- 15 7月, 2013 4 次提交
-
-
由 Daniel Lezcano 提交于
The cpuidle sysfs code is designed to have a single instance of per CPU cpuidle directory. It is not possible to remove the sysfs entry and create it again. This is not a problem with the current code but future changes will add CPU hotplug support to enable/disable the device, so it will need to remove the sysfs entry like other subsystems do. That won't be possible without this change, because the kobj is a static object which can't be reused for kobj_init_and_add(). Add cpuidle_device_kobj to be allocated dynamically when adding/removing a sysfs entry which is consistent with the other cpuidle's sysfs entries. An added benefit is that the sysfs code is now more self-contained and the includes needed for sysfs can be moved from cpuidle.h directly into sysfs.c so as to reduce the total number of headers dragged along with cpuidle.h. [rjw: Changelog] Signed-off-by: NDaniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Daniel Lezcano 提交于
Fix white space in the cpuidle code to follow the rules described in CodingStyle. No changes in behavior should result from this. [rjw: Changelog] Signed-off-by: NDaniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Daniel Lezcano 提交于
We previously changed the ordering of the cpuidle framework initialization so that the governors are registered before the drivers which can register their devices right from the start. Now, we can safely remove the __cpuidle_register_device() call hack in cpuidle_enable_device() and check if the driver has been registered before enabling it. Then, cpuidle_register_device() can consistently check the cpuidle_enable_device() return value when enabling the device. [rjw: Changelog] Signed-off-by: NDaniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Daniel Lezcano 提交于
cpufreq governors are defined as modules in the code, but the Kconfig options do not allow them to be built as modules. This is not really a problem, but the cpuidle init ordering is: the cpuidle init functions (framework and driver) and then the governors. That leads to some weirdness in the cpuidle framework. Namely, cpuidle_register_device() calls cpuidle_enable_device() which fails at the first attempt, because governors have not been registered yet. When a governor is registered, the framework calls cpuidle_enable_device() again which runs __cpuidle_register_device() only then. Of course, for that to work, the cpuidle_enable_device() return value has to be ignored by cpuidle_register_device(). Instead of having this cyclic call graph and relying on a positive side effects of the hackish back and forth cpuidle_enable_device() calls it is better to fix the cpuidle init ordering. To that end, replace the module init code with postcore_initcall() so we have: * cpuidle framework : core_initcall * cpuidle governors : postcore_initcall * cpuidle drivers : device_initcall and remove the corresponding module exit code as it is dead anyway (governors can't be built as modules). [rjw: Changelog] Signed-off-by: NDaniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 24 6月, 2013 1 次提交
-
-
由 Arnd Bergmann 提交于
Like other ARM specific drivers, this one requires ARM_CPU_SUSPEND, as shown by this linker error: drivers/built-in.o: In function `calxeda_pwrdown_idle': drivers/cpuidle/cpuidle-calxeda.c:84: undefined reference to `cpu_suspend' drivers/cpuidle/cpuidle-calxeda.c:86: undefined reference to `cpu_resume' Signed-off-by: NArnd Bergmann <arnd@arndb.de> Acked-by: NRafael J. Wysocki <rjw@sisk.pl> Acked-by: NRob Herring <rob.herring@calxeda.com> Acked-by: NDaniel Lezcano <daniel.lezcano@linaro.org> Cc: linux-pm@vger.kernel.org
-
- 11 6月, 2013 3 次提交
-
-
由 Daniel Lezcano 提交于
