- 23 7月, 2013 4 次提交
-
-
由 Yuchung Cheng 提交于
If RTT is not available because Karn's check has failed or no new packet is acked, use the RTT measured from SACK to estimate the RTO. The sender can continue to estimate the RTO during loss recovery or reordering event upon receiving non-partial ACKs. This also changes when the RTO is re-armed. Previously it is only re-armed when some data is cummulatively acknowledged (i.e., SND.UNA advances), but now it is re-armed whenever RTT estimator is updated. This feature is particularly useful to reduce spurious timeout for buffer bloat including cellular carriers [1], and RTT estimation on reordering events. [1] "An In-depth Study of LTE: Effect of Network Protocol and Application Behavior on Performance", In Proc. of SIGCOMM 2013 Signed-off-by: NYuchung Cheng <ycheng@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Yuchung Cheng 提交于
Take RTT sample if an ACK selectively acks some sequences that have never been retransmitted. The Karn's algorithm does not apply even if that ACK (s)acks other retransmitted sequences, because it must been generated by an original but perhaps out-of-order packet. There is no ambiguity. In case when multiple blocks are newly sacked because of ACK losses the earliest block is used to measure RTT, similar to cummulative ACKs. Such RTT samples allow the sender to estimate the RTO during loss recovery and packet reordering events. It is still useful even with TCP timestamps. That's because during these events the SND.UNA may not advance preventing RTT samples from TS ECR (thus the FLAG_ACKED check before calling tcp_ack_update_rtt()). Therefore this new RTT source is complementary to existing ACK and TS RTT mechanisms. This patch does not update the RTO. It is done in the next patch. Signed-off-by: NYuchung Cheng <ycheng@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Yuchung Cheng 提交于
Prefer packet timings to TS-ecr for RTT measurements when both sources are available. That's because broken middle-boxes and remote peer can return packets with corrupted TS ECR fields. Similarly most congestion controls that require RTT signals favor timing-based sources as well. Also check for bad TS ECR values to avoid RTT blow-ups. It has happened on production Web servers. Signed-off-by: NYuchung Cheng <ycheng@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Yuchung Cheng 提交于
The first patch consolidates SYNACK and other RTT measurement to use a central function tcp_ack_update_rtt(). A (small) bonus is now SYNACK RTT measurement happens after PAWS check, potentially reducing the impact of RTO seeding on bad TCP timestamps values. Signed-off-by: NYuchung Cheng <ycheng@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 20 6月, 2013 1 次提交
-
-
由 Cong Wang 提交于
In previous discussions, I tried to find some reasonable heuristics for delayed ACK, however this seems not possible, according to Eric: "ACKS might also be delayed because of bidirectional traffic, and is more controlled by the application response time. TCP stack can not easily estimate it." "ACK can be incredibly useful to recover from losses in a short time. The vast majority of TCP sessions are small lived, and we send one ACK per received segment anyway at beginning or retransmits to let the sender smoothly increase its cwnd, so an auto-tuning facility wont help them that much." and according to David: "ACKs are the only information we have to detect loss. And, for the same reasons that TCP VEGAS is fundamentally broken, we cannot measure the pipe or some other receiver-side-visible piece of information to determine when it's "safe" to stretch ACK. And even if it's "safe", we should not do it so that losses are accurately detected and we don't spuriously retransmit. The only way to know when the bandwidth increases is to "test" it, by sending more and more packets until drops happen. That's why all successful congestion control algorithms must operate on explicited tested pieces of information. Similarly, it's not really possible to universally know if it's safe to stretch ACK or not." It still makes sense to enable or disable quick ack mode like what TCP_QUICK_ACK does. Similar to TCP_QUICK_ACK option, but for people who can't modify the source code and still wants to control TCP delayed ACK behavior. As David suggested, this should belong to per-path scope, since different pathes may want different behaviors. Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Rick Jones <rick.jones2@hp.com> Cc: Stephen Hemminger <stephen@networkplumber.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Thomas Graf <tgraf@suug.ch> CC: David Laight <David.Laight@ACULAB.COM> Signed-off-by: NCong Wang <amwang@redhat.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 13 6月, 2013 1 次提交
