- 28 12月, 2016 12 次提交
-
-
由 Tejun Heo 提交于
kn->priv which is a void * is used as a RCU pointer by cgroup. When dereferencing it, it was passing kn->priv to rcu_derefreence() without casting it into a RCU pointer triggering address space mismatch warning from sparse. Fix them. Signed-off-by: NTejun Heo <tj@kernel.org> Reported-by: NFengguang Wu <fengguang.wu@intel.com> Acked-by: NAcked-by: Zefan Li <lizefan@huawei.com>
-
由 Tejun Heo 提交于
get/put_css_set() get exposed in cgroup-internal.h in the process. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NAcked-by: Zefan Li <lizefan@huawei.com>
-
由 Tejun Heo 提交于
Now that v1 functions are separated out, rename some functions for consistency. cgroup_dfl_base_files -> cgroup_base_files cgroup_legacy_base_files -> cgroup1_base_files cgroup_ssid_no_v1() -> cgroup1_ssid_disabled() cgroup_pidlist_destroy_all -> cgroup1_pidlist_destroy_all() cgroup_release_agent() -> cgroup1_release_agent() check_for_release() -> cgroup1_check_for_release() Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NAcked-by: Zefan Li <lizefan@huawei.com>
-
由 Tejun Heo 提交于
Now that the v1 mount code is split into separate functions, move them to kernel/cgroup/cgroup-v1.c along with the mount option handling code. As this puts all v1-only kernfs_syscall_ops in cgroup-v1.c, move cgroup1_kf_syscall_ops to cgroup-v1.c too. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NAcked-by: Zefan Li <lizefan@huawei.com>
-
由 Tejun Heo 提交于
Currently, cgroup_kf_syscall_ops is shared by v1 and v2 and the specific methods test the version and take different actions. Split out v1 functions and put them in cgroup1_kf_syscall_ops and remove the now unnecessary explicit branches in specific methods. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NAcked-by: Zefan Li <lizefan@huawei.com>
-
由 Tejun Heo 提交于
While sharing some mechanisms, the mount paths of v1 and v2 are substantially different. Their implementations were mixed in cgroup_mount(). This patch splits them out so that they're easier to follow and organize. This patch causes one functional change - the WARN_ON(new_sb) gets lost. This is because the actual mounting gets moved to cgroup_do_mount() and thus @new_sb is no longer accessible by default to cgroup1_mount(). While we can add it as an explicit out parameter to cgroup_do_mount(), this part of code hasn't changed and the warning hasn't triggered for quite a while. Dropping it should be fine. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NAcked-by: Zefan Li <lizefan@huawei.com>
-
由 Tejun Heo 提交于
cgroup.c is getting too unwieldy. Let's move out cgroup v1 specific code along with the debug controller into kernel/cgroup/cgroup-v1.c. v2: cgroup_mutex and css_set_lock made available in cgroup-internal.h regardless of CONFIG_PROVE_RCU. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NAcked-by: Zefan Li <lizefan@huawei.com>
-
由 Tejun Heo 提交于
They're growing to be too many and planned to get split further. Move them under their own directory. kernel/cgroup.c -> kernel/cgroup/cgroup.c kernel/cgroup_freezer.c -> kernel/cgroup/freezer.c kernel/cgroup_pids.c -> kernel/cgroup/pids.c kernel/cpuset.c -> kernel/cgroup/cpuset.c Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NAcked-by: Zefan Li <lizefan@huawei.com>
-
由 Tejun Heo 提交于
Reorder css_set fields so that they're roughly in the order of how hot they are. The rough order is 1. the actual csses 2. reference counter and the default cgroup pointer. 3. task lists and iterations 4. fields used during merge including css_set lookup 5. the rest Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NAcked-by: Zefan Li <lizefan@huawei.com>
-
由 Tejun Heo 提交于
cgroup_pid_fry() was added to mangle cgroup.procs pid listing order on v2 to make it clear that the output is not sorted. Now that v2 now uses a separate "cgroup.procs" read method, this is no longer used. Remove it. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NAcked-by: Zefan Li <lizefan@huawei.com>
