- 22 5月, 2012 39 次提交
-
-
由 NeilBrown 提交于
Now that bitmaps can grow and shrink it is best if we record how much space is available. This means that when we reduce the size of the bitmap we won't "lose" the space for late when we might want to increase the size of the bitmap again. Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 NeilBrown 提交于
When a reshape which reduced the number of devices finishes we must remove the extra devices. So ensure that raid10_remove_disk won't try to keep them, and have raid10_finish_reshape clear the 'in_sync' flag. Then remove_and_add_spares will be able to remove them. Reported-by: NHannes Reinecke <hare@suse.com> Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 NeilBrown 提交于
After a reshape which reduced the number of devices we need to disconnect the extra devices. The code for this doesn't currently handle 'replacement' devices. It is very unlikely that such devices will be present, but it is safest to handle them anyway. So simplify the handling. Just clear In_sync and leave it to remove_and_add_spaces (which will be called soon) to do the real works. Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 Yuanhan Liu 提交于
Check the return of mddev_find(), since it may fail due to out of memeory or out of usable minor number. The reason I chose -ENODEV instead of -ENOMEM or something else is md_alloc() function chose that ;) Signed-off-by: NYuanhan Liu <yuanhan.liu@linux.intel.com> Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 Jonathan Brassow 提交于
A RAID1 device does not necessarily need a fullsync if the bitmap can be used instead. Similar to commit d6b212f4 in raid5.c, if a raid1 device can be brought back (i.e. from a transient failure) it shouldn't need a complete resync. Provided the bitmap is not to old, it will have recorded the areas of the disk that need recovery. Signed-off-by: NJonathan Brassow <jbrassow@redhat.com> Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 Jonathan Brassow 提交于
When encountering an error while reading the superblock, call md_error. We are currently setting the 'Faulty' bit on one of the array devices when an error is encountered while reading the superblock of a dm-raid array. We should be calling md_error(), as it handles the error more completely. Signed-off-by: NJonathan Brassow <jbrassow@redhat.com> Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 Jonathan Brassow 提交于
Missing dm-raid devices should be recorded in the superblock When specifying the devices that compose a DM RAID array, it is possible to denote failed or missing devices with '-'s. When this occurs, we must record this in the superblock. We do this by checking if the array position's data device is missing and then forcing MD to record the superblock by setting 'MD_CHANGE_DEVS' in 'raid_resume'. If we do not cause the superblock to be rewritten by the resume function, it is possible for a stale superblock to be written by an out-going in-active table (during 'raid_dtr'). Signed-off-by: NJonathan Brassow <jbrassow@redhat.com> Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 Jonathan Brassow 提交于
Properly initialize MD recovery flags when resuming device-mapper devices. When a device-mapper device is suspended, all I/O must stop. This is done by calling 'md_stop_writes' and 'mddev_suspend'. These calls in-turn manipulate the recovery flags - including setting 'MD_RECOVERY_FROZEN'. The DM device may have been suspended while recovery was not yet complete, so the process needs to pick-up where it left off. Since 'mddev_resume' does not unset 'MD_RECOVERY_FROZEN' and set 'MD_RECOVERY_NEEDED', we must do it ourselves. 'MD_RECOVERY_NEEDED' can safely be set in 'mddev_resume', but 'MD_RECOVERY_FROZEN' must be set outside of 'mddev_resume' due to how MD handles RAID reshaping. (e.g. It is possible for a user to delay reshaping a RAID5->RAID6 by purposefully setting 'MD_RECOVERY_FROZEN'. Clearing it in 'mddev_resume' would override the desired behavior.) Because 'mddev_resume' already unconditionally calls 'md_wakeup_thread(mddev->thread)' there is no need to make this call from 'raid_resume' since it calls 'mddev_resume'. Also clean up where level_store calls mddev_resume() - it current duplicates some of the funcitons of that call. - NB Signed-off-by: NJonathan Brassow <jbrassow@redhat.com> Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 NeilBrown 提交于
We always should have allowed this. A raid5 reshape doesn't change the size of the bitmap, so not need to restrict it. Also add a test to make sure we don't try to start a reshape on a failed array. Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 NeilBrown 提交于
If a reshape changes the size of the array, then we can now update the bitmap to suit - so do so. Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 NeilBrown 提交于
Now that bitmaps can be resized, we can allow an array to be resized while the bitmap is present. This only covers resizing that involves changing the effective size of member devices, not resizing that changes the number of devices. Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 NeilBrown 提交于
As a reshape may change the sync_size and/or chunk_size, we need to update these whenever we write out the bitmap superblock. Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 NeilBrown 提交于
