1. 23 7月, 2013 4 次提交
    • Y
      tcp: use RTT from SACK for RTO · ed08495c
      Yuchung Cheng 提交于
      If RTT is not available because Karn's check has failed or no
      new packet is acked, use the RTT measured from SACK to estimate
      the RTO. The sender can continue to estimate the RTO during loss
      recovery or reordering event upon receiving non-partial ACKs.
      
      This also changes when the RTO is re-armed. Previously it is
      only re-armed when some data is cummulatively acknowledged (i.e.,
      SND.UNA advances), but now it is re-armed whenever RTT estimator
      is updated. This feature is particularly useful to reduce spurious
      timeout for buffer bloat including cellular carriers [1], and
      RTT estimation on reordering events.
      
      [1] "An In-depth Study of LTE: Effect of Network Protocol and
       Application Behavior on Performance", In Proc. of SIGCOMM 2013
      Signed-off-by: NYuchung Cheng <ycheng@google.com>
      Acked-by: NNeal Cardwell <ncardwell@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      ed08495c
    • Y
      tcp: measure RTT from new SACK · 59c9af42
      Yuchung Cheng 提交于
      Take RTT sample if an ACK selectively acks some sequences that
      have never been retransmitted. The Karn's algorithm does not apply
      even if that ACK (s)acks other retransmitted sequences, because it
      must been generated by an original but perhaps out-of-order packet.
      There is no ambiguity. In case when multiple blocks are newly
      sacked because of ACK losses the earliest block is used to
      measure RTT, similar to cummulative ACKs.
      
      Such RTT samples allow the sender to estimate the RTO during loss
      recovery and packet reordering events. It is still useful even with
      TCP timestamps. That's because during these events the SND.UNA may
      not advance preventing RTT samples from TS ECR (thus the FLAG_ACKED
      check before calling tcp_ack_update_rtt()).  Therefore this new
      RTT source is complementary to existing ACK and TS RTT mechanisms.
      
      This patch does not update the RTO. It is done in the next patch.
      Signed-off-by: NYuchung Cheng <ycheng@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      59c9af42
    • Y
      tcp: prefer packet timing to TS-ECR for RTT · 5b08e47c
      Yuchung Cheng 提交于
      Prefer packet timings to TS-ecr for RTT measurements when both
      sources are available. That's because broken middle-boxes and remote
      peer can return packets with corrupted TS ECR fields. Similarly most
      congestion controls that require RTT signals favor timing-based
      sources as well. Also check for bad TS ECR values to avoid RTT
      blow-ups. It has happened on production Web servers.
      Signed-off-by: NYuchung Cheng <ycheng@google.com>
      Acked-by: NNeal Cardwell <ncardwell@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      5b08e47c
    • Y
      tcp: consolidate SYNACK RTT sampling · 375fe02c
      Yuchung Cheng 提交于
      The first patch consolidates SYNACK and other RTT measurement to use a
      central function tcp_ack_update_rtt(). A (small) bonus is now SYNACK
      RTT measurement happens after PAWS check, potentially reducing the
      impact of RTO seeding on bad TCP timestamps values.
      Signed-off-by: NYuchung Cheng <ycheng@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      375fe02c
  2. 20 6月, 2013 1 次提交
    • C
      tcp: introduce a per-route knob for quick ack · bcefe17c
      Cong Wang 提交于
      In previous discussions, I tried to find some reasonable heuristics
      for delayed ACK, however this seems not possible, according to Eric:
      
      	"ACKS might also be delayed because of bidirectional
      	traffic, and is more controlled by the application
      	response time. TCP stack can not easily estimate it."
      
      	"ACK can be incredibly useful to recover from losses in
      	a short time.
      
      	The vast majority of TCP sessions are small lived, and we
      	send one ACK per received segment anyway at beginning or
      	retransmits to let the sender smoothly increase its cwnd,
      	so an auto-tuning facility wont help them that much."
      
      and according to David:
      
      	"ACKs are the only information we have to detect loss.
      
      	And, for the same reasons that TCP VEGAS is fundamentally
      	broken, we cannot measure the pipe or some other
      	receiver-side-visible piece of information to determine
      	when it's "safe" to stretch ACK.
      
