is for a 16G page (when base page size is 64K). Signed-off-by: NJon Tollefson <kniht@linux.vnet.ibm.com> Signed-off-by: NNick Piggin <npiggin@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jon Tollefson 提交于
The 16G huge pages have to be reserved in the HMC prior to boot. The location of the pages are placed in the device tree. This patch adds code to scan the device tree during very early boot and save these page locations until hugetlbfs is ready for them. Acked-by: NAdam Litke <agl@us.ibm.com> Signed-off-by: NJon Tollefson <kniht@linux.vnet.ibm.com> Signed-off-by: NNick Piggin <npiggin@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jon Tollefson 提交于
The 16G page locations have been saved during early boot in an array. The alloc_bootmem_huge_page() function adds a page from here to the huge_boot_pages list. Acked-by: NAdam Litke <agl@us.ibm.com> Signed-off-by: NJon Tollefson <kniht@linux.vnet.ibm.com> Signed-off-by: NNick Piggin <npiggin@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jon Tollefson 提交于
Allow alloc_bootmem_huge_page() to be overridden by architectures that can't always use bootmem. This requires huge_boot_pages to be available for use by this function. This is required for powerpc 16G pages, which have to be reserved prior to boot-time. The location of these pages are indicated in the device tree. Acked-by: NAdam Litke <agl@us.ibm.com> Signed-off-by: NJon Tollefson <kniht@linux.vnet.ibm.com> Signed-off-by: NNick Piggin <npiggin@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Nick Piggin 提交于
Allow configurations with the default huge page size which is different to the traditional HPAGE_SIZE size. The default huge page size is the one represented in the legacy /proc ABIs, SHM, and which is defaulted to when mounting hugetlbfs filesystems. This is implemented with a new kernel option default_hugepagesz=, which defaults to HPAGE_SIZE if not specified. Signed-off-by: NNick Piggin <npiggin@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andi Kleen 提交于
Add an hugepagesz=... option similar to IA64, PPC etc. to x86-64. This finally allows to select GB pages for hugetlbfs in x86 now that all the infrastructure is in place. Signed-off-by: NAndi Kleen <ak@suse.de> Signed-off-by: NNick Piggin <npiggin@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andi Kleen 提交于
Acked-by: NAdam Litke <agl@us.ibm.com> Signed-off-by: NAndi Kleen <ak@suse.de> Signed-off-by: NNick Piggin <npiggin@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andi Kleen 提交于
Straight forward extensions for huge pages located in the PUD instead of PMDs. Signed-off-by: NAndi Kleen <ak@suse.de> Signed-off-by: NNick Piggin <npiggin@suse.de> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andi Kleen 提交于
- Reword sentence to clarify meaning with multiple options - Add support for using GB prefixes for the page size - Add extra printk to delayed > MAX_ORDER allocation code Acked-by: NAdam Litke <agl@us.ibm.com> Acked-by: NNishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: NAndi Kleen <ak@suse.de> Signed-off-by: NNick Piggin <npiggin@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andi Kleen 提交于
Make some infrastructure changes to allow boot-time allocation of different hugepage page sizes. - move all basic hstate initialisation into hugetlb_add_hstate - create a new function hugetlb_hstate_alloc_pages() to do the actual initial page allocations. Call this function early in order to allocate giant pages from bootmem. - Check for multiple hugepages= parameters Acked-by: NAdam Litke <agl@us.ibm.com> Acked-by: NNishanth Aravamudan <nacc@us.ibm.com> Acked-by: NAndrew Hastings <abh@cray.com> Signed-off-by: NAndi Kleen <ak@suse.de> Signed-off-by: NNick Piggin <npiggin@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andi Kleen 提交于
This is needed on x86-64 to handle GB pages in hugetlbfs, because it is not practical to enlarge MAX_ORDER to 1GB. Instead the 1GB pages are only allocated at boot using the bootmem allocator using the hugepages=... option. These 1G bootmem pages are never freed. In theory it would be possible to implement that with some complications, but since it would be a one-way street (>= MAX_ORDER pages cannot be allocated later) I decided not to currently. The >= MAX_ORDER code is not ifdef'ed per architecture. It is not very big and the ifdef uglyness seemed not be worth it. Known problems: /proc/meminfo and "free" do not display the memory allocated for gb pages in "Total". This is a little confusing for the user. Acked-by: NAndrew Hastings <abh@cray.com> Signed-off-by: NAndi Kleen <ak@suse.de> Signed-off-by: NNick Piggin <npiggin@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andi Kleen 提交于