Before commit d6f346f2 (cpuidle: improve governor Kconfig options), the CONFIG_ARCH_NEEDS_CPU_IDLE_COUPLED option didn't depend on CONFIG_CPU_IDLE but now it has been moved under the CPU_IDLE menuconfig. That raises the following warnings: warning: (ARCH_OMAP4 && ARCH_TEGRA_2x_SOC) selects ARCH_NEEDS_CPU_IDLE_COUPLED which has unmet direct dependencies (CPU_IDLE) warning: (ARCH_OMAP4 && ARCH_TEGRA_2x_SOC) selects ARCH_NEEDS_CPU_IDLE_COUPLED which has unmet direct dependencies (CPU_IDLE) because the tegra2 and omap4 Kconfig files select this option without checking if CPU_IDLE is set. Fix that by moving ARCH_NEEDS_CPU_IDLE_COUPLED outside of CPU_IDLE. [rjw: Changelog] Signed-off-by: NDaniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Daniel Lezcano 提交于
Add kerneldoc (and other) comments to the cpuidle driver's framework code. Signed-off-by: NDaniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Daniel Lezcano 提交于
Commit bf4d1b5d (cpuidle: support multiple drivers) introduced support for using multiple cpuidle drivers at the same time. It added a couple of new APIs to register the driver per CPU, but that led to some unnecessary code complexity related to the kernel config options deciding whether or not the multiple driver support is enabled. The code has to work as it did before when the multiple driver support is not enabled and the multiple driver support has to be compatible with the previously existing API. Remove the new API, not used by any driver in the tree yet (but needed for the HMP cpuidle drivers that will be submitted soon), and add a new cpumask pointer to the cpuidle driver structure that will point to the mask of CPUs handled by the given driver. That will allow the cpuidle_[un]register_driver() API to be used for the multiple driver support along with the cpuidle_[un]register() functions added recently. [rjw: Changelog] Signed-off-by: NDaniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 05 6月, 2013 1 次提交
-
-
由 Michal Simek 提交于
Add cpuidle support for Xilinx Zynq. Signed-off-by: NMichal Simek <michal.simek@xilinx.com> Acked-by: NDaniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 04 6月, 2013 1 次提交
-
-
由 Daniel Lezcano 提交于
Each governor is suitable for different kernel configurations: the menu governor suits better for a tickless system, while the ladder governor fits better for a periodic timer tick system. The Kconfig does not allow to [un]select a governor, thus both are compiled in the kernel but the init order makes the menu governor to be the last one to be registered, so becoming the default. The only way to switch back to the ladder governor is to enable the sysfs governor switch in the kernel command line. Because it seems nobody complained about this, the menu governor is used by default most of the time on the system, having both governors is not really necessary on a tickless system but there isn't a config option to disable one or another governor. Create a submenu for cpuidle and add a label for each governor, so we can see the option in the menu config and enable/disable it. The governors will be enabled depending on the CONFIG_NO_HZ option: - If CONFIG_NO_HZ is set, then the menu governor is selected and the ladder governor is optional, defaulting to 'yes' - If CONFIG_NO_HZ is not set, then the ladder governor is selected and the menu governor is optional, defaulting to 'yes' Signed-off-by: NDaniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 30 5月, 2013 1 次提交
-
-
由 Rob Herring 提交于
Move the private set_auxcr/get_auxcr functions from drivers/cpuidle/cpuidle-calxeda.c so they can be used across platforms. Signed-off-by: NRob Herring <rob.herring@calxeda.com> Cc: Russell King <linux@arm.linux.org.uk> Signed-off-by: NNicolas Pitre <nico@linaro.org> Acked-by: NTony Lindgren <tony@atomide.com> Acked-by: NSantosh Shilimkar <santosh.shilimkar@ti.com> Reviewed-by: NWill Deacon <will.deacon@arm.com>
-
- 27 4月, 2013 1 次提交
-
-
由 Daniel Lezcano 提交于
