- 18 2月, 2014 5 次提交
-
-
由 Paul E. McKenney 提交于
If CONFIG_RCU_NOCB_CPU_ALL=y, then no CPU will ever have RCU callbacks because these callbacks will instead be handled by the rcuo kthreads. However, the current version of RCU_FAST_NO_HZ nevertheless checks for RCU callbacks. This commit therefore creates static inline implementations of rcu_prepare_for_idle() and rcu_cleanup_after_idle() that are no-ops when CONFIG_RCU_NOCB_CPU_ALL=y. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: NJosh Triplett <josh@joshtriplett.org>
-
由 Paul E. McKenney 提交于
If CONFIG_RCU_NOCB_CPU_ALL=y, then rcu_needs_cpu() will always return false, however, the current version nevertheless checks for RCU callbacks. This commit therefore creates a static inline implementation of rcu_needs_cpu() that unconditionally returns false when CONFIG_RCU_NOCB_CPU_ALL=y. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: NJosh Triplett <josh@joshtriplett.org>
-
由 Paul E. McKenney 提交于
If CONFIG_RCU_NOCB_CPU_ALL=y, then rcu_is_nocb_cpu() will always return true, however, the current version nevertheless checks rcu_nocb_mask. This commit therefore creates a static inline implementation of rcu_is_nocb_cpu() that unconditionally returns true when CONFIG_RCU_NOCB_CPU_ALL=y. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: NJosh Triplett <josh@joshtriplett.org>
-
由 Paul Bolle 提交于
This commit fixes a grammar issue in the rcu_nohz_full_cpu() comment header, so that it is clear that the plural is CPUs not Kconfig options. Signed-off-by: NPaul Bolle <pebolle@tiscali.nl> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: NJosh Triplett <josh@joshtriplett.org>
-
由 Paul E. McKenney 提交于
All of the RCU source files have the usual GPL header, which contains a long-obsolete postal address for FSF. To avoid the need to track the FSF office's movements, this commit substitutes the URL where GPL may be found. Reported-by: NGreg KH <gregkh@linuxfoundation.org> Reported-by: NSteven Rostedt <rostedt@goodmis.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: NJosh Triplett <josh@joshtriplett.org>
-
- 16 12月, 2013 1 次提交
-
-
由 Paul E. McKenney 提交于
RCU must ensure that there is the equivalent of a full memory barrier between any memory access preceding grace period and any memory access following that same grace period, regardless of which CPU(s) happen to execute the two memory accesses. Therefore, downgrading UNLOCK+LOCK to no longer imply a full memory barrier requires some adjustments to RCU. This commit therefore adds smp_mb__after_unlock_lock() invocations as needed after the RCU lock acquisitions that need to be part of a full-memory-barrier UNLOCK+LOCK. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: NPeter Zijlstra <a.p.zijlstra@chello.nl> Cc: <linux-arch@vger.kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/r/1386799151-2219-7-git-send-email-paulmck@linux.vnet.ibm.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 13 12月, 2013 2 次提交
-
-
由 Paul E. McKenney 提交于
Whenever a CPU receives a scheduling-clock interrupt, RCU checks to see if the RCU core needs anything from this CPU. If so, RCU raises RCU_SOFTIRQ to carry out any needed processing. This approach has worked well historically, but it is undesirable on NO_HZ_FULL CPUs. Such CPUs are expected to spend almost all of their time in userspace, so that scheduling-clock interrupts can be disabled while there is only one runnable task on the CPU in question. Unfortunately, raising any softirq has the potential to wake up ksoftirqd, which would provide the second runnable task on that CPU, preventing disabling of scheduling-clock interrupts. What is needed instead is for RCU to leave NO_HZ_FULL CPUs alone, relying on the grace-period kthreads' quiescent-state forcing to do any needed RCU work on behalf of those CPUs. This commit therefore refrains from raising RCU_SOFTIRQ on any NO_HZ_FULL CPUs during any grace periods that have been in effect for less than one second. The one-second limit handles the case where an inappropriate workload is running on a NO_HZ_FULL CPU that features lots of scheduling-clock interrupts, but no idle or userspace time. Reported-by: NMike Galbraith <bitbucket@online.de> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: NMike Galbraith <bitbucket@online.de> Toasted-by: NFrederic Weisbecker <fweisbec@gmail.com>
-
由 Lai Jiangshan 提交于