-
由 Tejun Heo 提交于
On v1, "tasks" and "cgroup.procs" are expected to be sorted which makes the implementation expensive and unnecessarily complicated involving result cache management. v2 doesn't have the sorting requirement, so it can just iterate and print processes one by one. seq_files are either read sequentially or reset to position zero, so the implementation doesn't even need to worry about seeking. This keeps the css_task_iter across multiple read(2) calls and migrations of new processes always append won't miss processes which are newly migrated in before each read(2). Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NAcked-by: Zefan Li <lizefan@huawei.com>
-
由 Tejun Heo 提交于
Pipe the newly added kernfs->open/release() callbacks through cftype. While at it, as cleanup operations now can be performed from ->release() instead of ->seq_stop(), make the latter optional. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NAcked-by: Zefan Li <lizefan@huawei.com>
-
- 26 11月, 2016 1 次提交
-
-
由 Daniel Mack 提交于
This patch adds two sets of eBPF program pointers to struct cgroup. One for such that are directly pinned to a cgroup, and one for such that are effective for it. To illustrate the logic behind that, assume the following example cgroup hierarchy. A - B - C \ D - E If only B has a program attached, it will be effective for B, C, D and E. If D then attaches a program itself, that will be effective for both D and E, and the program in B will only affect B and C. Only one program of a given type is effective for a cgroup. Attaching and detaching programs will be done through the bpf(2) syscall. For now, ingress and egress inet socket filtering are the only supported use-cases. Signed-off-by: NDaniel Mack <daniel@zonque.org> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 29 9月, 2016 1 次提交
-
-
由 Tejun Heo 提交于
4c737b41 ("cgroup: make cgroup_path() and friends behave in the style of strlcpy()") broke error handling in proc_cgroup_show() and cgroup_release_agent() by not handling negative return values from cgroup_path_ns_locked(). Fix it. Reported-by: NDan Carpenter <dan.carpenter@oracle.com> Signed-off-by: NTejun Heo <tj@kernel.org>
-
- 24 9月, 2016 1 次提交
-
-
由 Tejun Heo 提交于
On the v2 hierarchy, "cgroup.subtree_control" rejects controller enables if the cgroup has processes in it. The enforcement of this logic assumes that the cgroup wouldn't have any css_sets associated with it if there are no tasks in the cgroup, which is no longer true since a79a908f ("cgroup: introduce cgroup namespaces"). When a cgroup namespace is created, it pins the css_set of the creating task to use it as the root css_set of the namespace. This extra reference stays as long as the namespace is around and makes "cgroup.subtree_control" think that the namespace root cgroup is not empty even when it is and thus reject controller enables. Fix it by making cgroup_subtree_control() walk and test emptiness of each css_set instead of testing whether the list_head is empty. While at it, update the comment of cgroup_task_count() to indicate that the returned value may be higher than the number of tasks, which has always been true due to temporary references and doesn't break anything. Signed-off-by: NTejun Heo <tj@kernel.org> Reported-by: NEvgeny Vereshchagin <evvers@ya.ru> Cc: Serge E. Hallyn <serge.hallyn@ubuntu.com> Cc: Aditya Kali <adityakali@google.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: stable@vger.kernel.org # v4.6+ Fixes: a79a908f ("cgroup: introduce cgroup namespaces") Link: https://github.com/systemd/systemd/pull/3589#issuecomment-249089541
-
- 23 9月, 2016 2 次提交
-
-
由 Andrey Vagin 提交于