This function will allocate the new data structures and copy bits across from old to new, allowing for the possibility that the chunksize has changed. Use the same function for performing the initial allocation of the structures. This improves test coverage. When bitmap_resize is used to resize an existing bitmap, it only copies '1' bits in, not '0' bits. So when allocating the bitmap, ensure everything is initialised to ZERO. Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 NeilBrown 提交于
Also take the opportunity to simplify CHUNK_BLOCK_RATIO. Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 NeilBrown 提交于
The new "struct bitmap_counts" contains all the fields that are related to counting the number of active writes in each bitmap chunk. Having this separate will make it easier to change the chunksize or overall size of a bitmap atomically. Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 NeilBrown 提交于
This allows us to remove spinlock protection which is more heavy-weight than simple atomics. Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 NeilBrown 提交于
Using e.g. set_bit instead of __set_bit and using test_and_clear_bit allow us to remove some locking and contract other locked ranges. It is rare that we set or clear a lot of these bits, so gain should outweigh any cost. Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 NeilBrown 提交于
There functions really do one thing together: release the 'bitmap_storage'. So make them just one function. Since we removed the locking (previous patch), we don't need to zero any fields before freeing them, so it all becomes a bit simpler. Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 NeilBrown 提交于
There is no real value in freeing things the moment there is an error. It is just as good to free the bitmap file and pages when the bitmap is explicitly removed (and replaced?) or at shutdown. With this gone, the bitmap will only disappear when the array is quiescent, so we can remove some locking. As the 'filemap' doesn't disappear now, include extra checks before trying to write any of it out. Also remove the check for "has it disappeared" in bitmap_daemon_write(). Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 NeilBrown 提交于
All of these sites can only be called from process context with irqs enabled, so using irqsave/irqrestore just adds noise. Remove it. Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 NeilBrown 提交于
We currently use '&' and '|' which isn't the norm in the kernel and doesn't allow easy atomicity. So change to bit numbers and {set,clear,test}_bit. This allows us to remove a spinlock/unlock (which was dubious anyway) and some other simplifications. Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 NeilBrown 提交于
Just do single-bit manipulations on bitmap->flags and copy whole value between that and sb->state. This will allow next patch which changes how bit manipulations are performed on bitmap->flags. This does result in BITMAP_STALE not being set in sb by bitmap_read_sb, however as the setting is determined by other information in the 'sb' we do not lose information this way. Normally, bitmap_load will be called shortly which will clear BITMAP_STALE anyway. Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 NeilBrown 提交于
This function isn't really needed. It sets or clears a flag in both bitmap->flags and sb->state. However both times it is called, bitmap_update_sb is called soon afterwards which copies bitmap->flags to sb->state. So just make changes to bitmap->flags, and open-code those rather than hiding in a function. Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 NeilBrown 提交于
We should allocate memory for the storage-bitmap at create-time, not load time. Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 NeilBrown 提交于
This will allow allocation before swapping in a new bitmap. Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 NeilBrown 提交于
This number is more generally useful, and bytes-in-last-page is easily extracted from it. Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 NeilBrown 提交于
This new 'struct bitmap_storage' reflects the external storage of the bitmap. Having this clearly defined will make it easier to change the storage used while the array is active. Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 NeilBrown 提交于
Most often we have the page number, not the page. And that is what the *_page_attr() functions really want. So change the arguments to take that number. Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 NeilBrown 提交于
Instead of allocating pages in read_sb_page, read_page and bitmap_read_sb, allocate them all in bitmap_init_from disk. Also replace the hack of calling "attach_page_buffers(page, NULL)" to ensure that free_buffer() won't complain, by putting a test for PagePrivate in free_buffer(). Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 NeilBrown 提交于