      	And even if it's "safe", we should not do it so that losses are
      	accurately detected and we don't spuriously retransmit.
      
      	The only way to know when the bandwidth increases is to
      	"test" it, by sending more and more packets until drops happen.
      	That's why all successful congestion control algorithms must
      	operate on explicited tested pieces of information.
      
      	Similarly, it's not really possible to universally know if
      	it's safe to stretch ACK or not."
      
      It still makes sense to enable or disable quick ack mode like
      what TCP_QUICK_ACK does.
      
      Similar to TCP_QUICK_ACK option, but for people who can't
      modify the source code and still wants to control
      TCP delayed ACK behavior. As David suggested, this should belong
      to per-path scope, since different pathes may want different
      behaviors.
      
      Cc: Eric Dumazet <eric.dumazet@gmail.com>
      Cc: Rick Jones <rick.jones2@hp.com>
      Cc: Stephen Hemminger <stephen@networkplumber.org>
      Cc: "David S. Miller" <davem@davemloft.net>
      Cc: Thomas Graf <tgraf@suug.ch>
      CC: David Laight <David.Laight@ACULAB.COM>
      Signed-off-by: NCong Wang <amwang@redhat.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      bcefe17c
  3. 13 6月, 2013 1 次提交
  4. 31 5月, 2013 4 次提交
  5. 26 5月, 2013 3 次提交
  6. 23 5月, 2013 1 次提交
    • N
      tcp: bug fix in proportional rate reduction. · 35f079eb
      Nandita Dukkipati 提交于
      This patch is a fix for a bug triggering newly_acked_sacked < 0
      in tcp_ack(.).
      
      The bug is triggered by sacked_out decreasing relative to prior_sacked,
      but packets_out remaining the same as pior_packets. This is because the
      snapshot of prior_packets is taken after tcp_sacktag_write_queue() while
      prior_sacked is captured before tcp_sacktag_write_queue(). The problem
      is: tcp_sacktag_write_queue (tcp_match_skb_to_sack() -> tcp_fragment)
      adjusts the pcount for packets_out and sacked_out (MSS change or other
      reason). As a result, this delta in pcount is reflected in
      (prior_sacked - sacked_out) but not in (prior_packets - packets_out).
      
      This patch does the following:
      1) initializes prior_packets at the start of tcp_ack() so as to
      capture the delta in packets_out created by tcp_fragment.
      2) introduces a new "previous_packets_out" variable that snapshots
      packets_out right before tcp_clean_rtx_queue, so pkts_acked can be
      correctly computed as before.
      3) Computes pkts_acked using previous_packets_out, and computes
      newly_acked_sacked using prior_packets.
      Signed-off-by: NNandita Dukkipati <nanditad@google.com>
      Acked-by: NYuchung Cheng <ycheng@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      35f079eb
  7. 20 5月, 2013 1 次提交
    • Y
      tcp: remove bad timeout logic in fast recovery · 3e59cb0d
      Yuchung Cheng 提交于
      tcp_timeout_skb() was intended to trigger fast recovery on timeout,
      unfortunately in reality it often causes spurious retransmission
      storms during fast recovery. The particular sign is a fast retransmit
      over the highest sacked sequence (SND.FACK).
      
      Currently the RTO timer re-arming (as in RFC6298) offers a nice cushion
      to avoid spurious timeout: when SND.UNA advances the sender re-arms
      RTO and extends the timeout by icsk_rto. The sender does not offset
      the time elapsed since the packet at SND.UNA was sent.
      
      But if the next (DUP)ACK arrives later than ~RTTVAR and triggers
      tcp_fastretrans_alert(), then tcp_timeout_skb() will mark any packet
      sent before the icsk_rto interval lost, including one that's above the
      highest sacked sequence. Most likely a large part of scorebard will be
      marked.
      
      If most packets are not lost then the subsequent DUPACKs with new SACK
      blocks will cause the sender to continue to retransmit packets beyond
      SND.FACK spuriously. Even if only one packet is lost the sender may
      falsely retransmit almost the entire window.
      