hugetlb will need to get compound pages from bootmem to handle the case of them being greater than or equal to MAX_ORDER. Export the constructor function needed for this. Acked-by: NAdam Litke <agl@us.ibm.com> Signed-off-by: NAndi Kleen <ak@suse.de> Signed-off-by: NNick Piggin <npiggin@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andi Kleen 提交于
Straight forward variant of the existing __alloc_bootmem_node, only subsequent patch when allocating giant hugepages at boot -- don't want to panic if we can't allocate as many as the user asked for. Signed-off-by: NAndi Kleen <ak@suse.de> Signed-off-by: NNick Piggin <npiggin@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andi Kleen 提交于
Need this as a separate function for a future patch. No behaviour change. Acked-by: NAdam Litke <agl@us.ibm.com> Acked-by: NNishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: NAndi Kleen <ak@suse.de> Signed-off-by: NNick Piggin <npiggin@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Nishanth Aravamudan 提交于
Provide new hugepages user APIs that are more suited to multiple hstates in sysfs. There is a new directory, /sys/kernel/hugepages. Underneath that directory there will be a directory per-supported hugepage size, e.g.: /sys/kernel/hugepages/hugepages-64kB /sys/kernel/hugepages/hugepages-16384kB /sys/kernel/hugepages/hugepages-16777216kB corresponding to 64k, 16m and 16g respectively. Within each hugepages-size directory there are a number of files, corresponding to the tracked counters in the hstate, e.g.: /sys/kernel/hugepages/hugepages-64/nr_hugepages /sys/kernel/hugepages/hugepages-64/nr_overcommit_hugepages /sys/kernel/hugepages/hugepages-64/free_hugepages /sys/kernel/hugepages/hugepages-64/resv_hugepages /sys/kernel/hugepages/hugepages-64/surplus_hugepages Of these files, the first two are read-write and the latter three are read-only. The size of the hugepage being manipulated is trivially deducible from the enclosing directory and is always expressed in kB (to match meminfo). [dave@linux.vnet.ibm.com: fix build] [nacc@us.ibm.com: hugetlb: hang off of /sys/kernel/mm rather than /sys/kernel] [nacc@us.ibm.com: hugetlb: remove CONFIG_SYSFS dependency] Acked-by: NGreg Kroah-Hartman <gregkh@suse.de> Signed-off-by: NNishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: NNick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: NNishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andi Kleen 提交于
Add the ability to configure the hugetlb hstate used on a per mount basis. - Add a new pagesize= option to the hugetlbfs mount that allows setting the page size - This option causes the mount code to find the hstate corresponding to the specified size, and sets up a pointer to the hstate in the mount's superblock. - Change the hstate accessors to use this information rather than the global_hstate they were using (requires a slight change in mm/memory.c so we don't NULL deref in the error-unmap path -- see comments). [np: take hstate out of hugetlbfs inode and vma->vm_private_data] Acked-by: NAdam Litke <agl@us.ibm.com> Acked-by: NNishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: NAndi Kleen <ak@suse.de> Signed-off-by: NNick Piggin <npiggin@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andi Kleen 提交于
Add basic support for more than one hstate in hugetlbfs. This is the key to supporting multiple hugetlbfs page sizes at once. - Rather than a single hstate, we now have an array, with an iterator - default_hstate continues to be the struct hstate which we use by default - Add functions for architectures to register new hstates [akpm@linux-foundation.org: coding-style fixes] Acked-by: NAdam Litke <agl@us.ibm.com> Acked-by: NNishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: NAndi Kleen <ak@suse.de> Signed-off-by: NNick Piggin <npiggin@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andi Kleen 提交于
The goal of this patchset is to support multiple hugetlb page sizes. This is achieved by introducing a new struct hstate structure, which encapsulates the important hugetlb state and constants (eg. huge page size, number of huge pages currently allocated, etc). The hstate structure is then passed around the code which requires these fields, they will do the right thing regardless of the exact hstate they are operating on. This patch adds the hstate structure, with a single global instance of it (default_hstate), and does the basic work of converting hugetlb to use the hstate. Future patches will add more hstate structures to allow for different hugetlbfs mounts to have different page sizes. [akpm@linux-foundation.org: coding-style fixes] Acked-by: NAdam Litke <agl@us.ibm.com> Acked-by: NNishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: NAndi Kleen <ak@suse.de> Signed-off-by: NNick Piggin <npiggin@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andi Kleen 提交于