Return -EPERM if an owning user namespace is outside of a process current user namespace. v2: In a first version ns_get_owner returned ENOENT for init_user_ns. This special cases was removed from this version. There is nothing outside of init_user_ns, so we can return EPERM. v3: rename ns->get_owner() to ns->owner(). get_* usually means that it grabs a reference. Acked-by: NSerge Hallyn <serge@hallyn.com> Signed-off-by: NAndrei Vagin <avagin@openvz.org> Signed-off-by: NEric W. Biederman <ebiederm@xmission.com>
-
由 Eric W. Biederman 提交于
The current error codes returned when a the per user per user namespace limit are hit (EINVAL, EUSERS, and ENFILE) are wrong. I asked for advice on linux-api and it we made clear that those were the wrong error code, but a correct effor code was not suggested. The best general error code I have found for hitting a resource limit is ENOSPC. It is not perfect but as it is unambiguous it will serve until someone comes up with a better error code. Signed-off-by: N"Eric W. Biederman" <ebiederm@xmission.com>
-
- 20 9月, 2016 1 次提交
-
-
由 Johannes Weiner 提交于
When a socket is cloned, the associated sock_cgroup_data is duplicated but not its reference on the cgroup. As a result, the cgroup reference count will underflow when both sockets are destroyed later on. Fixes: bd1060a1 ("sock, cgroup: add sock->sk_cgroup") Link: http://lkml.kernel.org/r/20160914194846.11153-2-hannes@cmpxchg.orgSigned-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NTejun Heo <tj@kernel.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: <stable@vger.kernel.org> [4.5+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 18 8月, 2016 1 次提交
-
-
由 Peter Zijlstra 提交于
The current percpu-rwsem read side is entirely free of serializing insns at the cost of having a synchronize_sched() in the write path. The latency of the synchronize_sched() is too high for cgroups. The commit 1ed13287 talks about the write path being a fairly cold path but this is not the case for Android which moves task to the foreground cgroup and back around binder IPC calls from foreground processes to background processes, so it is significantly hotter than human initiated operations. Switch cgroup_threadgroup_rwsem into the slow mode for now to avoid the problem, hopefully it should not be that slow after another commit: 80127a39 ("locking/percpu-rwsem: Optimize readers and reduce global impact"). We could just add rcu_sync_enter() into cgroup_init() but we do not want another synchronize_sched() at boot time, so this patch adds the new helper which doesn't block but currently can only be called before the first use. Reported-by: NJohn Stultz <john.stultz@linaro.org> Reported-by: NDmitry Shmidt <dimitrysh@google.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: NOleg Nesterov <oleg@redhat.com> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Colin Cross <ccross@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rom Lemarchand <romlem@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Todd Kjos <tkjos@google.com> Link: http://lkml.kernel.org/r/20160811165413.GA22807@redhat.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 10 8月, 2016 2 次提交
-
-
由 Tejun Heo 提交于
Debugging what goes wrong with cgroup setup can get hairy. Add tracepoints for cgroup hierarchy mount, cgroup creation/destruction and task migration operations for better visibility. Signed-off-by: NTejun Heo <tj@kernel.org>
-
由 Tejun Heo 提交于
cgroup_path() and friends used to format the path from the end and thus the resulting path usually didn't start at the start of the passed in buffer. Also, when the buffer was too small, the partial result was truncated from the head rather than tail and there was no way to tell how long the full path would be. These make the functions less robust and more awkward to use. With recent updates to kernfs_path(), cgroup_path() and friends can be made to behave in strlcpy() style. * cgroup_path(), cgroup_path_ns[_locked]() and task_cgroup_path() now always return the length of the full path. If buffer is too small, it contains nul terminated truncated output. * All users updated accordingly. v2: cgroup_path() usage in kernel/sched/debug.c converted. Signed-off-by: NTejun Heo <tj@kernel.org> Acked-by: NGreg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Serge Hallyn <serge.hallyn@ubuntu.com> Cc: Peter Zijlstra <peterz@infradead.org>