      The situation becomes common in the world of bufferbloat: the RTT
      continues to grow as the queue builds up but RTTVAR remains small and
      close to the minimum 200ms. If a data packet is lost and the DUPACK
      triggered by the next data packet is slightly delayed, then a spurious
      retransmission storm forms.
      
      As the original comment on tcp_timeout_skb() suggests: the usefulness
      of this feature is questionable. It also wastes cycles walking the
      sack scoreboard and is actually harmful because of false recovery.
      
      It's time to remove this.
      Signed-off-by: NYuchung Cheng <ycheng@google.com>
      Acked-by: NEric Dumazet <edumazet@google.com>
      Acked-by: NNeal Cardwell <ncardwell@google.com>
      Acked-by: NNandita Dukkipati <nanditad@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      3e59cb0d
  8. 17 5月, 2013 1 次提交
    • E
      tcp: speedup tcp_fixup_rcvbuf() · d2cf4367
      Eric Dumazet 提交于
      tcp_fixup_rcvbuf() contains a loop to estimate initial socket
      rcv space needed for a given mss. With large MTU (like 64K on lo),
      we can loop ~500 times and consume a lot of cpu cycles.
      
      perf top of 200 concurrent netperf -t TCP_CRR
      
      5.62%  netperf  [kernel.kallsyms]  [k] tcp_init_buffer_space
      1.71%  netperf  [kernel.kallsyms]  [k] _raw_spin_lock
      1.55%  netperf  [kernel.kallsyms]  [k] kmem_cache_free
      1.51%  netperf  [kernel.kallsyms]  [k] tcp_transmit_skb
      1.50%  netperf  [kernel.kallsyms]  [k] tcp_ack
      
      Lets use a 100% factor, and remove the loop.
      
      100% is needed anyway for tcp_adv_win_scale=1
      default value, and is also the maximum factor.
      
      Refs: commit b49960a0
            ("tcp: change tcp_adv_win_scale and tcp_rmem[2]")
      Signed-off-by: NEric Dumazet <edumazet@google.com>
      Cc: Neal Cardwell <ncardwell@google.com>
      Cc: Yuchung Cheng <ycheng@google.com>
      Acked-by: NNeal Cardwell <ncardwell@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      d2cf4367
  9. 30 4月, 2013 1 次提交
  10. 20 4月, 2013 1 次提交
    • E
      tcp: call tcp_replace_ts_recent() from tcp_ack() · 12fb3dd9
      Eric Dumazet 提交于
      commit bd090dfc (tcp: tcp_replace_ts_recent() should not be called
      from tcp_validate_incoming()) introduced a TS ecr bug in slow path
      processing.
      
      1 A > B P. 1:10001(10000) ack 1 <nop,nop,TS val 1001 ecr 200>
      2 B < A . 1:1(0) ack 1 win 257 <sack 9001:10001,TS val 300 ecr 1001>
      3 A > B . 1:1001(1000) ack 1 win 227 <nop,nop,TS val 1002 ecr 200>
      4 A > B . 1001:2001(1000) ack 1 win 227 <nop,nop,TS val 1002 ecr 200>
      
      (ecr 200 should be ecr 300 in packets 3 & 4)
      
      Problem is tcp_ack() can trigger send of new packets (retransmits),
      reflecting the prior TSval, instead of the TSval contained in the
      currently processed incoming packet.
      
      Fix this by calling tcp_replace_ts_recent() from tcp_ack() after the
      checks, but before the actions.
      Reported-by: NYuchung Cheng <ycheng@google.com>
      Signed-off-by: NEric Dumazet <edumazet@google.com>
      Cc: Neal Cardwell <ncardwell@google.com>
      Acked-by: NNeal Cardwell <ncardwell@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      12fb3dd9
  11. 25 3月, 2013 1 次提交
  12. 21 3月, 2013 3 次提交
    • Y
      tcp: implement RFC5682 F-RTO · e33099f9
      Yuchung Cheng 提交于
      This patch implements F-RTO (foward RTO recovery):
      
      When the first retransmission after timeout is acknowledged, F-RTO
      sends new data instead of old data. If the next ACK acknowledges
      some never-retransmitted data, then the timeout was spurious and the
      congestion state is reverted.  Otherwise if the next ACK selectively
      acknowledges the new data, then the timeout was genuine and the
      loss recovery continues. This idea applies to recurring timeouts
      as well. While F-RTO sends different data during timeout recovery,
      it does not (and should not) change the congestion control.
      