Currently cpuidle drivers are spread across different archs. As a result, there are several different paths for cpuidle patch submissions: cpuidle core changes go through linux-pm, ARM driver changes go to the arm-soc or SoC-specific trees, sh changes go through the sh arch tree, pseries changes go through the PowerPC tree and finally intel changes go through the Len's tree while ACPI idle changes go through linux-pm. That makes it difficult to consolidate code and to propagate modifications from the cpuidle core to the different drivers. Hopefully, a movement has started to put the majority of cpuidle drivers under drivers/cpuidle like cpuidle-calxeda.c and cpuidle-kirkwood.c. Add a maintainer entry for cpuidle to MAINTAINERS to clarify the situation and to indicate to new cpuidle driver authors that those drivers should not go into arch-specific directories. The upstreaming process is unchanged: Rafael takes patches for merging into his tree, but with an Acked-by: tag from the driver's maintainer, so indicate in the drivers' headers who maintains them. The arrangement will be the same as for cpufreq. [rjw: Changelog] Signed-off-by: NDaniel Lezcano <daniel.lezcano@linaro.org> Acked-by: NLinus Walleij <linus.walleij@linaro.org> Acked-by: Andrew Lunn <andrew@lunn.ch> #for kirkwood Acked-by: Jason Cooper <jason@lakedaemon.net> #for kirkwood Acked-by: NKevin Hilman <khilman@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 24 4月, 2013 1 次提交
-
-
由 Daniel Lezcano 提交于
Fix comment format for the kernel doc script. Signed-off-by: NDaniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 23 4月, 2013 4 次提交
-
-
由 Daniel Lezcano 提交于
Remove the duplicated code and use the cpuidle common code for initialization. Signed-off-by: NDaniel Lezcano <daniel.lezcano@linaro.org> Tested-by: NAndrew Lunn <andrew@lunn.ch> Acked-by: NAndrew Lunn <andrew@lunn.ch> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Daniel Lezcano 提交于
Remove the duplicated code and use the cpuidle common code for initialization. Signed-off-by: NDaniel Lezcano <daniel.lezcano@linaro.org> Acked-by: NRob Herring <rob.herring@calxeda.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Daniel Lezcano 提交于
The usual scheme to initialize a cpuidle driver on a SMP is: cpuidle_register_driver(drv); for_each_possible_cpu(cpu) { device = &per_cpu(cpuidle_dev, cpu); cpuidle_register_device(device); } This code is duplicated in each cpuidle driver. On UP systems, it is done this way: cpuidle_register_driver(drv); device = &per_cpu(cpuidle_dev, cpu); cpuidle_register_device(device); On UP, the macro 'for_each_cpu' does one iteration: #define for_each_cpu(cpu, mask) \ for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask) Hence, the initialization loop is the same for UP than SMP. Beside, we saw different bugs / mis-initialization / return code unchecked in the different drivers, the code is duplicated including bugs. After fixing all these ones, it appears the initialization pattern is the same for everyone. Please note, some drivers are doing dev->state_count = drv->state_count. This is not necessary because it is done by the cpuidle_enable_device function in the cpuidle framework. This is true, until you have the same states for all your devices. Otherwise, the 'low level' API should be used instead with the specific initialization for the driver. Let's add a wrapper function doing this initialization with a cpumask parameter for the coupled idle states and use it for all the drivers. That will save a lot of LOC, consolidate the code, and the modifications in the future could be done in a single place. Another benefit is the consolidation of the cpuidle_device variable which is now in the cpuidle framework and no longer spread accross the different arch specific drivers. Signed-off-by: NDaniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Daniel Lezcano 提交于
The en_core_tk_irqen flag is set in all the cpuidle driver which means it is not necessary to specify this flag. Remove the flag and the code related to it. Signed-off-by: NDaniel Lezcano <daniel.lezcano@linaro.org> Acked-by: Kevin Hilman <khilman@linaro.org> # for mach-omap2/* Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 01 4月, 2013 4 次提交
-
-
由 Daniel Lezcano 提交于