Needed to avoid code duplication in follow up patches. Acked-by: NAdam Litke <agl@us.ibm.com> Acked-by: NNishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: NAndi Kleen <ak@suse.de> Signed-off-by: NNick Piggin <npiggin@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Nishanth Aravamudan 提交于
Add a kobject to create /sys/kernel/mm when sysfs is mounted. The kobject will exist regardless. This will allow for the hugepage related sysfs directories to exist under the mm "subsystem" directory. Add an ABI file appropriately. [kosaki.motohiro@jp.fujitsu.com: fix build] Signed-off-by: NNishanth Aravamudan <nacc@us.ibm.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Nishanth Aravamudan 提交于
Towards the end of putting all core mm initialization in mm_init.c, I plan on putting the creation of a mm kobject in a function in that file. However, the file is currently only compiled if CONFIG_DEBUG_MEMORY_INIT is set. Remove this dependency, but put the code under an #ifdef on the same config option. This should result in no functional changes. Signed-off-by: NNishanth Aravamudan <nacc@us.ibm.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Eric Dumazet 提交于
Christoph recently added /proc/vmallocinfo file to get information about vmalloc allocations. This patch adds NUMA specific information, giving number of pages allocated on each memory node. This should help to check that vmalloc() is able to respect NUMA policies. Example of output on a four nodes machine (one cpu per node) 1) network hash tables are evenly spreaded on four nodes (OK) (Same point for inodes and dentries hash tables) 2) iptables tables (x_tables) are correctly allocated on each cpu node (OK). 3) sys_swapon() allocates its memory from one node only. 4) each loaded module is using memory on one node. Sysadmins could tune their setup to change points 3) and 4) if necessary. grep "pages=" /proc/vmallocinfo 0xffffc20000000000-0xffffc20000201000 2101248 alloc_large_system_hash+0x204/0x2c0 pages=512 vmalloc N0=128 N1=128 N2=128 N3=128 0xffffc20000201000-0xffffc20000302000 1052672 alloc_large_system_hash+0x204/0x2c0 pages=256 vmalloc N0=64 N1=64 N2=64 N3=64 0xffffc2000031a000-0xffffc2000031d000 12288 alloc_large_system_hash+0x204/0x2c0 pages=2 vmalloc N1=1 N2=1 0xffffc2000031f000-0xffffc2000032b000 49152 cramfs_uncompress_init+0x2e/0x80 pages=11 vmalloc N0=3 N1=3 N2=2 N3=3 0xffffc2000033e000-0xffffc20000341000 12288 sys_swapon+0x640/0xac0 pages=2 vmalloc N0=2 0xffffc20000341000-0xffffc20000344000 12288 xt_alloc_table_info+0xfe/0x130 [x_tables] pages=2 vmalloc N0=2 0xffffc20000344000-0xffffc20000347000 12288 xt_alloc_table_info+0xfe/0x130 [x_tables] pages=2 vmalloc N1=2 0xffffc20000347000-0xffffc2000034a000 12288 xt_alloc_table_info+0xfe/0x130 [x_tables] pages=2 vmalloc N2=2 0xffffc2000034a000-0xffffc2000034d000 12288 xt_alloc_table_info+0xfe/0x130 [x_tables] pages=2 vmalloc N3=2 0xffffc20004381000-0xffffc20004402000 528384 alloc_large_system_hash+0x204/0x2c0 pages=128 vmalloc N0=32 N1=32 N2=32 N3=32 0xffffc20004402000-0xffffc20004803000 4198400 alloc_large_system_hash+0x204/0x2c0 pages=1024 vmalloc vpages N0=256 N1=256 N2=256 N3=256 0xffffc20004803000-0xffffc20004904000 1052672 alloc_large_system_hash+0x204/0x2c0 pages=256 vmalloc N0=64 N1=64 N2=64 N3=64 0xffffc20004904000-0xffffc20004bec000 3047424 sys_swapon+0x640/0xac0 pages=743 vmalloc vpages N0=743 0xffffffffa0000000-0xffffffffa000f000 61440 sys_init_module+0xc27/0x1d00 pages=14 vmalloc N1=14 0xffffffffa000f000-0xffffffffa0014000 20480 sys_init_module+0xc27/0x1d00 pages=4 vmalloc N0=4 0xffffffffa0014000-0xffffffffa0017000 12288 sys_init_module+0xc27/0x1d00 pages=2 vmalloc N0=2 0xffffffffa0017000-0xffffffffa0022000 45056 sys_init_module+0xc27/0x1d00 pages=10 vmalloc N1=10 0xffffffffa0022000-0xffffffffa0028000 24576 sys_init_module+0xc27/0x1d00 pages=5 vmalloc N3=5 0xffffffffa0028000-0xffffffffa0050000 163840 sys_init_module+0xc27/0x1d00 pages=39 vmalloc N1=39 0xffffffffa0050000-0xffffffffa0052000 8192 sys_init_module+0xc27/0x1d00 pages=1 vmalloc N1=1 0xffffffffa0052000-0xffffffffa0056000 16384 sys_init_module+0xc27/0x1d00 pages=3 vmalloc N1=3 0xffffffffa0056000-0xffffffffa0081000 