-
- 09 8月, 2016 1 次提交
-
-
由 Eric W. Biederman 提交于
Acked-by: NKees Cook <keescook@chromium.org> Signed-off-by: N"Eric W. Biederman" <ebiederm@xmission.com>
-
- 27 7月, 2016 2 次提交
-
-
由 Johannes Weiner 提交于
css_idr allocation starts at 1, so index 0 will never point to an item. css_from_id() currently filters that before asking idr_find(), but idr_find() would also just return NULL, so this is not needed. Link: http://lkml.kernel.org/r/20160617162427.GC19084@cmpxchg.orgSigned-off-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: Tejun Heo <tj@kernel.org> Cc: Nikolay Borisov <kernel@kyup.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
The valid cgroup hierarchy ID range includes 0, so we can't filter for positive numbers when freeing it, or it'll leak the first ID. No big deal, just disruptive when reading the code. The ID is freed during error handling and when the reference count hits zero, so the double-free test is not necessary; remove it. Link: http://lkml.kernel.org/r/20160617162359.GB19084@cmpxchg.orgSigned-off-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: Tejun Heo <tj@kernel.org> Cc: Nikolay Borisov <kernel@kyup.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 20 7月, 2016 1 次提交
-
-
由 Wei Yongjun 提交于
Remove duplicated include. Signed-off-by: NWei Yongjun <yongjun_wei@trendmicro.com.cn> Signed-off-by: NTejun Heo <tj@kernel.org>
-
- 15 7月, 2016 3 次提交
-
-
由 Eric W. Biederman 提交于
Unprivileged users can't use hierarchies if they create them as they do not have privilieges to the root directory. Which means the only thing a hiearchy created by an unprivileged user is good for is expanding the number of cgroup links in every css_set, which is a DOS attack. We could allow hierarchies to be created in namespaces in the initial user namespace. Unfortunately there is only a single namespace for the names of heirarchies, so that is likely to create more confusion than not. So do the simple thing and restrict hiearchy creation to the initial cgroup namespace. Cc: stable@vger.kernel.org Fixes: a79a908f ("cgroup: introduce cgroup namespaces") Signed-off-by: N"Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: NTejun Heo <tj@kernel.org>
-
由 Eric W. Biederman 提交于
In most code paths involving cgroup migration cgroup_threadgroup_rwsem is taken. There are two exceptions: - remove_tasks_in_empty_cpuset calls cgroup_transfer_tasks - vhost_attach_cgroups_work calls cgroup_attach_task_all With cgroup_threadgroup_rwsem held it is guaranteed that cgroup_post_fork and copy_cgroup_ns will reference the same css_set from the process calling fork. Without such an interlock there process after fork could reference one css_set from it's new cgroup namespace and another css_set from task->cgroups, which semantically is nonsensical. Cc: stable@vger.kernel.org Fixes: a79a908f ("cgroup: introduce cgroup namespaces") Signed-off-by: N"Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: NTejun Heo <tj@kernel.org>
-
由 Eric W. Biederman 提交于
If "clone(CLONE_NEWCGROUP...)" is called it results in a nice lockdep valid splat. In __cgroup_proc_write the lock ordering is: cgroup_mutex -- through cgroup_kn_lock_live cgroup_threadgroup_rwsem In copy_process the guts of clone the lock ordering is: cgroup_threadgroup_rwsem -- through threadgroup_change_begin cgroup_mutex -- through copy_namespaces -- copy_cgroup_ns lockdep reports some a different call chains for the first ordering of cgroup_mutex and cgroup_threadgroup_rwsem but it is harder to trace. This is most definitely deadlock potential under the right circumstances. Fix this by by skipping the cgroup_mutex and making the locking in copy_cgroup_ns mirror the locking in cgroup_post_fork which also runs during fork under the cgroup_threadgroup_rwsem. Cc: stable@vger.kernel.org Fixes: a79a908f ("cgroup: introduce cgroup namespaces") Signed-off-by: N"Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: NTejun Heo <tj@kernel.org>