After commit #10f39bb1 (rcu: protect __rcu_read_unlock() against scheduler-using irq handlers), it is no longer possible to enter the main body of rcu_read_lock_special() from an NMI, interrupt, or softirq handler. In theory, this implies that the check for "in_irq() || in_serving_softirq()" must always fail, so that in theory this check could be removed entirely. In practice, this commit wraps this condition with a WARN_ON_ONCE(). If this warning never triggers, then the condition will be removed entirely. [ paulmck: And one way of triggering the WARN_ON() is if a scheduling clock interrupt occurs in an RCU read-side critical section, setting RCU_READ_UNLOCK_NEED_QS, which is handled by rcu_read_unlock_special(). Updated this commit to return if only that bit was set. ] Signed-off-by: NLai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
- 04 12月, 2013 2 次提交
-
-
由 Paul E. McKenney 提交于
Dave Jones got the following lockdep splat: > ====================================================== > [ INFO: possible circular locking dependency detected ] > 3.12.0-rc3+ #92 Not tainted > ------------------------------------------------------- > trinity-child2/15191 is trying to acquire lock: > (&rdp->nocb_wq){......}, at: [<ffffffff8108ff43>] __wake_up+0x23/0x50 > > but task is already holding lock: > (&ctx->lock){-.-...}, at: [<ffffffff81154c19>] perf_event_exit_task+0x109/0x230 > > which lock already depends on the new lock. > > > the existing dependency chain (in reverse order) is: > > -> #3 (&ctx->lock){-.-...}: > [<ffffffff810cc243>] lock_acquire+0x93/0x200 > [<ffffffff81733f90>] _raw_spin_lock+0x40/0x80 > [<ffffffff811500ff>] __perf_event_task_sched_out+0x2df/0x5e0 > [<ffffffff81091b83>] perf_event_task_sched_out+0x93/0xa0 > [<ffffffff81732052>] __schedule+0x1d2/0xa20 > [<ffffffff81732f30>] preempt_schedule_irq+0x50/0xb0 > [<ffffffff817352b6>] retint_kernel+0x26/0x30 > [<ffffffff813eed04>] tty_flip_buffer_push+0x34/0x50 > [<ffffffff813f0504>] pty_write+0x54/0x60 > [<ffffffff813e900d>] n_tty_write+0x32d/0x4e0 > [<ffffffff813e5838>] tty_write+0x158/0x2d0 > [<ffffffff811c4850>] vfs_write+0xc0/0x1f0 > [<ffffffff811c52cc>] SyS_write+0x4c/0xa0 > [<ffffffff8173d4e4>] tracesys+0xdd/0xe2 > > -> #2 (&rq->lock){-.-.-.}: > [<ffffffff810cc243>] lock_acquire+0x93/0x200 > [<ffffffff81733f90>] _raw_spin_lock+0x40/0x80 > [<ffffffff810980b2>] wake_up_new_task+0xc2/0x2e0 > [<ffffffff81054336>] do_fork+0x126/0x460 > [<ffffffff81054696>] kernel_thread+0x26/0x30 > [<ffffffff8171ff93>] rest_init+0x23/0x140 > [<ffffffff81ee1e4b>] start_kernel+0x3f6/0x403 > [<ffffffff81ee1571>] x86_64_start_reservations+0x2a/0x2c > [<ffffffff81ee1664>] x86_64_start_kernel+0xf1/0xf4 > > -> #1 (&p->pi_lock){-.-.-.}: > [<ffffffff810cc243>] lock_acquire+0x93/0x200 > [<ffffffff8173419b>] _raw_spin_lock_irqsave+0x4b/0x90 > [<ffffffff810979d1>] try_to_wake_up+0x31/0x350 > [<ffffffff81097d62>] default_wake_function+0x12/0x20 > [<ffffffff81084af8>] autoremove_wake_function+0x18/0x40 > [<ffffffff8108ea38>] __wake_up_common+0x58/0x90 > [<ffffffff8108ff59>] __wake_up+0x39/0x50 > [<ffffffff8110d4f8>] __call_rcu_nocb_enqueue+0xa8/0xc0 > [<ffffffff81111450>] __call_rcu+0x140/0x820 > [<ffffffff81111b8d>] call_rcu+0x1d/0x20 > [<ffffffff81093697>] cpu_attach_domain+0x287/0x360 > [<ffffffff81099d7e>] build_sched_domains+0xe5e/0x10a0 > [<ffffffff81efa7fc>] sched_init_smp+0x3b7/0x47a > [<ffffffff81ee1f4e>] kernel_init_freeable+0xf6/0x202 > [<ffffffff817200be>] kernel_init+0xe/0x190 > [<ffffffff8173d22c>] ret_from_fork+0x7c/0xb0 > > -> #0 (&rdp->nocb_wq){......}: > [<ffffffff810cb7ca>] __lock_acquire+0x191a/0x1be0 > [<ffffffff810cc243>] lock_acquire+0x93/0x200 > [<ffffffff8173419b>] _raw_spin_lock_irqsave+0x4b/0x90 > [<ffffffff8108ff43>] __wake_up+0x23/0x50 > [<ffffffff8110d4f8>] __call_rcu_nocb_enqueue+0xa8/0xc0 > [<ffffffff81111450>] __call_rcu+0x140/0x820 > [<ffffffff81111bb0>] kfree_call_rcu+0x20/0x30 > [<ffffffff81149abf>] put_ctx+0x4f/0x70 > [<ffffffff81154c3e>] perf_event_exit_task+0x12e/0x230 > [<ffffffff81056b8d>] do_exit+0x30d/0xcc0 > [<ffffffff8105893c>] do_group_exit+0x4c/0xc0 > [<ffffffff810589c4>] SyS_exit_group+0x14/0x20 > [<ffffffff8173d4e4>] tracesys+0xdd/0xe2 > > other info that might help us debug this: > > Chain exists of: > &rdp->nocb_wq --> &rq->lock --> &ctx->lock > > Possible unsafe locking scenario: > > CPU0 CPU1 > ---- ---- > lock(&ctx->lock); > lock(&rq->lock); > lock(&ctx->lock); > lock(&rdp->nocb_wq); > > *** DEADLOCK *** > > 1 lock held by trinity-child2/15191: > #0: (&ctx->lock){-.-...