An md bitmap comprises two parts - internal counting of active writes per 'chunk'. - external storage of whether there are any active writes on each chunk The second requires the first, but the first doesn't require the second. Not having backing storage means that the bitmap cannot expedite resync after a crash, but it still allows us to expedite the recovery of a recently-removed device. So: allow a bitmap to exist even if there is no backing device. In that case we default to 128M chunks. A particular value of this is that we can remove and re-add a bitmap (possibly of a different granularity) on a degraded array, and not lose the information needed to fast-recover the missing device. We don't actually activate these bitmaps yet - that will come in a later patch. Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 NeilBrown 提交于
If we are to allow bitmaps to be resized when the array is resized, we need to know how much space there is. So create an attribute to store this information and set appropriate defaults. It can be set more precisely via sysfs, or future metadata extensions may allow it to be recorded. Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 NeilBrown 提交于
There are two different 'pending' concepts in the handling of the write intent bitmap. Firstly, a 'page' from the bitmap (which container PAGE_SIZE*8 bits) may have changes (bits cleared) that should be written in due course. There is no hurry for these and the page will transition from PENDING to NEEDWRITE and will then be written, though if it ever becomes DIRTY it will be written much sooner and PENDING will be cleared. Secondly, a page of counters - which contains PAGE_SIZE/2 counters, one for each bit, can usefully have a 'pending' flag which indicates if any of the counters are low (2 or 1) and ready to be processed by bitmap_daemon_work(). If this flag is clear we can skip the whole page. These two concepts are currently combined in the bitmap-file flag. This causes a tighter connection between the counters and the bitmap file than I would like - as I want to add some flexibility to the bitmap file. So introduce a new flag with the page-of-counters, and rewrite bitmap_daemon_work() so that it handles the two different 'pending' concepts separately. This also allows us to clear BITMAP_PAGE_PENDING when we write out a dirty page, which may occasionally reduce the number of times we write a page. Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 Shaohua Li 提交于
REQ_SYNC is ignored in current raid5 code. Block layer does use it to do policy, for example ioscheduler. This patch adds it. Signed-off-by: NShaohua Li <shli@fusionio.com> Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 Shaohua Li 提交于
The two variables are useless. Signed-off-by: NShaohua Li <shli@fusionio.com> Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 majianpeng 提交于
If the allocation of rep1_bio fails, we currently don't free the 'bio' of the same dev. Reported by kmemleak. Signed-off-by: Nmajianpeng <majianpeng@gmail.com> Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 majianpeng 提交于
When attempting to fix a read error, it is acceptable to read from a device that is recovering, provided the recovery has got past the place we are reading from. This makes the test for "can we read from here" the same as the test in read_balance. Signed-off-by: Nmajianpeng <majianpeng@gmail.com> Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 NeilBrown 提交于
This ensures that it is always freed - there were case where we failed to free the page. Reported-by: Nmajianpeng <majianpeng@gmail.com> Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 NeilBrown 提交于
dm-raid currently open-codes the freeing of some members of and rdev. It is more maintainable to have it call common code from md.c which does this for all call-sites. So remove free_disk_sb to md_rdev_clear, export it, and use it in dm-raid.c Signed-off-by: NNeilBrown <neilb@suse.de>
-
由 NeilBrown 提交于
A 'near' or 'offset' lay RAID10 array can be reshaped to a different 'near' or 'offset' layout, a different chunk size, and a different number of devices. However the number of copies cannot change. Unlike RAID5/6, we do not support having user-space backup data that is being relocated during a 'critical section'. Rather, the data_offset of each device must change so that when writing any block to a new location, it will not over-write any data that is still 'live'. This means that RAID10 reshape is not supportable on v0.90 metadata. The different between the old data_offset and the new_offset must be at least the larger of the chunksize multiplied by offset copies of each of the old and new layout. (for 'near' mode, offset_copies == 1). A larger difference of around 64M seems useful for in-place reshapes as more data can be moved between metadata updates. Very large differences (e.g. 512M) seem to slow the process down due to lots of long seeks (on oldish consumer graded devices at least). Metadata needs to be updated whenever the place we are about to write to is considered - by the current metadata - to still contain data in the old layout. [unbalanced locking fix from Dan Carpenter <dan.carpenter@oracle.com>] Signed-off-by: NNeilBrown <neilb@suse.de>
-
- 21 5月, 2012 1 次提交
-
-
由 NeilBrown 提交于
We will soon be interpreting the layout (and chunksize etc) from multiple places to support reshape. So split it out into separate function. Signed-off-by: NNeilBrown <neilb@suse.de>
-