      The implementaion follows the three steps of SACK enhanced algorithm
      (section 3) in RFC5682. Step 1 is in tcp_enter_loss(). Step 2 and
      3 are in tcp_process_loss().  The basic version is not supported
      because SACK enhanced version also works for non-SACK connections.
      
      The new implementation is functionally in parity with the old F-RTO
      implementation except the one case where it increases undo events:
      In addition to the RFC algorithm, a spurious timeout may be detected
      without sending data in step 2, as long as the SACK confirms not
      all the original data are dropped. When this happens, the sender
      will undo the cwnd and perhaps enter fast recovery instead. This
      additional check increases the F-RTO undo events by 5x compared
      to the prior implementation on Google Web servers, since the sender
      often does not have new data to send for HTTP.
      
      Note F-RTO may detect spurious timeout before Eifel with timestamps
      does so.
      Signed-off-by: NYuchung Cheng <ycheng@google.com>
      Acked-by: NEric Dumazet <edumazet@google.com>
      Acked-by: NNeal Cardwell <ncardwell@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      e33099f9
    • Y
      tcp: refactor CA_Loss state processing · ab42d9ee
      Yuchung Cheng 提交于
      Consolidate all of TCP CA_Loss state processing in
      tcp_fastretrans_alert() into a new function called tcp_process_loss().
      This is to prepare the new F-RTO implementation in the next patch.
      Signed-off-by: NYuchung Cheng <ycheng@google.com>
      Acked-by: NNeal Cardwell <ncardwell@google.com>
      Acked-by: NEric Dumazet <edumazet@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      ab42d9ee
    • Y
      tcp: refactor F-RTO · 9b44190d
      Yuchung Cheng 提交于
      The patch series refactor the F-RTO feature (RFC4138/5682).
      
      This is to simplify the loss recovery processing. Existing F-RTO
      was developed during the experimental stage (RFC4138) and has
      many experimental features.  It takes a separate code path from
      the traditional timeout processing by overloading CA_Disorder
      instead of using CA_Loss state. This complicates CA_Disorder state
      handling because it's also used for handling dubious ACKs and undos.
      While the algorithm in the RFC does not change the congestion control,
      the implementation intercepts congestion control in various places
      (e.g., frto_cwnd in tcp_ack()).
      
      The new code implements newer F-RTO RFC5682 using CA_Loss processing
      path.  F-RTO becomes a small extension in the timeout processing
      and interfaces with congestion control and Eifel undo modules.
      It lets congestion control (module) determines how many to send
      independently.  F-RTO only chooses what to send in order to detect
      spurious retranmission. If timeout is found spurious it invokes
      existing Eifel undo algorithms like DSACK or TCP timestamp based
      detection.
      
      The first patch removes all F-RTO code except the sysctl_tcp_frto is
      left for the new implementation.  Since CA_EVENT_FRTO is removed, TCP
      westwood now computes ssthresh on regular timeout CA_EVENT_LOSS event.
      Signed-off-by: NYuchung Cheng <ycheng@google.com>
      Acked-by: NNeal Cardwell <ncardwell@google.com>
      Acked-by: NEric Dumazet <edumazet@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      9b44190d
  13. 18 3月, 2013 1 次提交
    • C
      tcp: Remove TCPCT · 1a2c6181
      Christoph Paasch 提交于
      TCPCT uses option-number 253, reserved for experimental use and should
      not be used in production environments.
      Further, TCPCT does not fully implement RFC 6013.
      
      As a nice side-effect, removing TCPCT increases TCP's performance for
      very short flows:
      
      Doing an apache-benchmark with -c 100 -n 100000, sending HTTP-requests
      for files of 1KB size.
      
      before this patch:
      	average (among 7 runs) of 20845.5 Requests/Second
      after:
      	average (among 7 runs) of 21403.6 Requests/Second
      Signed-off-by: NChristoph Paasch <christoph.paasch@uclouvain.be>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      1a2c6181
  14. 12 3月, 2013 2 次提交
    • N
      tcp: TLP loss detection. · 9b717a8d
      Nandita Dukkipati 提交于
      This is the second of the TLP patch series; it augments the basic TLP
      algorithm with a loss detection scheme.
      