-
-
由 Yuchung Cheng 提交于
Linux sends new unset data during disorder and recovery state if all (suspected) lost packets have been retransmitted ( RFC5681, section 3.2 step 1 & 2, RFC3517 section 4, NexSeg() Rule 2). One requirement is to keep the receive window about twice the estimated sender's congestion window (tcp_rcv_space_adjust()), assuming the fast retransmits repair the losses in the next round trip. But currently it's not the case on the first round trip in either normal or Fast Open connection, beucase the initial receive window is identical to (expected) sender's initial congestion window. The fix is to double it. Signed-off-by: NYuchung Cheng <ycheng@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Acked-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 31 5月, 2013 4 次提交
-
-
由 Yuchung Cheng 提交于
If the receiver supports DSACK, sender can detect false recoveries and revert cwnd reductions triggered by either severe network reordering or concurrent reordering and loss event. Signed-off-by: NYuchung Cheng <ycheng@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Yuchung Cheng 提交于
Upon detecting spurious fast retransmit via timestamps during recovery, use PRR to clock out new data packet instead of retransmission. Once all retransmission are proven spurious, the sender then reverts the cwnd reduction and congestion state to open or disorder. The current code does the opposite: it undoes cwnd as soon as any retransmission is spurious and continues to retransmit until all data are acked. This nullifies the point to undo the cwnd because the sender is still retransmistting spuriously. This patch fixes it. The undo_ssthresh argument of tcp_undo_cwnd_reductiuon() is no longer needed and is removed. Signed-off-by: NYuchung Cheng <ycheng@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Yuchung Cheng 提交于
Refactor and relocate various functions or variables to prepare the undo fix. Remove some unused function arguments. Rename tcp_undo_cwr to tcp_undo_cwnd_reduction to be consistent with the rest of CWR related function names. Signed-off-by: NYuchung Cheng <ycheng@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Yuchung Cheng 提交于
This patch series fixes an undo bug in fast recovery: the sender mistakenly undos the cwnd too early but continues fast retransmits until all pending data are acked. This also multiplies the SNMP stat PARTIALUNDO events by the degree of the network reordering. The first patch prepares the fix by consolidating the accounting of newly_acked_sacked in tcp_cwnd_reduction(), instead of updating newly_acked_sacked everytime sacked_out is adjusted. Also pass acked and prior_unsacked as const type because they are readonly in the rest of recovery processing. Signed-off-by: NYuchung Cheng <ycheng@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 26 5月, 2013 3 次提交
-
-
由 Joe Perches 提交于
case TCP_FIN_WAIT1 can also be simplified by reversing tests and adding breaks; Add braces after case and move automatic definitions. Signed-off-by: NJoe Perches <joe@perches.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Joe Perches 提交于
case TCP_SYN_RECV: can have another indentation level removed by converting if (acceptable) { ...; } else { return 1; } to if (!acceptable) return 1; ...; Reflow code and comments to fit 80 columns. Another pure cleanup patch. Signed-off-by: NJoe Perches <joe@perches.com> Improved-by: NEric Dumazet <eric.dumazet@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Eric Dumazet 提交于
Remove one level of indentation 'introduced' in commit c3ae62af (tcp: should drop incoming frames without ACK flag set) if (true) { ... } @acceptable variable is a boolean. This patch is a pure cleanup. Signed-off-by: NEric Dumazet <edumazet@google.com> Cc: Yuchung Cheng <ycheng@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 23 5月, 2013 1 次提交