}, at: [<ffffffff81154c19>] perf_event_exit_task+0x109/0x230 > > stack backtrace: > CPU: 2 PID: 15191 Comm: trinity-child2 Not tainted 3.12.0-rc3+ #92 > ffffffff82565b70 ffff880070c2dbf8 ffffffff8172a363 ffffffff824edf40 > ffff880070c2dc38 ffffffff81726741 ffff880070c2dc90 ffff88022383b1c0 > ffff88022383aac0 0000000000000000 ffff88022383b188 ffff88022383b1c0 > Call Trace: > [<ffffffff8172a363>] dump_stack+0x4e/0x82 > [<ffffffff81726741>] print_circular_bug+0x200/0x20f > [<ffffffff810cb7ca>] __lock_acquire+0x191a/0x1be0 > [<ffffffff810c6439>] ? get_lock_stats+0x19/0x60 > [<ffffffff8100b2f4>] ? native_sched_clock+0x24/0x80 > [<ffffffff810cc243>] lock_acquire+0x93/0x200 > [<ffffffff8108ff43>] ? __wake_up+0x23/0x50 > [<ffffffff8173419b>] _raw_spin_lock_irqsave+0x4b/0x90 > [<ffffffff8108ff43>] ? __wake_up+0x23/0x50 > [<ffffffff8108ff43>] __wake_up+0x23/0x50 > [<ffffffff8110d4f8>] __call_rcu_nocb_enqueue+0xa8/0xc0 > [<ffffffff81111450>] __call_rcu+0x140/0x820 > [<ffffffff8109bc8f>] ? local_clock+0x3f/0x50 > [<ffffffff81111bb0>] kfree_call_rcu+0x20/0x30 > [<ffffffff81149abf>] put_ctx+0x4f/0x70 > [<ffffffff81154c3e>] perf_event_exit_task+0x12e/0x230 > [<ffffffff81056b8d>] do_exit+0x30d/0xcc0 > [<ffffffff810c9af5>] ? trace_hardirqs_on_caller+0x115/0x1e0 > [<ffffffff810c9bcd>] ? trace_hardirqs_on+0xd/0x10 > [<ffffffff8105893c>] do_group_exit+0x4c/0xc0 > [<ffffffff810589c4>] SyS_exit_group+0x14/0x20 > [<ffffffff8173d4e4>] tracesys+0xdd/0xe2 The underlying problem is that perf is invoking call_rcu() with the scheduler locks held, but in NOCB mode, call_rcu() will with high probability invoke the scheduler -- which just might want to use its locks. The reason that call_rcu() needs to invoke the scheduler is to wake up the corresponding rcuo callback-offload kthread, which does the job of starting up a grace period and invoking the callbacks afterwards. One solution (championed on a related problem by Lai Jiangshan) is to simply defer the wakeup to some point where scheduler locks are no longer held. Since we don't want to unnecessarily incur the cost of such deferral, the task before us is threefold: 1. Determine when it is likely that a relevant scheduler lock is held. 2. Defer the wakeup in such cases. 3. Ensure that all deferred wakeups eventually happen, preferably sooner rather than later. We use irqs_disabled_flags() as a proxy for relevant scheduler locks being held. This works because the relevant locks are always acquired with interrupts disabled. We may defer more often than needed, but that is at least safe. The wakeup deferral is tracked via a new field in the per-CPU and per-RCU-flavor rcu_data structure, namely ->nocb_defer_wakeup. This flag is checked by the RCU core processing. The __rcu_pending() function now checks this flag, which causes rcu_check_callbacks() to initiate RCU core processing at each scheduling-clock interrupt where this flag is set. Of course this is not sufficient because scheduling-clock interrupts are often turned off (the things we used to be able to count on!). So the flags are also checked on entry to any state that RCU considers to be idle, which includes both NO_HZ_IDLE idle state and NO_HZ_FULL user-mode-execution state. This approach should allow call_rcu() to be invoked regardless of what locks you might be holding, the key word being "should". Reported-by: NDave Jones <davej@redhat.com> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org>
-
由 Paul E. McKenney 提交于
It is all too easy to forget that wait_event() does not necessarily imply a full memory barrier. The case where it does not is where the condition transitions to true just as wait_event() starts execution. This is actually a feature: The standard use of wait_event() involves locking, in which case the locks provide the needed ordering (you hold a lock across the wake_up() and acquire that same lock after wait_event() returns). Given that I did forget that wait_event() does not necessarily imply a full memory barrier in one case, this commit fixes that case. This commit also adds comments calling out the placement of existing memory barriers relied on by wait_event() calls. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
- 19 11月, 2013 1 次提交
-
-
由 Thomas Gleixner 提交于
RCU and the fine grained idle time accounting functions check tick_nohz_enabled. But that variable is merily telling that NOHZ has been enabled in the config and not been disabled on the command line. But it does not tell anything about nohz being active. That's what all this should check for. Matthew reported, that the idle accounting on his old P1 machine showed bogus values, when he enabled NOHZ in the config and did not disable it on the kernel command line. The reason is that his machine uses (refined) jiffies as a clocksource which explains why the "fine" grained accounting went into lala land, because it depends on when the system goes and leaves idle relative to the jiffies increment. Provide a tick_nohz_active indicator and let RCU and the accounting code use this instead of tick_nohz_enable. Reported-and-tested-by: NMatthew Whitehead <tedheadster@gmail.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NSteven Rostedt <rostedt@goodmis.org> Reviewed-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: john.stultz@linaro.org Cc: mwhitehe@redhat.com Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1311132052240.30673@ionos.tec.linutronix.de