      This patch implements a mechanism for loss detection when a Tail
      loss probe retransmission plugs a hole thereby masking packet loss
      from the sender. The loss detection algorithm relies on counting
      TLP dupacks as outlined in Sec. 3 of:
      http://tools.ietf.org/html/draft-dukkipati-tcpm-tcp-loss-probe-01
      
      The basic idea is: Sender keeps track of TLP "episode" upon
      retransmission of a TLP packet. An episode ends when the sender receives
      an ACK above the SND.NXT (tracked by tlp_high_seq) at the time of the
      episode. We want to make sure that before the episode ends the sender
      receives a "TLP dupack", indicating that the TLP retransmission was
      unnecessary, so there was no loss/hole that needed plugging. If the
      sender gets no TLP dupack before the end of the episode, then it reduces
      ssthresh and the congestion window, because the TLP packet arriving at
      the receiver probably plugged a hole.
      Signed-off-by: NNandita Dukkipati <nanditad@google.com>
      Acked-by: NNeal Cardwell <ncardwell@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      9b717a8d
    • N
      tcp: Tail loss probe (TLP) · 6ba8a3b1
      Nandita Dukkipati 提交于
      This patch series implement the Tail loss probe (TLP) algorithm described
      in http://tools.ietf.org/html/draft-dukkipati-tcpm-tcp-loss-probe-01. The
      first patch implements the basic algorithm.
      
      TLP's goal is to reduce tail latency of short transactions. It achieves
      this by converting retransmission timeouts (RTOs) occuring due
      to tail losses (losses at end of transactions) into fast recovery.
      TLP transmits one packet in two round-trips when a connection is in
      Open state and isn't receiving any ACKs. The transmitted packet, aka
      loss probe, can be either new or a retransmission. When there is tail
      loss, the ACK from a loss probe triggers FACK/early-retransmit based
      fast recovery, thus avoiding a costly RTO. In the absence of loss,
      there is no change in the connection state.
      
      PTO stands for probe timeout. It is a timer event indicating
      that an ACK is overdue and triggers a loss probe packet. The PTO value
      is set to max(2*SRTT, 10ms) and is adjusted to account for delayed
      ACK timer when there is only one oustanding packet.
      
      TLP Algorithm
      
      On transmission of new data in Open state:
        -> packets_out > 1: schedule PTO in max(2*SRTT, 10ms).
        -> packets_out == 1: schedule PTO in max(2*RTT, 1.5*RTT + 200ms)
        -> PTO = min(PTO, RTO)
      
      Conditions for scheduling PTO:
        -> Connection is in Open state.
        -> Connection is either cwnd limited or no new data to send.
        -> Number of probes per tail loss episode is limited to one.
        -> Connection is SACK enabled.
      
      When PTO fires:
        new_segment_exists:
          -> transmit new segment.
          -> packets_out++. cwnd remains same.
      
        no_new_packet:
          -> retransmit the last segment.
             Its ACK triggers FACK or early retransmit based recovery.
      
      ACK path:
        -> rearm RTO at start of ACK processing.
        -> reschedule PTO if need be.
      
      In addition, the patch includes a small variation to the Early Retransmit
      (ER) algorithm, such that ER and TLP together can in principle recover any
      N-degree of tail loss through fast recovery. TLP is controlled by the same
      sysctl as ER, tcp_early_retrans sysctl.
      tcp_early_retrans==0; disables TLP and ER.
      		 ==1; enables RFC5827 ER.
      		 ==2; delayed ER.
      		 ==3; TLP and delayed ER. [DEFAULT]
      		 ==4; TLP only.
      