176128 sys_init_module+0xc27/0x1d00 pages=42 vmalloc N3=42 0xffffffffa0081000-0xffffffffa00ae000 184320 sys_init_module+0xc27/0x1d00 pages=44 vmalloc N3=44 0xffffffffa00ae000-0xffffffffa00b1000 12288 sys_init_module+0xc27/0x1d00 pages=2 vmalloc N3=2 0xffffffffa00b1000-0xffffffffa00b9000 32768 sys_init_module+0xc27/0x1d00 pages=7 vmalloc N0=7 0xffffffffa00b9000-0xffffffffa00c4000 45056 sys_init_module+0xc27/0x1d00 pages=10 vmalloc N3=10 0xffffffffa00c6000-0xffffffffa00e0000 106496 sys_init_module+0xc27/0x1d00 pages=25 vmalloc N2=25 0xffffffffa00e0000-0xffffffffa00f1000 69632 sys_init_module+0xc27/0x1d00 pages=16 vmalloc N2=16 0xffffffffa00f1000-0xffffffffa00f4000 12288 sys_init_module+0xc27/0x1d00 pages=2 vmalloc N3=2 0xffffffffa00f4000-0xffffffffa00f7000 12288 sys_init_module+0xc27/0x1d00 pages=2 vmalloc N3=2 [akpm@linux-foundation.org: fix comment] Signed-off-by: NEric Dumazet <dada1@cosmosbay.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Pavel Machek 提交于
[akpm@linux-foundation.org: fix comment text] Signed-off-by: NPavel Machek <pavel@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Hugh Dickins 提交于
We have a request for tmpfs to support the AIO interface: easily done, no more than replacing the old shmem_file_read by shmem_file_aio_read, cribbed from generic_file_aio_read. (In 2.6.25 its write side was already changed to use generic_file_aio_write.) Incorporate cleanups from Andrew Morton and Harvey Harrison. Tests out fine with LTP's ltp-aiodio.sh, given hacks (not included) to support O_DIRECT. tmpfs cannot honestly support O_DIRECT: its cache-avoiding-IO nature is at odds with direct IO-avoiding-cache. Signed-off-by: NHugh Dickins <hugh@veritas.com> Tested-by: NLawrence Greenfield <leg@google.com> Cc: Christoph Rohland <hans-christoph.rohland@sap.com> Cc: Badari Pulavarty <pbadari@us.ibm.com> Cc: Zach Brown <zach.brown@oracle.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Hugh Dickins 提交于
As akpm points out, there's really no need for generic_file_aio_read to make a special case of count 0: just loop through nr_segs doing nothing. And as Harvey Harrison points out, there's no need to reset retval to 0 where it's already 0. Setting count (or ocount) to 0 before calling generic_segment_checks is unnecessary too; but reluctantly I'll leave that removal to someone with a wider range of gcc versions to hand - 4.1.2 and 4.2.1 don't warn about it, but perhaps others do - I forget which are the warniest versions. Signed-off-by: NHugh Dickins <hugh@veritas.com> Tested-by: NLawrence Greenfield <leg@google.com> Cc: Christoph Rohland <hans-christoph.rohland@sap.com> Cc: Badari Pulavarty <pbadari@us.ibm.com> Cc: Zach Brown <zach.brown@oracle.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
Hugh adds: vma_pagecache_offset() has a dangerously misleading name, since it's using hugepage units: rename it to vma_hugecache_offset(). [apw@shadowen.org: restack onto fixed MAP_PRIVATE reservations] [akpm@linux-foundation.org: vma_split conversion] Signed-off-by: NJohannes Weiner <hannes@saeurebad.de> Signed-off-by: NHugh Dickins <hugh@veritas.com> Cc: Adam Litke <agl@us.ibm.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <ak@suse.de> Cc: Nick Piggin <npiggin@suse.de> Signed-off-by: NAndy Whitcroft <apw@shadowen.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andy Whitcroft 提交于
When a hugetlb mapping with a reservation is split, a new VMA is cloned from the original. This new VMA is a direct copy of the original including the reservation count. When this pair of VMAs are unmapped we will incorrect double account the unused reservation and the overall reservation count will be incorrect, in extreme cases it will wrap. The problem occurs when we split an existing VMA say to unmap a page in the middle. split_vma() will create a new VMA copying all fields from the original. As we are storing our reservation count in vm_private_data this is also copies, endowing the new VMA with a duplicate of the original VMA's reservation. Neither of the new VMAs can exhaust these reservations as they are too small, but when we unmap and close these VMAs we will incorrect credit the remainder twice and resv_huge_pages will become out of sync. This can lead to allocation failures on mappings with reservations and even to resv_huge_pages wrapping which prevents all subsequent hugepage allocations. The simple fix would be to correctly apportion the remaining reservation count when the split is made. However the only hook we have vm_ops->open only has the new VMA we do not know the identity of the preceeding