The commit 89878baa73f0f1c679355006bd8632e5d78f96c2 introduced the CPUIDLE_FLAG_TIMER_STOP flag where we specify a specific idle state stops the local timer. Now use this flag to check at init time if one state will need the broadcast timer and, in this case, setup the broadcast timer framework. That prevents multiple code duplication in the drivers. Signed-off-by: NDaniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Silviu-Mihai Popescu 提交于
Convert all uses of devm_request_and_ioremap() to the newly introduced devm_ioremap_resource() which provides more consistent error handling. devm_ioremap_resource() provides its own error messages so all explicit error messages can be removed from the failure code paths. Signed-off-by: NSilviu-Mihai Popescu <silviupopescu1990@gmail.com> Reviewed-by: NDaniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Daniel Lezcano 提交于
When the CPU_IDLE and the ARCH_KIRKWOOD options are set it is pointless to define a new option CPU_IDLE_KIRKWOOD because it is redundant. The Makefile drivers directory contains a condition to compile the cpuidle drivers: obj-$(CONFIG_CPU_IDLE) += cpuidle/ Hence, if CPU_IDLE is not set we won't enter this directory. This patch removes the useless Kconfig option and replaces the condition in the Makefile by CONFIG_ARCH_KIRKWOOD. Signed-off-by: NDaniel Lezcano <daniel.lezcano@linaro.org> Acked-by: NJason Cooper <jason@lakedaemon.net> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Daniel Lezcano 提交于
When a cpu enters a deep idle state, the local timers are stopped and the time framework falls back to the timer device used as a broadcast timer. The different cpuidle drivers are calling clockevents_notify ENTER/EXIT when the idle state stops the local timer. Add a new flag CPUIDLE_FLAG_TIMER_STOP which can be set by the cpuidle drivers. If the flag is set, the cpuidle core code takes care of the notification on behalf of the driver to avoid pointless code duplication. Signed-off-by: NDaniel Lezcano <daniel.lezcano@linaro.org> Reviewed-by: NThomas Gleixner <tglx@linutronix.de> Acked-by: NSantosh Shilimkar <santosh.shilimkar@ti.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 01 2月, 2013 1 次提交
-
-
由 Andrew Lunn 提交于
Move the Kirkwood cpuidle driver out of arch/arm/mach-kirkwood and into drivers/cpuidle. Convert the driver into a platform driver. Signed-off-by: NAndrew Lunn <andrew@lunn.ch> Signed-off-by: NJason Cooper <jason@lakedaemon.net>
-
- 26 1月, 2013 1 次提交
-
-
由 Paul Gortmaker 提交于
The text in Documentation said it would be removed in 2.6.41; the text in the Kconfig said removal in the 3.1 release. Either way you look at it, we are well past both, so push it off a cliff. Note that the POWER_CSTATE and the POWER_PSTATE are part of the legacy tracing API. Remove all tracepoints which use these flags. As can be seen from context, most already have a trace entry via trace_cpu_idle anyways. Also, the cpufreq/cpufreq.c PSTATE one is actually unpaired, as compared to the CSTATE ones which all have a clear start/stop. As part of this, the trace_power_frequency also becomes orphaned, so it too is deleted. Signed-off-by: NPaul Gortmaker <paul.gortmaker@windriver.com> Acked-by: NSteven Rostedt <rostedt@goodmis.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 15 1月, 2013 1 次提交
-
-
由 Daniel Lezcano 提交于
We realized that the power usage field is never filled and when it is filled for tegra, the power_specified flag is not set causing all of these values to be reset when the driver is initialized with set_power_state(). However, the power_specified flag can be simply removed under the assumption that the states are always backward sorted, which is the case with the current code. This change allows the menu governor select function and the cpuidle_play_dead() to be simplified. Moreover, the set_power_states() function can removed as it does not make sense any more. Drop the power_specified flag from struct cpuidle_driver and make the related changes as described above. As a consequence, this also fixes the bug where on the dynamic C-states system, the power fields are not initialized. [rjw: Changelog] References: https://bugzilla.kernel.org/show_bug.cgi?id=42870 References: https://bugzilla.kernel.org/show_bug.cgi?id=43349 References: https://lkml.org/lkml/2012/10/16/518Signed-off-by: NDaniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 12 1月, 2013 1 次提交