      The TLP patch series have been extensively tested on Google Web servers.
      It is most effective for short Web trasactions, where it reduced RTOs by 15%
      and improved HTTP response time (average by 6%, 99th percentile by 10%).
      The transmitted probes account for <0.5% of the overall transmissions.
      Signed-off-by: NNandita Dukkipati <nanditad@google.com>
      Acked-by: NNeal Cardwell <ncardwell@google.com>
      Acked-by: NYuchung Cheng <ycheng@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      6ba8a3b1
  15. 05 3月, 2013 1 次提交
  16. 14 2月, 2013 2 次提交
    • P
      net: Fix possible wrong checksum generation. · c9af6db4
      Pravin B Shelar 提交于
      Patch cef401de (net: fix possible wrong checksum
      generation) fixed wrong checksum calculation but it broke TSO by
      defining new GSO type but not a netdev feature for that type.
      net_gso_ok() would not allow hardware checksum/segmentation
      offload of such packets without the feature.
      
      Following patch fixes TSO and wrong checksum. This patch uses
      same logic that Eric Dumazet used. Patch introduces new flag
      SKBTX_SHARED_FRAG if at least one frag can be modified by
      the user. but SKBTX_SHARED_FRAG flag is kept in skb shared
      info tx_flags rather than gso_type.
      
      tx_flags is better compared to gso_type since we can have skb with
      shared frag without gso packet. It does not link SHARED_FRAG to
      GSO, So there is no need to define netdev feature for this.
      Signed-off-by: NPravin B Shelar <pshelar@nicira.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      c9af6db4
    • A
      tcp: send packets with a socket timestamp · ee684b6f
      Andrey Vagin 提交于
      A socket timestamp is a sum of the global tcp_time_stamp and
      a per-socket offset.
      
      A socket offset is added in places where externally visible
      tcp timestamp option is parsed/initialized.
      
      Connections in the SYN_RECV state are not supported, global
      tcp_time_stamp is used for them, because repair mode doesn't support
      this state. In a future it can be implemented by the similar way
      as for TIME_WAIT sockets.
      
      Cc: "David S. Miller" <davem@davemloft.net>
      Cc: Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
      Cc: James Morris <jmorris@namei.org>
      Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org>
      Cc: Patrick McHardy <kaber@trash.net>
      Cc: Eric Dumazet <edumazet@google.com>
      Cc: Pavel Emelyanov <xemul@parallels.com>
      Signed-off-by: NAndrey Vagin <avagin@openvz.org>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      ee684b6f
  17. 07 2月, 2013 1 次提交
  18. 06 2月, 2013 1 次提交
  19. 04 2月, 2013 1 次提交
  20. 01 2月, 2013 1 次提交
  21. 28 1月, 2013 1 次提交
    • E
      net: fix possible wrong checksum generation · cef401de
      Eric Dumazet 提交于
      Pravin Shelar mentioned that GSO could potentially generate
      wrong TX checksum if skb has fragments that are overwritten
      by the user between the checksum computation and transmit.
      
      He suggested to linearize skbs but this extra copy can be
      avoided for normal tcp skbs cooked by tcp_sendmsg().
      
      This patch introduces a new SKB_GSO_SHARED_FRAG flag, set
      in skb_shinfo(skb)->gso_type if at least one frag can be
      modified by the user.
      
      Typical sources of such possible overwrites are {vm}splice(),
      sendfile(), and macvtap/tun/virtio_net drivers.
      
      Tested:
      
      $ netperf -H 7.7.8.84
      MIGRATED TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to
      7.7.8.84 () port 0 AF_INET
      Recv   Send    Send
      Socket Socket  Message  Elapsed
      Size   Size    Size     Time     Throughput
      bytes  bytes   bytes    secs.    10^6bits/sec
      
       87380  16384  16384    10.00    3959.52
      
      $ netperf -H 7.7.8.84 -t TCP_SENDFILE
      TCP SENDFILE TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 7.7.8.84 ()
      port 0 AF_INET
      Recv   Send    Send
      Socket Socket  Message  Elapsed
      Size   Size    Size     Time     Throughput
      bytes  bytes   bytes    secs.    10^6bits/sec
      