VMA. Also even if we did have that VMA to hand we do not know how much of the reservation was consumed each side of the split. This patch therefore takes a different tack. We know that the whole of any private mapping (which has a reservation) has a reservation over its whole size. Any present pages represent consumed reservation. Therefore if we track the instantiated pages we can calculate the remaining reservation. This patch reuses the existing regions code to track the regions for which we have consumed reservation (ie. the instantiated pages), as each page is faulted in we record the consumption of reservation for the new page. When we need to return unused reservations at unmap time we simply count the consumed reservation region subtracting that from the whole of the map. During a VMA split the newly opened VMA will point to the same region map, as this map is offset oriented it remains valid for both of the split VMAs. This map is referenced counted so that it is removed when all VMAs which are part of the mmap are gone. Thanks to Adam Litke and Mel Gorman for their review feedback. Signed-off-by: NAndy Whitcroft <apw@shadowen.org> Acked-by: NMel Gorman <mel@csn.ul.ie> Cc: Adam Litke <agl@us.ibm.com> Cc: Johannes Weiner <hannes@saeurebad.de> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Michael Kerrisk <mtk.manpages@googlemail.com> Cc: Jon Tollefson <kniht@linux.vnet.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andy Whitcroft 提交于
By default all shared mappings and most private mappings now have reservations associated with them. This improves semantics by providing allocation guarentees to the mapper. However a small number of applications may attempt to make very large sparse mappings, with these strict reservations the system will never be able to honour the mapping. This patch set brings MAP_NORESERVE support to hugetlb files. This allows new mappings to be made to hugetlbfs files without an associated reservation, for both shared and private mappings. This allows applications which want to create very sparse mappings to opt-out of the reservation system. Obviously as there is no reservation they are liable to fault at runtime if the huge page pool becomes exhausted; buyer beware. Signed-off-by: NAndy Whitcroft <apw@shadowen.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Adam Litke <agl@us.ibm.com> Cc: Johannes Weiner <hannes@saeurebad.de> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Michael Kerrisk <mtk.manpages@googlemail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andy Whitcroft 提交于
The following patch will require use of the reservation regions support. Move this earlier in the file. No changes have been made to this code. Signed-off-by: NAndy Whitcroft <apw@shadowen.org> Cc: Mel Gorman <mel@csn.ul.ie> Acked-by: NAdam Litke <agl@us.ibm.com> Cc: Johannes Weiner <hannes@saeurebad.de> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Michael Kerrisk <mtk.manpages@googlemail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andy Whitcroft 提交于
With Mel's hugetlb private reservation support patches applied, strict overcommit semantics are applied to both shared and private huge page mappings. This can be a problem if an application relied on unlimited overcommit semantics for private mappings. An example of this would be an application which maps a huge area with the intention of using it very sparsely. These application would benefit from being able to opt-out of the strict overcommit. It should be noted that prior to hugetlb supporting demand faulting all mappings were fully populated and so applications of this type should be rare. This patch stack implements the MAP_NORESERVE mmap() flag for huge page mappings. This flag has the same meaning as for small page mappings, suppressing reservations for that mapping. Thanks to Mel Gorman for reviewing a number of early versions of these patches. This patch: When a small page mapping is created with mmap() reservations are created by default for any memory pages required. When the region is read/write the reservation is increased for every page, no reservation is needed for read-only regions (as they implicitly share the zero page). Reservations are tracked via the VM_ACCOUNT vma flag which is present when the region has reservation backing it. When we convert a region from read-only to read-write new reservations are aquired and VM_ACCOUNT is set. However, when a read-only map is created with MAP_NORESERVE it is indistinguishable from a normal mapping. When we then convert that to read/write we are forced to incorrectly create reservations for it as we have no record of the original MAP_NORESERVE. This patch introduces a new vma flag VM_NORESERVE which records the presence of the original MAP_NORESERVE flag. This allows us to distinguish these two circumstances and correctly account the reserve. As well as fixing this FIXME in the code, this makes it much easier to introduce MAP_NORESERVE support for huge pages as this flag is available consistantly for the life of the mapping. VM_ACCOUNT on the other hand is heavily used at the generic level in association with small pages. Signed-off-by: NAndy Whitcroft <apw@shadowen.