-
-
由 Krzysztof Mazur 提交于
Commit bf4d1b5d (cpuidle: support multiple drivers) changed the number of initialized state kobjects in cpuidle_add_state_sysfs() from device->state_count to drv->state_count, but left device->state_count in cpuidle_remove_state_sysfs(). The values of these two fields may be different, in which case a NULL pointer dereference may happen in cpuidle_remove_state_sysfs(), for example. Fix this problem by making cpuidle_add_state_sysfs() use device->state_count too (which restores the original behavior of it). [rjw: Changelog] Signed-off-by: NKrzysztof Mazur <krzysiek@podlesie.net> Acked-by: NDaniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 03 1月, 2013 3 次提交
-
-
由 Daniel Lezcano 提交于
Commit bf4d1b5d (cpuidle: support multiple drivers) introduced locking in cpuidle_get_cpu_driver(), which is used in the idle_call() function. This leads to a contention problem with a large number of CPUs, because they all try to run the idle routine at the same time. The lock can be safely removed because of how is used the cpuidle API. Namely, cpuidle_register_driver() is called first, but the cpuidle idle function is not entered before cpuidle_register_device() is called, because the cpuidle device is not enabled then. Moreover, cpuidle_unregister_driver(), which would reset the driver value to NULL, is not called before cpuidle_unregister_device(). All of the cpuidle drivers use the API in the same way. In general, a cleanup around the lock is necessary and a proper refcounting mechanism should be used to ensure the consistency in the API (for example, cpuidle_unregister_driver() should fail if the driver's refcount is not 0). However, these modifications will require some code reorganization and rewrite which will be too intrusive for a fix. For this reason, fix the contention problem introduced by commit bf4d1b5d by simply removing the locking from cpuidle_get_cpu_driver(), which restores the original behavior of that routine. [rjw: Changelog.] Reported-and-tested-by: NRuss Anderson <rja@sgi.com> Signed-off-by: NDaniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Sivaram Nair 提交于
The ready_waiting_counts atomic variable is compared against the wrong online cpu count. The latter is computed incorrectly using logical-OR instead of bit-OR. This patch fixes that. Signed-off-by: NSivaram Nair <sivaramn@nvidia.com> Acked-by: NSantosh Shilimkar <santosh.shilimkar@ti.com> Acked-by: NColin Cross <ccross@android.com> Cc: <stable@vger.kernel.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Sivaram Nair 提交于
Since cpuidle_state.power_usage is a signed value, use INT_MAX (instead of -1) to init the local copies so that functions that tries to find cpuidle states with minimum power usage works correctly even if they use non-negative values. Signed-off-by: NSivaram Nair <sivaramn@nvidia.com> Reviewed-by: NRik van Riel <riel@redhat.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 27 11月, 2012 1 次提交
-
-
由 Julius Werner 提交于
Many cpuidle drivers measure their time spent in an idle state by reading the wallclock time before and after idling and calculating the difference. This leads to erroneous results when the wallclock time gets updated by another processor in the meantime, adding that clock adjustment to the idle state's time counter. If the clock adjustment was negative, the result is even worse due to an erroneous cast from int to unsigned long long of the last_residency variable. The negative 32 bit integer will zero-extend and result in a forward time jump of roughly four billion milliseconds or 1.3 hours on the idle state residency