-
- 06 11月, 2013 1 次提交
-
-
由 Peter Zijlstra 提交于
Suggested-by: NIngo Molnar <mingo@kernel.org> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/n/tip-p9ijt8div0hwldexwfm4nlhj@git.kernel.org [ Fixed build failure in kernel/rcu/tree_plugin.h. ] Signed-off-by: NIngo Molnar <mingo@kernel.org>
-
- 16 10月, 2013 1 次提交
-
-
由 Paul E. McKenney 提交于
Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: NIngo Molnar <mingo@kernel.org>
-
- 25 9月, 2013 3 次提交
-
-
由 Paul E. McKenney 提交于
If a non-lazy callback arrives on a CPU that has previously gone idle with no non-lazy callbacks, invoke_rcu_core() forces the RCU core to run. However, it does not update the conditions, which could result in several closely spaced invocations of the RCU core, which in turn could result in an excessively high context-switch rate and resulting high overhead. This commit therefore updates the ->all_lazy and ->nonlazy_posted_snap fields to prevent closely spaced invocations. Reported-by: NTibor Billes <tbilles@gmx.com> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: NTibor Billes <tbilles@gmx.com> Reviewed-by: NJosh Triplett <josh@joshtriplett.org>
-
由 Paul E. McKenney 提交于
The rcu_try_advance_all_cbs() function is invoked on each attempted entry to and every exit from idle. If this function determines that there are callbacks ready to invoke, the caller will invoke the RCU core, which in turn will result in a pair of context switches. If a CPU enters and exits idle extremely frequently, this can result in an excessive number of context switches and high CPU overhead. This commit therefore causes rcu_try_advance_all_cbs() to throttle itself, refusing to do work more than once per jiffy. Reported-by: NTibor Billes <tbilles@gmx.com> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: NTibor Billes <tbilles@gmx.com> Reviewed-by: NJosh Triplett <josh@joshtriplett.org>
-
由 Paul E. McKenney 提交于
The rcu_try_advance_all_cbs() function returns a bool saying whether or not there are callbacks ready to invoke, but rcu_cleanup_after_idle() rechecks this regardless. This commit therefore uses the value returned by rcu_try_advance_all_cbs() instead of making rcu_cleanup_after_idle() do this recheck. Reported-by: NTibor Billes <tbilles@gmx.com> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: NTibor Billes <tbilles@gmx.com> Reviewed-by: NJosh Triplett <josh@joshtriplett.org>
-
- 24 9月, 2013 6 次提交
-
-
由 Kirill Tkhai 提交于
Some architectures have sparse cpu mask. UltraSparc's cpuinfo for example: CPU0: online CPU2: online So, set only possible CPUs when CONFIG_RCU_NOCB_CPU_ALL is enabled. Also, check that user passes right 'rcu_nocbs=' option. Signed-off-by: NKirill Tkhai <tkhai@yandex.ru> CC: Dipankar Sarma <dipankar@in.ibm.com> [ paulmck: Fix pr_info() issue noted by scripts/checkpatch.pl. ] Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
This commit adds event traces to track all of rcu_nocb_kthread()'s blocking and awakening. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
One way to distinguish between NOCB and non-NOCB rcu_callback trace events is that the former always print zero for the lazy and non-lazy queue lengths. Unfortunately, this also means that we cannot see the NOCB queue lengths. This commit therefore accesses the NOCB queue lengths, but negates them. NOCB rcu_callback trace events should therefore have negative queue lengths. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> [ paulmck: Match operand size per kbuild test robot's advice. ]
-
由 Paul E. McKenney 提交于
Lost wakeups from call_rcu() to the rcuo kthreads can result in hangs that are difficult to diagnose. This commit therefore adds tracing to help pin down the cause of these hangs. Reported-by: NClark Williams <williams@redhat.com> Reported-by: NCarsten Emde <C.Emde@osadl.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> [ paulmck: Add const per kbuild test robot's advice. ]
-
由 Christoph Lameter 提交于