       87380  16384  16384    10.00    3216.80
      
      Performance of the SENDFILE is impacted by the extra allocation and
      copy, and because we use order-0 pages, while the TCP_STREAM uses
      bigger pages.
      Reported-by: NPravin Shelar <pshelar@nicira.com>
      Signed-off-by: NEric Dumazet <edumazet@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      cef401de
  22. 11 1月, 2013 1 次提交
  23. 07 1月, 2013 1 次提交
  24. 27 12月, 2012 1 次提交
  25. 08 12月, 2012 1 次提交
    • Y
      tcp: bug fix Fast Open client retransmission · 93b174ad
      Yuchung Cheng 提交于
      If SYN-ACK partially acks SYN-data, the client retransmits the
      remaining data by tcp_retransmit_skb(). This increments lost recovery
      state variables like tp->retrans_out in Open state. If loss recovery
      happens before the retransmission is acked, it triggers the WARN_ON
      check in tcp_fastretrans_alert(). For example: the client sends
      SYN-data, gets SYN-ACK acking only ISN, retransmits data, sends
      another 4 data packets and get 3 dupacks.
      
      Since the retransmission is not caused by network drop it should not
      update the recovery state variables. Further the server may return a
      smaller MSS than the cached MSS used for SYN-data, so the retranmission
      needs a loop. Otherwise some data will not be retransmitted until timeout
      or other loss recovery events.
      Signed-off-by: NYuchung Cheng <ycheng@google.com>
      Acked-by: NNeal Cardwell <ncardwell@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      93b174ad
  26. 14 11月, 2012 1 次提交
    • E
      tcp: tcp_replace_ts_recent() should not be called from tcp_validate_incoming() · bd090dfc
      Eric Dumazet 提交于
      We added support for RFC 5961 in latest kernels but TCP fails
      to perform exhaustive check of ACK sequence.
      
      We can update our view of peer tsval from a frame that is
      later discarded by tcp_ack()
      
      This makes timestamps enabled sessions vulnerable to injection of
      a high tsval : peers start an ACK storm, since the victim
      sends a dupack each time it receives an ACK from the other peer.
      
      As tcp_validate_incoming() is called before tcp_ack(), we should
      not peform tcp_replace_ts_recent() from it, and let callers do it
      at the right time.
      Signed-off-by: NEric Dumazet <edumazet@google.com>
      Cc: Neal Cardwell <ncardwell@google.com>
      Cc: Yuchung Cheng <ycheng@google.com>
      Cc: Nandita Dukkipati <nanditad@google.com>
      Cc: H.K. Jerry Chu <hkchu@google.com>
      Cc: Romain Francoise <romain@orebokech.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      bd090dfc
  27. 04 11月, 2012 1 次提交
    • E
      tcp: better retrans tracking for defer-accept · e6c022a4
      Eric Dumazet 提交于
      For passive TCP connections using TCP_DEFER_ACCEPT facility,
      we incorrectly increment req->retrans each time timeout triggers
      while no SYNACK is sent.
      
      SYNACK are not sent for TCP_DEFER_ACCEPT that were established (for
      which we received the ACK from client). Only the last SYNACK is sent
      so that we can receive again an ACK from client, to move the req into
      accept queue. We plan to change this later to avoid the useless
      retransmit (and potential problem as this SYNACK could be lost)
      
      TCP_INFO later gives wrong information to user, claiming imaginary
      retransmits.
      
      Decouple req->retrans field into two independent fields :
      
      num_retrans : number of retransmit
      num_timeout : number of timeouts
      
      num_timeout is the counter that is incremented at each timeout,
      regardless of actual SYNACK being sent or not, and used to
      compute the exponential timeout.
      
      Introduce inet_rtx_syn_ack() helper to increment num_retrans
      only if ->rtx_syn_ack() succeeded.
      
      Use inet_rtx_syn_ack() from tcp_check_req() to increment num_retrans
      when we re-send a SYNACK in answer to a (retransmitted) SYN.
      Prior to this patch, we were not counting these retransmits.
      
      Change tcp_v[46]_rtx_synack() to increment TCP_MIB_RETRANSSEGS
      only if a synack packet was successfully queued.
      Reported-by: NYuchung Cheng <ycheng@google.com>
      Signed-off-by: NEric Dumazet <edumazet@google.com>
      Cc: Julian Anastasov <ja@ssi.bg>
      Cc: Vijay Subramanian <subramanian.vijay@gmail.com>
      Cc: Elliott Hughes <enh@google.com>
      Cc: Neal Cardwell <ncardwell@google.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      e6c022a4
  28. 03 11月, 2012 1 次提交