-
-
由 Nandita Dukkipati 提交于
This patch is a fix for a bug triggering newly_acked_sacked < 0 in tcp_ack(.). The bug is triggered by sacked_out decreasing relative to prior_sacked, but packets_out remaining the same as pior_packets. This is because the snapshot of prior_packets is taken after tcp_sacktag_write_queue() while prior_sacked is captured before tcp_sacktag_write_queue(). The problem is: tcp_sacktag_write_queue (tcp_match_skb_to_sack() -> tcp_fragment) adjusts the pcount for packets_out and sacked_out (MSS change or other reason). As a result, this delta in pcount is reflected in (prior_sacked - sacked_out) but not in (prior_packets - packets_out). This patch does the following: 1) initializes prior_packets at the start of tcp_ack() so as to capture the delta in packets_out created by tcp_fragment. 2) introduces a new "previous_packets_out" variable that snapshots packets_out right before tcp_clean_rtx_queue, so pkts_acked can be correctly computed as before. 3) Computes pkts_acked using previous_packets_out, and computes newly_acked_sacked using prior_packets. Signed-off-by: NNandita Dukkipati <nanditad@google.com> Acked-by: NYuchung Cheng <ycheng@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 20 5月, 2013 1 次提交
-
-
由 Yuchung Cheng 提交于
tcp_timeout_skb() was intended to trigger fast recovery on timeout, unfortunately in reality it often causes spurious retransmission storms during fast recovery. The particular sign is a fast retransmit over the highest sacked sequence (SND.FACK). Currently the RTO timer re-arming (as in RFC6298) offers a nice cushion to avoid spurious timeout: when SND.UNA advances the sender re-arms RTO and extends the timeout by icsk_rto. The sender does not offset the time elapsed since the packet at SND.UNA was sent. But if the next (DUP)ACK arrives later than ~RTTVAR and triggers tcp_fastretrans_alert(), then tcp_timeout_skb() will mark any packet sent before the icsk_rto interval lost, including one that's above the highest sacked sequence. Most likely a large part of scorebard will be marked. If most packets are not lost then the subsequent DUPACKs with new SACK blocks will cause the sender to continue to retransmit packets beyond SND.FACK spuriously. Even if only one packet is lost the sender may falsely retransmit almost the entire window. The situation becomes common in the world of bufferbloat: the RTT continues to grow as the queue builds up but RTTVAR remains small and close to the minimum 200ms. If a data packet is lost and the DUPACK triggered by the next data packet is slightly delayed, then a spurious retransmission storm forms. As the original comment on tcp_timeout_skb() suggests: the usefulness of this feature is questionable. It also wastes cycles walking the sack scoreboard and is actually harmful because of false recovery. It's time to remove this. Signed-off-by: NYuchung Cheng <ycheng@google.com> Acked-by: NEric Dumazet <edumazet@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Acked-by: NNandita Dukkipati <nanditad@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 17 5月, 2013 1 次提交
-
-
由 Eric Dumazet 提交于
tcp_fixup_rcvbuf() contains a loop to estimate initial socket rcv space needed for a given mss. With large MTU (like 64K on lo), we can loop ~500 times and consume a lot of cpu cycles. perf top of 200 concurrent netperf -t TCP_CRR 5.62% netperf [kernel.kallsyms] [k] tcp_init_buffer_space 1.71% netperf [kernel.kallsyms] [k] _raw_spin_lock 1.55% netperf [kernel.kallsyms] [k] kmem_cache_free 1.51% netperf [kernel.kallsyms] [k] tcp_transmit_skb 1.50% netperf [kernel.kallsyms] [k] tcp_ack Lets use a 100% factor, and remove the loop. 100% is needed anyway for tcp_adv_win_scale=1 default value, and is also the maximum factor. Refs: commit b49960a0 ("tcp: change tcp_adv_win_scale and tcp_rmem[2]") Signed-off-by: NEric Dumazet <edumazet@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Yuchung Cheng <ycheng@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 30 4月, 2013 1 次提交
-
-
由 Eric Dumazet 提交于