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Adam Litke <agl@us.ibm.com> Cc: Johannes Weiner <hannes@saeurebad.de> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Michael Kerrisk <mtk.manpages@googlemail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andy Whitcroft 提交于
Create some new accessors for vma private data to cut down on and contain the casts. Encapsulates the huge and small page offset calculations. Also adds a couple of VM_BUG_ONs for consistency. [akpm@linux-foundation.org: Make things static] Signed-off-by: NAndy Whitcroft <apw@shadowen.org> Acked-by: NMel Gorman <mel@csn.ul.ie> Cc: Adam Litke <agl@us.ibm.com> Cc: Johannes Weiner <hannes@saeurebad.de> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Michael Kerrisk <mtk.manpages@googlemail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
hugetlb: guarantee that COW faults for a process that called mmap(MAP_PRIVATE) on hugetlbfs will succeed After patch 2 in this series, a process that successfully calls mmap() for a MAP_PRIVATE mapping will be guaranteed to successfully fault until a process calls fork(). At that point, the next write fault from the parent could fail due to COW if the child still has a reference. We only reserve pages for the parent but a copy must be made to avoid leaking data from the parent to the child after fork(). Reserves could be taken for both parent and child at fork time to guarantee faults but if the mapping is large it is highly likely we will not have sufficient pages for the reservation, and it is common to fork only to exec() immediatly after. A failure here would be very undesirable. Note that the current behaviour of mainline with MAP_PRIVATE pages is pretty bad. The following situation is allowed to occur today. 1. Process calls mmap(MAP_PRIVATE) 2. Process calls mlock() to fault all pages and makes sure it succeeds 3. Process forks() 4. Process writes to MAP_PRIVATE mapping while child still exists 5. If the COW fails at this point, the process gets SIGKILLed even though it had taken care to ensure the pages existed This patch improves the situation by guaranteeing the reliability of the process that successfully calls mmap(). When the parent performs COW, it will try to satisfy the allocation without using reserves. If that fails the parent will steal the page leaving any children without a page. Faults from the child after that point will result in failure. If the child COW happens first, an attempt will be made to allocate the page without reserves and the child will get SIGKILLed on failure. To summarise the new behaviour: 1. If the original mapper performs COW on a private mapping with multiple references, it will attempt to allocate a hugepage from the pool or the buddy allocator without using the existing reserves. On fail, VMAs mapping the same area are traversed and the page being COW'd is unmapped where found. It will then steal the original page as the last mapper in the normal way. 2. The VMAs the pages were unmapped from are flagged to note that pages with data no longer exist. Future no-page faults on those VMAs will terminate the process as otherwise it would appear that data was corrupted. A warning is printed to the console that this situation occured. 2. If the child performs COW first, it will attempt to satisfy the COW from the pool if there are enough pages or via the buddy allocator if overcommit is allowed and the buddy allocator can satisfy the request. If it fails, the child will be killed. If the pool is large enough, existing applications will not notice that the reserves were a factor. Existing applications depending on the no-reserves been set are unlikely to exist as for much of the history of hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that point or failing the mmap(). [npiggin@suse.de: fix CONFIG_HUGETLB=n build] Signed-off-by: NMel Gorman <mel@csn.ul.ie> Acked-by: NAdam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <npiggin@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