-
- 02 7月, 2016 1 次提交
-
-
由 Martin KaFai Lau 提交于
Add a helper function to get a cgroup2 from a fd. It will be stored in a bpf array (BPF_MAP_TYPE_CGROUP_ARRAY) which will be introduced in the later patch. Signed-off-by: NMartin KaFai Lau <kafai@fb.com> Cc: Alexei Starovoitov <ast@fb.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Tejun Heo <tj@kernel.org> Acked-by: NTejun Heo <tj@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
- 24 6月, 2016 1 次提交
-
-
While testing the deadline scheduler + cgroup setup I hit this warning. [ 132.612935] ------------[ cut here ]------------ [ 132.612951] WARNING: CPU: 5 PID: 0 at kernel/softirq.c:150 __local_bh_enable_ip+0x6b/0x80 [ 132.612952] Modules linked in: (a ton of modules...) [ 132.612981] CPU: 5 PID: 0 Comm: swapper/5 Not tainted 4.7.0-rc2 #2 [ 132.612981] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.8.2-20150714_191134- 04/01/2014 [ 132.612982] 0000000000000086 45c8bb5effdd088b ffff88013fd43da0 ffffffff813d229e [ 132.612984] 0000000000000000 0000000000000000 ffff88013fd43de0 ffffffff810a652b [ 132.612985] 00000096811387b5 0000000000000200 ffff8800bab29d80 ffff880034c54c00 [ 132.612986] Call Trace: [ 132.612987] <IRQ> [<ffffffff813d229e>] dump_stack+0x63/0x85 [ 132.612994] [<ffffffff810a652b>] __warn+0xcb/0xf0 [ 132.612997] [<ffffffff810e76a0>] ? push_dl_task.part.32+0x170/0x170 [ 132.612999] [<ffffffff810a665d>] warn_slowpath_null+0x1d/0x20 [ 132.613000] [<ffffffff810aba5b>] __local_bh_enable_ip+0x6b/0x80 [ 132.613008] [<ffffffff817d6c8a>] _raw_write_unlock_bh+0x1a/0x20 [ 132.613010] [<ffffffff817d6c9e>] _raw_spin_unlock_bh+0xe/0x10 [ 132.613015] [<ffffffff811388ac>] put_css_set+0x5c/0x60 [ 132.613016] [<ffffffff8113dc7f>] cgroup_free+0x7f/0xa0 [ 132.613017] [<ffffffff810a3912>] __put_task_struct+0x42/0x140 [ 132.613018] [<ffffffff810e776a>] dl_task_timer+0xca/0x250 [ 132.613027] [<ffffffff810e76a0>] ? push_dl_task.part.32+0x170/0x170 [ 132.613030] [<ffffffff8111371e>] __hrtimer_run_queues+0xee/0x270 [ 132.613031] [<ffffffff81113ec8>] hrtimer_interrupt+0xa8/0x190 [ 132.613034] [<ffffffff81051a58>] local_apic_timer_interrupt+0x38/0x60 [ 132.613035] [<ffffffff817d9b0d>] smp_apic_timer_interrupt+0x3d/0x50 [ 132.613037] [<ffffffff817d7c5c>] apic_timer_interrupt+0x8c/0xa0 [ 132.613038] <EOI> [<ffffffff81063466>] ? native_safe_halt+0x6/0x10 [ 132.613043] [<ffffffff81037a4e>] default_idle+0x1e/0xd0 [ 132.613044] [<ffffffff810381cf>] arch_cpu_idle+0xf/0x20 [ 132.613046] [<ffffffff810e8fda>] default_idle_call+0x2a/0x40 [ 132.613047] [<ffffffff810e92d7>] cpu_startup_entry+0x2e7/0x340 [ 132.613048] [<ffffffff81050235>] start_secondary+0x155/0x190 [ 132.613049] ---[ end trace f91934d162ce9977 ]--- The warn is the spin_(lock|unlock)_bh(&css_set_lock) in the interrupt context. Converting the spin_lock_bh to spin_lock_irq(save) to avoid this problem - and other problems of sharing a spinlock with an interrupt. Cc: Tejun Heo <tj@kernel.org> Cc: Li Zefan <lizefan@huawei.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Juri Lelli <juri.lelli@arm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: cgroups@vger.kernel.org Cc: stable@vger.kernel.org # 4.5+ Cc: linux-kernel@vger.kernel.org Reviewed-by: NRik van Riel <riel@redhat.com> Reviewed-by: N"Luis Claudio R. Goncalves" <lgoncalv@redhat.com> Signed-off-by: NDaniel Bristot de Oliveira <bristot@redhat.com> Acked-by: NZefan Li <lizefan@huawei.com> Signed-off-by: NTejun Heo <tj@kernel.org>
-
- 22 6月, 2016 1 次提交
-
-
由 Tejun Heo 提交于
cgroup core expected css_alloc to return an ERR_PTR value on failure and caused NULL deref if it returned NULL. It's an easy mistake to make from an alloc function and there's no ambiguity in what's being indicated. Update css_create() so that it interprets NULL return from css_alloc as -ENOMEM. Signed-off-by: NTejun Heo <tj@kernel.org>