Add MIB counters for checksum errors in IP layer, and TCP/UDP/ICMP layers, to help diagnose problems. $ nstat -a | grep Csum IcmpInCsumErrors 72 0.0 TcpInCsumErrors 382 0.0 UdpInCsumErrors 463221 0.0 Icmp6InCsumErrors 75 0.0 Udp6InCsumErrors 173442 0.0 IpExtInCsumErrors 10884 0.0 Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 20 4月, 2013 1 次提交
-
-
由 Eric Dumazet 提交于
commit bd090dfc (tcp: tcp_replace_ts_recent() should not be called from tcp_validate_incoming()) introduced a TS ecr bug in slow path processing. 1 A > B P. 1:10001(10000) ack 1 <nop,nop,TS val 1001 ecr 200> 2 B < A . 1:1(0) ack 1 win 257 <sack 9001:10001,TS val 300 ecr 1001> 3 A > B . 1:1001(1000) ack 1 win 227 <nop,nop,TS val 1002 ecr 200> 4 A > B . 1001:2001(1000) ack 1 win 227 <nop,nop,TS val 1002 ecr 200> (ecr 200 should be ecr 300 in packets 3 & 4) Problem is tcp_ack() can trigger send of new packets (retransmits), reflecting the prior TSval, instead of the TSval contained in the currently processed incoming packet. Fix this by calling tcp_replace_ts_recent() from tcp_ack() after the checks, but before the actions. Reported-by: NYuchung Cheng <ycheng@google.com> Signed-off-by: NEric Dumazet <edumazet@google.com> Cc: Neal Cardwell <ncardwell@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 25 3月, 2013 1 次提交
-
-
由 Yuchung Cheng 提交于
On SACK reneging the sender immediately retransmits and forces a timeout but disables Eifel (undo). If the (buggy) receiver does not drop any packet this can trigger a false slow-start retransmit storm driven by the ACKs of the original packets. This can be detected with undo and TCP timestamps. Signed-off-by: NYuchung Cheng <ycheng@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 21 3月, 2013 3 次提交
-
-
由 Yuchung Cheng 提交于
This patch implements F-RTO (foward RTO recovery): When the first retransmission after timeout is acknowledged, F-RTO sends new data instead of old data. If the next ACK acknowledges some never-retransmitted data, then the timeout was spurious and the congestion state is reverted. Otherwise if the next ACK selectively acknowledges the new data, then the timeout was genuine and the loss recovery continues. This idea applies to recurring timeouts as well. While F-RTO sends different data during timeout recovery, it does not (and should not) change the congestion control. The implementaion follows the three steps of SACK enhanced algorithm (section 3) in RFC5682. Step 1 is in tcp_enter_loss(). Step 2 and 3 are in tcp_process_loss(). The basic version is not supported because SACK enhanced version also works for non-SACK connections. The new implementation is functionally in parity with the old F-RTO implementation except the one case where it increases undo events: In addition to the RFC algorithm, a spurious timeout may be detected without sending data in step 2, as long as the SACK confirms not all the original data are dropped. When this happens, the sender will undo the cwnd and perhaps enter fast recovery instead. This additional check increases the F-RTO undo events by 5x compared to the prior implementation on Google Web servers, since the sender often does not have new data to send for HTTP. Note F-RTO may detect spurious timeout before Eifel with timestamps does so. Signed-off-by: NYuchung Cheng <ycheng@google.com> Acked-by: NEric Dumazet <edumazet@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Yuchung Cheng 提交于
Consolidate all of TCP CA_Loss state processing in tcp_fastretrans_alert() into a new function called tcp_process_loss(). This is to prepare the new F-RTO implementation in the next patch. Signed-off-by: NYuchung Cheng <ycheng@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Acked-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Yuchung Cheng 提交于