This patch reserves huge pages at mmap() time for MAP_PRIVATE mappings in a similar manner to the reservations taken for MAP_SHARED mappings. The reserve count is accounted both globally and on a per-VMA basis for private mappings. This guarantees that a process that successfully calls mmap() will successfully fault all pages in the future unless fork() is called. The characteristics of private mappings of hugetlbfs files behaviour after this patch are; 1. The process calling mmap() is guaranteed to succeed all future faults until it forks(). 2. On fork(), the parent may die due to SIGKILL on writes to the private mapping if enough pages are not available for the COW. For reasonably reliable behaviour in the face of a small huge page pool, children of hugepage-aware processes should not reference the mappings; such as might occur when fork()ing to exec(). 3. On fork(), the child VMAs inherit no reserves. Reads on pages already faulted by the parent will succeed. Successful writes will depend on enough huge pages being free in the pool. 4. Quotas of the hugetlbfs mount are checked at reserve time for the mapper and at fault time otherwise. Before this patch, all reads or writes in the child potentially needs page allocations that can later lead to the death of the parent. This applies to reads and writes of uninstantiated pages as well as COW. After the patch it is only a write to an instantiated page that causes problems. Signed-off-by: NMel Gorman <mel@csn.ul.ie> Acked-by: NAdam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
This is a patchset to give reliable behaviour to a process that successfully calls mmap(MAP_PRIVATE) on a hugetlbfs file. Currently, it is possible for the process to be killed due to a small hugepage pool size even if it calls mlock(). MAP_SHARED mappings on hugetlbfs reserve huge pages at mmap() time. This guarantees all future faults against the mapping will succeed. This allows local allocations at first use improving NUMA locality whilst retaining reliability. MAP_PRIVATE mappings do not reserve pages. This can result in an application being SIGKILLed later if a huge page is not available at fault time. This makes huge pages usage very ill-advised in some cases as the unexpected application failure cannot be detected and handled as it is immediately fatal. Although an application may force instantiation of the pages using mlock(), this may lead to poor memory placement and the process may still be killed when performing COW. This patchset introduces a reliability guarantee for the process which creates a private mapping, i.e. the process that calls mmap() on a hugetlbfs file successfully. The first patch of the set is purely mechanical code move to make later diffs easier to read. The second patch will guarantee faults up until the process calls fork(). After patch two, as long as the child keeps the mappings, the parent is no longer guaranteed to be reliable. Patch 3 guarantees that the parent will always successfully COW by unmapping the pages from the child in the event there are insufficient pages in the hugepage pool in allocate a new page, be it via a static or dynamic pool. Existing hugepage-aware applications are unlikely to be affected by this change. For much of hugetlbfs's history, pages were pre-faulted at mmap() time or mmap() failed which acts in a reserve-like manner. If the pool is sized correctly already so that parent and child can fault reliably, the application will not even notice the reserves. It's only when the pool is too small for the application to function perfectly reliably that the reserves come into play. Credit goes to Andy Whitcroft for cleaning up a number of mistakes during review before the patches were released. This patch: A later patch in this set needs to call hugetlb_acct_memory() before it is defined. This patch moves the function without modification. This makes later diffs easier to read. Signed-off-by: NMel Gorman <mel@csn.ul.ie> Acked-by: NAdam Litke <agl@us.ibm.com> Cc: Andy Whitcroft <apw@shadowen.org> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
free_area_init_node() gets passed in the node id as well as the node descriptor. This is redundant as the function can trivially get the node descriptor itself by means of NODE_DATA() and the node's id. I checked all the users and NODE_DATA() seems to be usable everywhere from where this function is called. Signed-off-by: NJohannes Weiner <hannes@saeurebad.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-