-
- 18 6月, 2016 2 次提交
-
-
由 Johannes Weiner 提交于
css_idr allocation starts at 1, so index 0 will never point to an item. css_from_id() currently filters that before asking idr_find(), but idr_find() would also just return NULL, so this is not needed. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Signed-off-by: NTejun Heo <tj@kernel.org>
-
由 Johannes Weiner 提交于
The valid cgroup hierarchy ID range includes 0, so we can't filter for positive numbers when freeing it, or it'll leak the first ID. No big deal, just disruptive when reading the code. The ID is freed during error handling and when the reference count hits zero, so the double-free test is not necessary; remove it. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Signed-off-by: NTejun Heo <tj@kernel.org>
-
- 17 6月, 2016 1 次提交
-
-
由 Tejun Heo 提交于
If percpu_ref initialization fails during css_create(), the free path can end up trying to free css->id of zero. As ID 0 is unused, it doesn't cause a critical breakage but it does trigger a warning message. Fix it by setting css->id to -1 from init_and_link_css(). Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Wenwei Tao <ww.tao0320@gmail.com> Fixes: 01e58659 ("cgroup: release css->id after css_free") Cc: stable@vger.kernel.org # v4.0+ Signed-off-by: NTejun Heo <tj@kernel.org>
-
- 27 5月, 2016 1 次提交
-
-
由 Wenwei Tao 提交于
When create css failed, before call css_free_rcu_fn, we remove the css id and exit the percpu_ref, but we will do these again in css_free_work_fn, so they are redundant. Especially the css id, that would cause problem if we remove it twice, since it may be assigned to another css after the first remove. tj: This was broken by two commits updating the free path without synchronizing the creation failure path. This can be easily triggered by trying to create more than 64k memory cgroups. Signed-off-by: NWenwei Tao <ww.tao0320@gmail.com> Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Vladimir Davydov <vdavydov@parallels.com> Fixes: 9a1049da ("percpu-refcount: require percpu_ref to be exited explicitly") Fixes: 01e58659 ("cgroup: release css->id after css_free") Cc: stable@vger.kernel.org # v3.17+
-
- 12 5月, 2016 1 次提交
-
-
由 Felipe Balbi 提交于
commit 4f41fc59 ("cgroup, kernfs: make mountinfo show properly scoped path for cgroup namespaces") added the following compile warning: kernel/cgroup.c: In function ‘cgroup_show_path’: kernel/cgroup.c:1634:15: warning: unused variable ‘ret’ [-Wunused-variable] int len = 0, ret = 0; ^ fix it. Fixes: 4f41fc59 ("cgroup, kernfs: make mountinfo show properly scoped path for cgroup namespaces") Signed-off-by: NFelipe Balbi <felipe.balbi@linux.intel.com> Signed-off-by: NTejun Heo <tj@kernel.org>
-
- 10 5月, 2016 1 次提交
-
-
由 Serge E. Hallyn 提交于
Patch summary: When showing a cgroupfs entry in mountinfo, show the path of the mount root dentry relative to the reader's cgroup namespace root. Short explanation (courtesy of mkerrisk): If we create a new cgroup namespace, then we want both /proc/self/cgroup and /proc/self/mountinfo to show cgroup paths that are correctly virtualized with respect to the cgroup mount point. Previous to this patch, /proc/self/cgroup shows the right info, but /proc/self/mountinfo does not. Long version: When a uid 0 task which is in freezer cgroup /a/b, unshares a new cgroup namespace, and then mounts a new instance of the freezer cgroup, the new mount will be rooted at /a/b. The root dentry field of the mountinfo entry will show '/a/b'. cat > /tmp/do1 << EOF mount -t cgroup -o freezer freezer /mnt grep freezer /proc/self/mountinfo EOF unshare -Gm bash /tmp/do1 > 330 160 0:34 / /sys/fs/cgroup/freezer rw,nosuid,nodev,noexec,relatime - cgroup cgroup rw,freezer > 355 133 0:34 /a/b /mnt rw,relatime - cgroup freezer rw,freezer The task's