The patch series refactor the F-RTO feature (RFC4138/5682). This is to simplify the loss recovery processing. Existing F-RTO was developed during the experimental stage (RFC4138) and has many experimental features. It takes a separate code path from the traditional timeout processing by overloading CA_Disorder instead of using CA_Loss state. This complicates CA_Disorder state handling because it's also used for handling dubious ACKs and undos. While the algorithm in the RFC does not change the congestion control, the implementation intercepts congestion control in various places (e.g., frto_cwnd in tcp_ack()). The new code implements newer F-RTO RFC5682 using CA_Loss processing path. F-RTO becomes a small extension in the timeout processing and interfaces with congestion control and Eifel undo modules. It lets congestion control (module) determines how many to send independently. F-RTO only chooses what to send in order to detect spurious retranmission. If timeout is found spurious it invokes existing Eifel undo algorithms like DSACK or TCP timestamp based detection. The first patch removes all F-RTO code except the sysctl_tcp_frto is left for the new implementation. Since CA_EVENT_FRTO is removed, TCP westwood now computes ssthresh on regular timeout CA_EVENT_LOSS event. Signed-off-by: NYuchung Cheng <ycheng@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Acked-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 18 3月, 2013 1 次提交
-
-
由 Christoph Paasch 提交于
TCPCT uses option-number 253, reserved for experimental use and should not be used in production environments. Further, TCPCT does not fully implement RFC 6013. As a nice side-effect, removing TCPCT increases TCP's performance for very short flows: Doing an apache-benchmark with -c 100 -n 100000, sending HTTP-requests for files of 1KB size. before this patch: average (among 7 runs) of 20845.5 Requests/Second after: average (among 7 runs) of 21403.6 Requests/Second Signed-off-by: NChristoph Paasch <christoph.paasch@uclouvain.be> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 12 3月, 2013 2 次提交
-
-
由 Nandita Dukkipati 提交于
This is the second of the TLP patch series; it augments the basic TLP algorithm with a loss detection scheme. This patch implements a mechanism for loss detection when a Tail loss probe retransmission plugs a hole thereby masking packet loss from the sender. The loss detection algorithm relies on counting TLP dupacks as outlined in Sec. 3 of: http://tools.ietf.org/html/draft-dukkipati-tcpm-tcp-loss-probe-01 The basic idea is: Sender keeps track of TLP "episode" upon retransmission of a TLP packet. An episode ends when the sender receives an ACK above the SND.NXT (tracked by tlp_high_seq) at the time of the episode. We want to make sure that before the episode ends the sender receives a "TLP dupack", indicating that the TLP retransmission was unnecessary, so there was no loss/hole that needed plugging. If the sender gets no TLP dupack before the end of the episode, then it reduces ssthresh and the congestion window, because the TLP packet arriving at the receiver probably plugged a hole. Signed-off-by: NNandita Dukkipati <nanditad@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Nandita Dukkipati 提交于
This patch series implement the Tail loss probe (TLP) algorithm described in http://tools.ietf.org/html/draft-dukkipati-tcpm-tcp-loss-probe-01. The first patch implements the basic algorithm. TLP's goal is to reduce tail latency of short transactions. It achieves this by converting retransmission timeouts (RTOs) occuring due to tail losses (losses at end of transactions) into fast recovery. TLP transmits one packet in two round-trips when a connection is in Open state and isn't receiving any ACKs. The transmitted packet, aka loss probe, can be either new or a retransmission. When there is tail loss, the ACK from a loss probe triggers FACK/early-retransmit based fast recovery, thus avoiding a costly RTO. In the absence of loss, there is no change in the connection state. PTO stands for probe timeout. It is a timer event indicating that an ACK is overdue and triggers a loss probe packet. The PTO value is set to max(2*SRTT, 10ms) and is adjusted to account for delayed ACK timer when there is only one oustanding packet. TLP Algorithm On transmission of new data in Open state: -> packets_out > 1: schedule PTO in max(2*SRTT, 10ms). -> packets_out == 1: schedule PTO in max(2*RTT, 1.5*RTT + 200ms) -> PTO = min(PTO, RTO) Conditions for scheduling PTO: -> Connection is in Open state. -> Connection is either cwnd limited or no new data to send. -> Number of probes per tail loss episode is limited to one. -> Connection is SACK enabled. When PTO fires: new_segment_exists: -> transmit new segment. -> packets_out++. cwnd remains same. no_new_packet: -> retransmit the last segment. Its ACK triggers FACK or early retransmit based recovery. ACK path: -> rearm RTO at start of ACK processing. -> reschedule PTO if need be. In addition, the patch includes a small variation to the Early Retransmit (ER) algorithm, such that ER and TLP together can in principle recover any N-degree of tail loss through fast recovery. TLP is controlled by the same sysctl as ER, tcp_early_retrans sysctl. tcp_early_retrans==0; disables TLP and ER. ==1; enables RFC5827 ER. ==2; delayed ER. ==3; TLP and delayed ER. [DEFAULT] ==4; TLP only. The TLP patch series have been extensively tested on Google Web servers. It is most effective for short Web trasactions, where it reduced RTOs by 15% and improved HTTP response time (average by 6%, 99th percentile by 10%). The transmitted probes account for <0.5% of the overall transmissions. Signed-off-by: NNandita Dukkipati <nanditad@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Acked-by: NYuchung Cheng <ycheng@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 05 3月, 2013 1 次提交
-
-
由 Neal Cardwell 提交于
We should not update ts_recent and call tcp_rcv_rtt_measure_ts() both before and after going to step5. That wastes CPU and double-counts the receiver-side RTT sample. Signed-off-by: NNeal Cardwell <ncardwell@google.com> Acked-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 14 2月, 2013 2 次提交
-
-
由 Pravin B Shelar 提交于
Patch cef401de (net: fix possible wrong checksum generation) fixed wrong checksum calculation but it broke TSO by defining new GSO type but not a netdev feature for that type. net_gso_ok() would not allow hardware checksum/segmentation offload of such packets without the feature. Following patch fixes TSO and wrong checksum. This patch uses same logic that Eric Dumazet used. Patch introduces new flag SKBTX_SHARED_FRAG if at least one frag can be modified by the user. but SKBTX_SHARED_FRAG flag is kept in skb shared info tx_flags rather than gso_type. tx_flags is better compared to gso_type since we can have skb with shared frag without gso packet. It does not link SHARED_FRAG to GSO, So there is no need to define netdev feature for this. Signed-off-by: NPravin B Shelar <pshelar@nicira.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Andrey Vagin 提交于
A socket timestamp is a sum of the global tcp_time_stamp and a per-socket offset. A socket offset is added in places where externally visible tcp timestamp option is parsed/initialized. Connections in the SYN_RECV state are not supported, global tcp_time_stamp is used for them, because repair mode doesn't support this state. In a future it can be implemented by the similar way as for TIME_WAIT sockets. Cc: "David S. Miller" <davem@davemloft.net> Cc: Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> Cc: James Morris <jmorris@namei.org> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: Patrick McHardy <kaber@trash.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Pavel Emelyanov <xemul@parallels.com> Signed-off-by: NAndrey Vagin <avagin@openvz.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 07 2月, 2013 1 次提交
-
-
由 Ilpo Järvinen 提交于
There are transients during normal FRTO procedure during which the packets_in_flight can go to zero between write_queue state updates and firing the resulting segments out. As FRTO processing occurs during that window the check must be more precise to not match "spuriously" :-). More specificly, e.g., when packets_in_flight is zero but FLAG_DATA_ACKED is true the problematic branch that set cwnd into zero would not be taken and new segments might be sent out later. Signed-off-by: NIlpo Järvinen <ilpo.jarvinen@helsinki.fi> Tested-by: NEric Dumazet <edumazet@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 06 2月, 2013 1 次提交
-
-
由 Stephen Hemminger 提交于
TCP Appropriate Byte Count was added by me, but later disabled. There is no point in maintaining it since it is a potential source of bugs and Linux already implements other better window protection heuristics. Signed-off-by: NStephen Hemminger <stephen@networkplumber.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 04 2月, 2013 1 次提交
-
-