__get_cpu_var() is used for multiple purposes in the kernel source. One of them is address calculation via the form &__get_cpu_var(x). This calculates the address for the instance of the percpu variable of the current processor based on an offset. Other use cases are for storing and retrieving data from the current processors percpu area. __get_cpu_var() can be used as an lvalue when writing data or on the right side of an assignment. __get_cpu_var() is defined as : __get_cpu_var() always only does an address determination. However, store and retrieve operations could use a segment prefix (or global register on other platforms) to avoid the address calculation. this_cpu_write() and this_cpu_read() can directly take an offset into a percpu area and use optimized assembly code to read and write per cpu variables. This patch converts __get_cpu_var into either an explicit address calculation using this_cpu_ptr() or into a use of this_cpu operations that use the offset. Thereby address calcualtions are avoided and less registers are used when code is generated. At the end of the patchset all uses of __get_cpu_var have been removed so the macro is removed too. The patchset includes passes over all arches as well. Once these operations are used throughout then specialized macros can be defined in non -x86 arches as well in order to optimize per cpu access by f.e. using a global register that may be set to the per cpu base. Transformations done to __get_cpu_var() 1. Determine the address of the percpu instance of the current processor. DEFINE_PER_CPU(int, y); int *x = &__get_cpu_var(y); Converts to int *x = this_cpu_ptr(&y); 2. Same as #1 but this time an array structure is involved. DEFINE_PER_CPU(int, y[20]); int *x = __get_cpu_var(y); Converts to int *x = this_cpu_ptr(y); 3. Retrieve the content of the current processors instance of a per cpu variable. DEFINE_PER_CPU(int, u); int x = __get_cpu_var(y) Converts to int x = __this_cpu_read(y); 4. Retrieve the content of a percpu struct DEFINE_PER_CPU(struct mystruct, y); struct mystruct x = __get_cpu_var(y); Converts to memcpy(this_cpu_ptr(&x), y, sizeof(x)); 5. Assignment to a per cpu variable DEFINE_PER_CPU(int, y) __get_cpu_var(y) = x; Converts to this_cpu_write(y, x); 6. Increment/Decrement etc of a per cpu variable DEFINE_PER_CPU(int, y); __get_cpu_var(y)++ Converts to this_cpu_inc(y) Signed-off-by: NChristoph Lameter <cl@linux.com> [ paulmck: Address conflicts. ] Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
This commit replaces an incorrect (but fortunately functional) bitwise OR ("|") operator with the correct logical OR ("||"). Reported-by: Nkbuild test robot <fengguang.wu@intel.com> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
- 01 9月, 2013 2 次提交
-
-
由 Paul E. McKenney 提交于
Because RCU's quiescent-state-forcing mechanism is used to drive the full-system-idle state machine, and because this mechanism is executed by RCU's grace-period kthreads, this commit forces these kthreads to run on the timekeeping CPU (tick_do_timer_cpu). To do otherwise would mean that the RCU grace-period kthreads would force the system into non-idle state every time they drove the state machine, which would be just a bit on the futile side. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Reviewed-by: NJosh Triplett <josh@joshtriplett.org>
-
由 Paul E. McKenney 提交于
This commit adds the state machine that takes the per-CPU idle data as input and produces a full-system-idle indication as output. This state machine is driven out of RCU's quiescent-state-forcing mechanism, which invokes rcu_sysidle_check_cpu() to collect per-CPU idle state and then rcu_sysidle_report() to drive the state machine. The full-system-idle state is sampled using rcu_sys_is_idle(), which also drives the state machine if RCU is idle (and does so by forcing RCU to become non-idle). This function returns true if all but the timekeeping CPU (tick_do_timer_cpu) are idle and have been idle long enough to avoid memory contention on the full_sysidle_state state variable. The rcu_sysidle_force_exit() may be called externally to reset the state machine back into non-idle state. For large systems the state machine is driven out of RCU's force-quiescent-state logic, which provides good scalability at the price of millisecond-scale latencies on the transition to full-system-idle state. This is not so good for battery-powered systems, which are usually small enough that they don't need to care about scalability, but which do care deeply about energy efficiency. Small systems therefore drive the state machine directly out of the idle-entry code. The number of CPUs in a "small" system is defined by a new NO_HZ_FULL_SYSIDLE_SMALL Kconfig parameter, which defaults to 8. Note that this is a build-time definition. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> [ paulmck: Use true and false for boolean constants per Lai Jiangshan. ] Reviewed-by: NJosh Triplett <josh@joshtriplett.org> [ paulmck: Simplify logic and provide better comments for memory barriers, based on review comments and questions by Lai Jiangshan. ]
-
- 19 8月, 2013 3 次提交
-
-
由 Paul E. McKenney 提交于