freezer cgroup entry in /proc/self/cgroup will simply show '/': grep freezer /proc/self/cgroup 9:freezer:/ If instead the same task simply bind mounts the /a/b cgroup directory, the resulting mountinfo entry will again show /a/b for the dentry root. However in this case the task will find its own cgroup at /mnt/a/b, not at /mnt: mount --bind /sys/fs/cgroup/freezer/a/b /mnt 130 25 0:34 /a/b /mnt rw,nosuid,nodev,noexec,relatime shared:21 - cgroup cgroup rw,freezer In other words, there is no way for the task to know, based on what is in mountinfo, which cgroup directory is its own. Example (by mkerrisk): First, a little script to save some typing and verbiage: echo -e "\t/proc/self/cgroup:\t$(cat /proc/self/cgroup | grep freezer)" cat /proc/self/mountinfo | grep freezer | awk '{print "\tmountinfo:\t\t" $4 "\t" $5}' Create cgroup, place this shell into the cgroup, and look at the state of the /proc files: 2653 2653 # Our shell 14254 # cat(1) /proc/self/cgroup: 10:freezer:/a/b mountinfo: / /sys/fs/cgroup/freezer Create a shell in new cgroup and mount namespaces. The act of creating a new cgroup namespace causes the process's current cgroups directories to become its cgroup root directories. (Here, I'm using my own version of the "unshare" utility, which takes the same options as the util-linux version): Look at the state of the /proc files: /proc/self/cgroup: 10:freezer:/ mountinfo: / /sys/fs/cgroup/freezer The third entry in /proc/self/cgroup (the pathname of the cgroup inside the hierarchy) is correctly virtualized w.r.t. the cgroup namespace, which is rooted at /a/b in the outer namespace. However, the info in /proc/self/mountinfo is not for this cgroup namespace, since we are seeing a duplicate of the mount from the old mount namespace, and the info there does not correspond to the new cgroup namespace. However, trying to create a new mount still doesn't show us the right information in mountinfo: # propagating to other mountns /proc/self/cgroup: 7:freezer:/ mountinfo: /a/b /mnt/freezer The act of creating a new cgroup namespace caused the process's current freezer directory, "/a/b", to become its cgroup freezer root directory. In other words, the pathname directory of the directory within the newly mounted cgroup filesystem should be "/", but mountinfo wrongly shows us "/a/b". The consequence of this is that the process in the cgroup namespace cannot correctly construct the pathname of its cgroup root directory from the information in /proc/PID/mountinfo. With this patch, the dentry root field in mountinfo is shown relative to the reader's cgroup namespace. So the same steps as above: /proc/self/cgroup: 10:freezer:/a/b mountinfo: / /sys/fs/cgroup/freezer /proc/self/cgroup: 10:freezer:/ mountinfo: /../.. /sys/fs/cgroup/freezer /proc/self/cgroup: 10:freezer:/ mountinfo: / /mnt/freezer cgroup.clone_children freezer.parent_freezing freezer.state tasks cgroup.procs freezer.self_freezing notify_on_release 3164 2653 # First shell that placed in this cgroup 3164 # Shell started by 'unshare' 14197 # cat(1) Signed-off-by: NSerge Hallyn <serge.hallyn@ubuntu.com> Tested-by: NMichael Kerrisk <mtk.manpages@gmail.com> Acked-by: NMichael Kerrisk <mtk.manpages@gmail.com> Signed-off-by: NTejun Heo <tj@kernel.org>
-
- 26 4月, 2016 1 次提交
-
-
由 Tejun Heo 提交于
Since e93ad19d ("cpuset: make mm migration asynchronous"), cpuset kicks off asynchronous NUMA node migration if necessary during task migration and flushes it from cpuset_post_attach_flush() which is called at the end of __cgroup_procs_write(). This is to avoid performing migration with cgroup_threadgroup_rwsem write-locked which can lead to deadlock through dependency on kworker creation. memcg has a similar issue with charge moving, so let's convert it to an official callback rather than the current one-off cpuset specific function. This patch adds cgroup_subsys->post_attach callback and makes cpuset register cpuset_post_attach_flush() as its ->post_attach. The conversion is mostly one-to-one except that the new callback is called under cgroup_mutex. This is to guarantee that no other migration operations are started before ->post_attach callbacks are finished. cgroup_mutex is one of the outermost mutex in the system and has never been and shouldn't be a problem. We can add specialized synchronization around __cgroup_procs_write() but I don't think there's any noticeable benefit. Signed-off-by: NTejun Heo <tj@kernel.org> Cc: Li Zefan <lizefan@huawei.