由 Eric Dumazet 提交于
Commit 9dc27415 (tcp: fix ABC in tcp_slow_start()) uncovered a bug in FRTO code : tcp_process_frto() is setting snd_cwnd to 0 if the number of in flight packets is 0. As Neal pointed out, if no packet is in flight we lost our chance to disambiguate whether a loss timeout was spurious. We should assume it was a proper loss. Reported-by: NPasi Kärkkäinen <pasik@iki.fi> Signed-off-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NEric Dumazet <edumazet@google.com> Cc: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Cc: Yuchung Cheng <ycheng@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 01 2月, 2013 1 次提交
-
-
由 Yuchung Cheng 提交于
On receiving the SYN-ACK, Fast Open checks icsk_retransmit for SYN retransmission to detect SYN/data drops. But if F-RTO is disabled, icsk_retransmit is reset at step D of tcp_fastretrans_alert() ( under tcp_ack()) before tcp_rcv_fastopen_synack(). The fix is to use total_retrans instead which accounts for SYN retransmission regardless the use of F-RTO. Signed-off-by: NYuchung Cheng <ycheng@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 28 1月, 2013 1 次提交
-
-
由 Eric Dumazet 提交于
Pravin Shelar mentioned that GSO could potentially generate wrong TX checksum if skb has fragments that are overwritten by the user between the checksum computation and transmit. He suggested to linearize skbs but this extra copy can be avoided for normal tcp skbs cooked by tcp_sendmsg(). This patch introduces a new SKB_GSO_SHARED_FRAG flag, set in skb_shinfo(skb)->gso_type if at least one frag can be modified by the user. Typical sources of such possible overwrites are {vm}splice(), sendfile(), and macvtap/tun/virtio_net drivers. Tested: $ netperf -H 7.7.8.84 MIGRATED TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 7.7.8.84 () port 0 AF_INET Recv Send Send Socket Socket Message Elapsed Size Size Size Time Throughput bytes bytes bytes secs. 10^6bits/sec 87380 16384 16384 10.00 3959.52 $ netperf -H 7.7.8.84 -t TCP_SENDFILE TCP SENDFILE TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 7.7.8.84 () port 0 AF_INET Recv Send Send Socket Socket Message Elapsed Size Size Size Time Throughput bytes bytes bytes secs. 10^6bits/sec 87380 16384 16384 10.00 3216.80 Performance of the SENDFILE is impacted by the extra allocation and copy, and because we use order-0 pages, while the TCP_STREAM uses bigger pages. Reported-by: NPravin Shelar <pshelar@nicira.com> Signed-off-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 11 1月, 2013 1 次提交
-
-
由 Eric Dumazet 提交于
commit c3ae62af (tcp: should drop incoming frames without ACK flag set) added a regression on the handling of RST messages. RST should be allowed to come even without ACK bit set. We validate the RST by checking the exact sequence, as requested by RFC 793 and 5961 3.2, in tcp_validate_incoming() Reported-by: NEric Wong <normalperson@yhbt.net> Signed-off-by: NEric Dumazet <edumazet@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Tested-by: NEric Wong <normalperson@yhbt.net> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 07 1月, 2013 1 次提交
-
-
由 Hannes Frederic Sowa 提交于
As per suggestion from Eric Dumazet this patch makes tcp_ecn sysctl namespace aware. The reason behind this patch is to ease the testing of ecn problems on the internet and allows applications to tune their own use of ecn. Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: David Miller <davem@davemloft.net> Cc: Stephen Hemminger <shemminger@vyatta.com> Signed-off-by: NHannes Frederic Sowa <hannes@stressinduktion.org> Acked-by: NEric Dumazet <edumazet@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 27 12月, 2012 1 次提交
-
-
由 Eric Dumazet 提交于
In commit 96e0bf4b (tcp: Discard segments that ack data not yet sent) John Dykstra enforced a check against ack sequences. In commit 354e4aa3 (tcp: RFC 5961 5.2 Blind Data Injection Attack Mitigation) I added more safety tests. But we missed fact that these tests are not performed if ACK bit is not set. RFC 793 3.9 mandates TCP should drop a frame without ACK flag set. " fifth check the ACK field, if the ACK bit is off drop the segment and return" Not doing so permits an attacker to only guess an acceptable sequence number, evading stronger checks. Many thanks to Zhiyun Qian for bringing this issue to our attention. See : http://web.eecs.umich.edu/~zhiyunq/pub/ccs12_TCP_sequence_number_inference.pdfReported-by: NZhiyun Qian <zhiyunq@umich.edu> Signed-off-by: NEric Dumazet <edumazet@google.com> Cc: Nandita Dukkipati <nanditad@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: John Dykstra <john.dykstra1@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 08 12月, 2012 1 次提交