This commit adds control variables and states for full-system idle. The system will progress through the states in numerical order when the system is fully idle (other than the timekeeping CPU), and reset down to the initial state if any non-timekeeping CPU goes non-idle. The current state is kept in full_sysidle_state. One flavor of RCU will be in charge of driving the state machine, defined by rcu_sysidle_state. This should be the busiest flavor of RCU. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Reviewed-by: NJosh Triplett <josh@joshtriplett.org>
-
由 Paul E. McKenney 提交于
This commit adds the code that updates the rcu_dyntick structure's new fields to track the per-CPU idle state based on interrupts and transitions into and out of the idle loop (NMIs are ignored because NMI handlers cannot cleanly read out the time anyway). This code is similar to the code that maintains RCU's idea of per-CPU idleness, but differs in that RCU treats CPUs running in user mode as idle, where this new code does not. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Acked-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Reviewed-by: NJosh Triplett <josh@joshtriplett.org>
-
由 Paul E. McKenney 提交于
This commit adds fields to the rcu_dyntick structure that are used to detect idle CPUs. These new fields differ from the existing ones in that the existing ones consider a CPU executing in user mode to be idle, where the new ones consider CPUs executing in user mode to be busy. The handling of these new fields is otherwise quite similar to that for the exiting fields. This commit also adds the initialization required for these fields. So, why is usermode execution treated differently, with RCU considering it a quiescent state equivalent to idle, while in contrast the new full-system idle state detection considers usermode execution to be non-idle? It turns out that although one of RCU's quiescent states is usermode execution, it is not a full-system idle state. This is because the purpose of the full-system idle state is not RCU, but rather determining when accurate timekeeping can safely be disabled. Whenever accurate timekeeping is required in a CONFIG_NO_HZ_FULL kernel, at least one CPU must keep the scheduling-clock tick going. If even one CPU is executing in user mode, accurate timekeeping is requires, particularly for architectures where gettimeofday() and friends do not enter the kernel. Only when all CPUs are really and truly idle can accurate timekeeping be disabled, allowing all CPUs to turn off the scheduling clock interrupt, thus greatly improving energy efficiency. This naturally raises the question "Why is this code in RCU rather than in timekeeping?", and the answer is that RCU has the data and infrastructure to efficiently make this determination. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Acked-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Reviewed-by: NJosh Triplett <josh@joshtriplett.org>
-
- 30 7月, 2013 2 次提交
-
-
由 Steven Rostedt (Red Hat) 提交于
Currently, RCU tracepoints save only a pointer to strings in the ring buffer. When displayed via the /sys/kernel/debug/tracing/trace file they are referenced like the printf "%s" that looks at the address in the ring buffer and prints out the string it points too. This requires that the strings are constant and persistent in the kernel. The problem with this is for tools like trace-cmd and perf that read the binary data from the buffers but have no access to the kernel memory to find out what string is represented by the address in the buffer. By using the tracepoint_string infrastructure, the RCU tracepoint strings can be exported such that userspace tools can map the addresses to the strings. # cat /sys/kernel/debug/tracing/printk_formats 0xffffffff81a4a0e8 : "rcu_preempt" 0xffffffff81a4a0f4 : "rcu_bh" 0xffffffff81a4a100 : "rcu_sched" 0xffffffff818437a0 : "cpuqs" 0xffffffff818437a6 : "rcu_sched" 0xffffffff818437a0 : "cpuqs" 0xffffffff818437b0 : "rcu_bh" 0xffffffff818437b7 : "Start context switch" 0xffffffff818437cc : "End context switch" 0xffffffff818437a0 : "cpuqs" [...] Now userspaces tools can display: rcu_utilization: Start context switch rcu_dyntick: Start 1 0 rcu_utilization: End context switch rcu_batch_start: rcu_preempt CBs=0/5 bl=10 rcu_dyntick: End 0 140000000000000 rcu_invoke_callback: rcu_preempt rhp=0xffff880071c0d600 func=proc_i_callback rcu_invoke_callback: rcu_preempt rhp=0xffff880077b5b230 func=__d_free rcu_dyntick: Start 140000000000000 0 rcu_invoke_callback: rcu_preempt rhp=0xffff880077563980 func=file_free_rcu rcu_batch_end: rcu_preempt CBs-invoked=3 idle=>c<>c<>c<>c< rcu_utilization: End RCU core rcu_grace_period: rcu_preempt 9741 start rcu_dyntick: Start 1 0 rcu_dyntick: End 0 140000000000000 rcu_dyntick: Start 140000000000000 0 Instead of: rcu_utilization: ffffffff81843110 rcu_future_grace_period: ffffffff81842f1d 9939 9939 9940 0 0 3 ffffffff81842f32 rcu_batch_start: ffffffff81842f1d CBs=0/4 bl=10 rcu_future_grace_period: ffffffff81842f1d 9939 9939 9940 0 0 3 ffffffff81842f3c rcu_grace_period: ffffffff81842f1d 9939 ffffffff81842f80 rcu_invoke_callback: ffffffff81842f1d rhp=0xffff88007888aac0 func=file_free_rcu rcu_grace_period: ffffffff81842f1d 9939 ffffffff81842f95 rcu_invoke_callback: ffffffff81842f1d rhp=0xffff88006aeb4600 func=proc_i_callback rcu_future_grace_period: ffffffff81842f1d 9939 9939 9940 0 0 3 ffffffff81842f32 rcu_future_grace_period: ffffffff81842f1d 9939 9939 9940 0 0 3 ffffffff81842f3c rcu_invoke_callback: ffffffff81842f1d rhp=0xffff880071cb9fc0 func=__d_free rcu_grace_period: ffffffff81842f1d 9939 ffffffff81842f80 rcu_invoke_callback: ffffffff81842f1d rhp=0xffff88007888ae80 func=file_free_rcu rcu_batch_end: ffffffff81842f1d CBs-invoked=4 idle=>c<>c<>c<>c< rcu_utilization: ffffffff8184311f Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
由 Steven Rostedt (Red Hat) 提交于
The RCU_STATE_INITIALIZER() macro is used only in the rcutree.c file as well as the rcutree_plugin.h file. It is passed as a rvalue to a variable of a similar name. A per_cpu variable is also created with a similar name as well. The uses of RCU_STATE_INITIALIZER() can be simplified to remove some of the duplicate code that is done. Currently the three users of this macro has this format: struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched, call_rcu_sched); DEFINE_PER_CPU(struct rcu_data, rcu_sched_data); Notice that "rcu_sched" is called three times. This is the same with the other two users. This can be condensed to just: RCU_STATE_INITIALIZER(rcu_sched, call_rcu_sched); by moving the rest into the macro itself. This also opens the door to allow the RCU tracepoint strings and their addresses to be exported so that userspace tracing tools can translate the contents of the pointers of the RCU tracepoints. The change will allow for helper code to be placed in the RCU_STATE_INITIALIZER() macro to export the name that is used. Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
-
- 15 7月, 2013 1 次提交
-
-
由 Paul Gortmaker 提交于
The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. This removes all the drivers/rcu uses of the __cpuinit macros from all C files. [1] https://lkml.org/lkml/2013/5/20/589 Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Josh Triplett <josh@freedesktop.org> Cc: Dipankar Sarma <dipankar@in.ibm.com> Reviewed-by: NJosh Triplett <josh@joshtriplett.org> Signed-off-by: NPaul Gortmaker <paul.gortmaker@windriver.com>
-
- 11 6月, 2013 4 次提交
-
-
由 Paul E. McKenney 提交于
Now that TINY_PREEMPT_RCU is no more, exit_rcu() is always an empty function. But if TINY_RCU is going to have an empty function, it should be in include/linux/rcutiny.h, where it does not bloat the kernel. This commit therefore moves exit_rcu() out of kernel/rcupdate.c to kernel/rcutree_plugin.h, and places a static inline empty function in include/linux/rcutiny.h in order to shrink TINY_RCU a bit. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: NJosh Triplett <josh@joshtriplett.org>
-
由 Paul E. McKenney 提交于
After a release or two, features are no longer experimental. Therefore, this commit removes the "Experimental" tag from them. Reported-by: NPaul Gortmaker <paul.gortmaker@windriver.com> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: NJosh Triplett <josh@joshtriplett.org>
-
由 Paul E. McKenney 提交于
Because note_gp_changes() now incorporates rcu_process_gp_end() function, this commit switches to the former and eliminates the latter. In addition, this commit changes external calls from __rcu_process_gp_end() to __note_gp_changes(). Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: NJosh Triplett <josh@joshtriplett.org>
-
由 Paul E. McKenney 提交于
This commit converts printk() calls to the corresponding pr_*() calls. Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: NJosh Triplett <josh@joshtriplett.org>
-
- 16 5月, 2013 1 次提交
-
-
由 Sasha Levin 提交于
When rcu_init() is called we already have slab working, allocating bootmem at that point results in warnings and an allocation from slab. This commit therefore changes alloc_bootmem_cpumask_var() to alloc_cpumask_var() in rcu_bootup_announce_oddness(), which is called from rcu_init(). Signed-off-by: NSasha Levin <sasha.levin@oracle.com> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: NJosh Triplett <josh@joshtriplett.org> Tested-by: NRobin Holt <holt@sgi.com> [paulmck: convert to zalloc_cpumask_var(), as suggested by Yinghai Lu.]