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: <stable@vger.kernel.org> # 4.4+ prerequisite for the next patch
-
- 17 3月, 2016 2 次提交
-
-
由 Arnd Bergmann 提交于
When all subsystems are disabled, gcc notices that cgroup_subsys_enabled_key is a zero-length array and that any access to it must be out of bounds: In file included from ../include/linux/cgroup.h:19:0, from ../kernel/cgroup.c:31: ../kernel/cgroup.c: In function 'cgroup_add_cftypes': ../kernel/cgroup.c:261:53: error: array subscript is above array bounds [-Werror=array-bounds] return static_key_enabled(cgroup_subsys_enabled_key[ssid]); ~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~ ../include/linux/jump_label.h:271:40: note: in definition of macro 'static_key_enabled' static_key_count((struct static_key *)x) > 0; \ ^ We should never call the function in this particular case, so this is not a bug. In order to silence the warning, this adds an explicit check for the CGROUP_SUBSYS_COUNT==0 case. Signed-off-by: NArnd Bergmann <arnd@arndb.de> Signed-off-by: NTejun Heo <tj@kernel.org>
-
由 Tejun Heo 提交于
Before 2e91fa7f ("cgroup: keep zombies associated with their original cgroups"), all dead tasks were associated with init_css_set. If a zombie task is requested for migration, while migration prep operations would still be performed on init_css_set, the actual migration would ignore zombie tasks. As init_css_set is always valid, this worked fine. However, after 2e91fa7f, zombie tasks stay with the css_set it was associated with at the time of death. Let's say a task T associated with cgroup A on hierarchy H-1 and cgroup B on hiearchy H-2. After T becomes a zombie, it would still remain associated with A and B. If A only contains zombie tasks, it can be removed. On removal, A gets marked offline but stays pinned until all zombies are drained. At this point, if migration is initiated on T to a cgroup C on hierarchy H-2, migration path would try to prepare T's css_set for migration and trigger the following. WARNING: CPU: 0 PID: 1576 at kernel/cgroup.c:474 cgroup_get+0x121/0x160() CPU: 0 PID: 1576 Comm: bash Not tainted 4.4.0-work+ #289 ... Call Trace: [<ffffffff8127e63c>] dump_stack+0x4e/0x82 [<ffffffff810445e8>] warn_slowpath_common+0x78/0xb0 [<ffffffff810446d5>] warn_slowpath_null+0x15/0x20 [<ffffffff810c33e1>] cgroup_get+0x121/0x160 [<ffffffff810c349b>] link_css_set+0x7b/0x90 [<ffffffff810c4fbc>] find_css_set+0x3bc/0x5e0 [<ffffffff810c5269>] cgroup_migrate_prepare_dst+0x89/0x1f0 [<ffffffff810c7547>] cgroup_attach_task+0x157/0x230 [<ffffffff810c7a17>] __cgroup_procs_write+0x2b7/0x470 [<ffffffff810c7bdc>] cgroup_tasks_write+0xc/0x10 [<ffffffff810c4790>] cgroup_file_write+0x30/0x1b0 [<ffffffff811c68fc>] kernfs_fop_write+0x13c/0x180 [<ffffffff81151673>] __vfs_write+0x23/0xe0 [<ffffffff81152494>] vfs_write+0xa4/0x1a0 [<ffffffff811532d4>] SyS_write+0x44/0xa0 [<ffffffff814af2d7>] entry_SYSCALL_64_fastpath+0x12/0x6f It doesn't make sense to prepare migration for css_sets pointing to dead cgroups as they are guaranteed to contain only zombies which are ignored later during migration. This patch makes cgroup destruction path mark all affected css_sets as dead and updates the migration path to ignore them during preparation. Signed-off-by: NTejun Heo <tj@kernel.org> Fixes: 2e91fa7f ("cgroup: keep zombies associated with their original cgroups") Cc: stable@vger.kernel.org # v4.4+
-