-
-
由 Yuchung Cheng 提交于
If SYN-ACK partially acks SYN-data, the client retransmits the remaining data by tcp_retransmit_skb(). This increments lost recovery state variables like tp->retrans_out in Open state. If loss recovery happens before the retransmission is acked, it triggers the WARN_ON check in tcp_fastretrans_alert(). For example: the client sends SYN-data, gets SYN-ACK acking only ISN, retransmits data, sends another 4 data packets and get 3 dupacks. Since the retransmission is not caused by network drop it should not update the recovery state variables. Further the server may return a smaller MSS than the cached MSS used for SYN-data, so the retranmission needs a loop. Otherwise some data will not be retransmitted until timeout or other loss recovery events. Signed-off-by: NYuchung Cheng <ycheng@google.com> Acked-by: NNeal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 14 11月, 2012 1 次提交
-
-
由 Eric Dumazet 提交于
We added support for RFC 5961 in latest kernels but TCP fails to perform exhaustive check of ACK sequence. We can update our view of peer tsval from a frame that is later discarded by tcp_ack() This makes timestamps enabled sessions vulnerable to injection of a high tsval : peers start an ACK storm, since the victim sends a dupack each time it receives an ACK from the other peer. As tcp_validate_incoming() is called before tcp_ack(), we should not peform tcp_replace_ts_recent() from it, and let callers do it at the right time. Signed-off-by: NEric Dumazet <edumazet@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Nandita Dukkipati <nanditad@google.com> Cc: H.K. Jerry Chu <hkchu@google.com> Cc: Romain Francoise <romain@orebokech.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 04 11月, 2012 1 次提交
-
-
由 Eric Dumazet 提交于
For passive TCP connections using TCP_DEFER_ACCEPT facility, we incorrectly increment req->retrans each time timeout triggers while no SYNACK is sent. SYNACK are not sent for TCP_DEFER_ACCEPT that were established (for which we received the ACK from client). Only the last SYNACK is sent so that we can receive again an ACK from client, to move the req into accept queue. We plan to change this later to avoid the useless retransmit (and potential problem as this SYNACK could be lost) TCP_INFO later gives wrong information to user, claiming imaginary retransmits. Decouple req->retrans field into two independent fields : num_retrans : number of retransmit num_timeout : number of timeouts num_timeout is the counter that is incremented at each timeout, regardless of actual SYNACK being sent or not, and used to compute the exponential timeout. Introduce inet_rtx_syn_ack() helper to increment num_retrans only if ->rtx_syn_ack() succeeded. Use inet_rtx_syn_ack() from tcp_check_req() to increment num_retrans when we re-send a SYNACK in answer to a (retransmitted) SYN. Prior to this patch, we were not counting these retransmits. Change tcp_v[46]_rtx_synack() to increment TCP_MIB_RETRANSSEGS only if a synack packet was successfully queued. Reported-by: NYuchung Cheng <ycheng@google.com> Signed-off-by: NEric Dumazet <edumazet@google.com> Cc: Julian Anastasov <ja@ssi.bg> Cc: Vijay Subramanian <subramanian.vijay@gmail.com> Cc: Elliott Hughes <enh@google.com> Cc: Neal Cardwell <ncardwell@google.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 03 11月, 2012 1 次提交
-
-
由 Pavel Emelyanov 提交于
When sending data into a tcp socket in repair state we should check for the amount of data being 0 explicitly. Otherwise we'll have an skb with seq == end_seq in rcv queue, but tcp doesn't expect this to happen (in particular a warn_on in tcp_recvmsg shoots). Signed-off-by: NPavel Emelyanov <xemul@parallels.com> Reported-by: NGiorgos Mavrikas <gmavrikas@gmail.com> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-