-
- 15 5月, 2013 1 次提交
-
-
由 Paul E. McKenney 提交于
Commit c0f4dfd4 (rcu: Make RCU_FAST_NO_HZ take advantage of numbered callbacks) introduced a bug that can result in excessively long grace periods. This bug reverse the senes of the "if" statement checking for lazy callbacks, so that RCU takes a lazy approach when there are in fact non-lazy callbacks. This can result in excessive boot, suspend, and resume times. This commit therefore fixes the sense of this "if" statement. Reported-by: NBorislav Petkov <bp@alien8.de> Reported-by: NBjørn Mork <bjorn@mork.no> Reported-by: NJoerg Roedel <joro@8bytes.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: NBjørn Mork <bjorn@mork.no> Tested-by: NJoerg Roedel <joro@8bytes.org>
-
- 19 4月, 2013 1 次提交
-
-
由 Frederic Weisbecker 提交于
We need full dynticks CPU to also be RCU nocb so that we don't have to keep the tick to handle RCU callbacks. Make sure the range passed to nohz_full= boot parameter is a subset of rcu_nocbs= The CPUs that fail to meet this requirement will be excluded from the nohz_full range. This is checked early in boot time, before any CPU has the opportunity to stop its tick. Suggested-by: NSteven Rostedt <rostedt@goodmis.org> Reviewed-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Christoph Lameter <cl@linux.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Gilad Ben Yossef <gilad@benyossef.com> Cc: Hakan Akkan <hakanakkan@gmail.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Kevin Hilman <khilman@linaro.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de>
-
- 16 4月, 2013 1 次提交
-
-
由 Paul E. McKenney 提交于
Adaptive-ticks CPUs inform RCU when they enter kernel mode, but they do not necessarily turn the scheduler-clock tick back on. This state of affairs could result in RCU waiting on an adaptive-ticks CPU running for an extended period in kernel mode. Such a CPU will never run the RCU state machine, and could therefore indefinitely extend the RCU state machine, sooner or later resulting in an OOM condition. This patch, inspired by an earlier patch by Frederic Weisbecker, therefore causes RCU's force-quiescent-state processing to check for this condition and to send an IPI to CPUs that remain in that state for too long. "Too long" currently means about three jiffies by default, which is quite some time for a CPU to remain in the kernel without blocking. The rcu_tree.jiffies_till_first_fqs and rcutree.jiffies_till_next_fqs sysfs variables may be used to tune "too long" if needed. Reported-by: NFrederic Weisbecker <fweisbec@gmail.com> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: NJosh Triplett <josh@joshtriplett.org> Signed-off-by: NFrederic Weisbecker <fweisbec@gmail.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Christoph Lameter <cl@linux.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Gilad Ben Yossef <gilad@benyossef.com> Cc: Hakan Akkan <hakanakkan@gmail.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Kevin Hilman <khilman@linaro.org> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de>
-
- 26 3月, 2013 2 次提交
-
-
由 Paul E. McKenney 提交于
CPUs going idle will need to record the need for a future grace period, but won't actually need to block waiting on it. This commit therefore splits rcu_start_future_gp(), which does the recording, from rcu_nocb_wait_gp(), which now invokes rcu_start_future_gp() to do the recording, after which rcu_nocb_wait_gp() does the waiting. Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-
由 Paul E. McKenney 提交于
CPUs going idle need to be able to indicate their need for future grace periods. A mechanism for doing this already exists for no-callbacks CPUs, so the idea is to re-use that mechanism. This commit therefore moves the ->n_nocb_gp_requests field of the rcu_node structure out from under the CONFIG_RCU_NOCB_CPU #ifdef and renames it to ->need_future_gp. Signed-off-by: NPaul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com>
-