counter. This patch changes all affected cpuidle drivers to either use the monotonic clock for their measurements or make use of the generic time measurement wrapper in cpuidle.c, which was already working correctly. Some superfluous CLIs/STIs in the ACPI code are removed (interrupts should always already be disabled before entering the idle function, and not get reenabled until the generic wrapper has performed its second measurement). It also removes the erroneous cast, making sure that negative residency values are applied correctly even though they should not appear anymore. Signed-off-by: NJulius Werner <jwerner@chromium.org> Reviewed-by: NPreeti U Murthy <preeti@linux.vnet.ibm.com> Tested-by: NDaniel Lezcano <daniel.lezcano@linaro.org> Acked-by: NDaniel Lezcano <daniel.lezcano@linaro.org> Acked-by: NLen Brown <len.brown@intel.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 23 11月, 2012 1 次提交
-
-
由 Li Zhong 提交于
I saw this suspicious RCU usage on the next tree of 11/15 [ 67.123404] =============================== [ 67.123413] [ INFO: suspicious RCU usage. ] [ 67.123423] 3.7.0-rc5-next-20121115-dirty #1 Not tainted [ 67.123434] ------------------------------- [ 67.123444] include/trace/events/timer.h:186 suspicious rcu_dereference_check() usage! [ 67.123458] [ 67.123458] other info that might help us debug this: [ 67.123458] [ 67.123474] [ 67.123474] RCU used illegally from idle CPU! [ 67.123474] rcu_scheduler_active = 1, debug_locks = 0 [ 67.123493] RCU used illegally from extended quiescent state! [ 67.123507] 1 lock held by swapper/1/0: [ 67.123516] #0: (&cpu_base->lock){-.-...}, at: [<c0000000000979b0>] .__hrtimer_start_range_ns+0x28c/0x524 [ 67.123555] [ 67.123555] stack backtrace: [ 67.123566] Call Trace: [ 67.123576] [c0000001e2ccb920] [c00000000001275c] .show_stack+0x78/0x184 (unreliable) [ 67.123599] [c0000001e2ccb9d0] [c0000000000c15a0] .lockdep_rcu_suspicious+0x120/0x148 [ 67.123619] [c0000001e2ccba70] [c00000000009601c] .enqueue_hrtimer+0x1c0/0x1c8 [ 67.123639] [c0000001e2ccbb00] [c000000000097aa0] .__hrtimer_start_range_ns+0x37c/0x524 [ 67.123660] [c0000001e2ccbc20] [c0000000005c9698] .menu_select+0x508/0x5bc [ 67.123678] [c0000001e2ccbd20] [c0000000005c740c] .cpuidle_idle_call+0xa8/0x6e4 [ 67.123699] [c0000001e2ccbdd0] [c0000000000459a0] .pSeries_idle+0x10/0x34 [ 67.123717] [c0000001e2ccbe40] [c000000000014dc8] .cpu_idle+0x130/0x280 [ 67.123738] [c0000001e2ccbee0] [c0000000006ffa8c] .start_secondary+0x378/0x384 [ 67.123758] [c0000001e2ccbf90] [c00000000000936c] .start_secondary_prolog+0x10/0x14 hrtimer_start was added in 198fd638 and ae515197. The patch below tries to use RCU_NONIDLE around it to avoid the above report. Signed-off-by: NLi Zhong <zhong@linux.vnet.ibm.com> Acked-by: NPaul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: NRik van Riel <riel@redhat.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
- 15 11月, 2012 10 次提交
-
-
由 Daniel Lezcano 提交于
With the tegra3 and the big.LITTLE [1] new architectures, several cpus with different characteristics (latencies and states) can co-exists on the system. The cpuidle framework has the limitation of handling only identical cpus. This patch removes this limitation by introducing the multiple driver support for cpuidle. This option is configurable at compile time and should be enabled for the architectures mentioned above. So there is no impact for the other platforms if the option is disabled. The option defaults to 'n'. Note the multiple drivers support is also compatible with the existing drivers, even if just one driver is needed, all the cpu will be tied to this driver using an extra small chunk of processor memory. The multiple driver support use a per-cpu driver pointer instead of a global variable and the accessor to this variable are done from a cpu context. In order to keep the compatibility with the existing drivers, the function 'cpuidle_register_driver' and 'cpuidle_unregister_driver' will register the specified driver for all the cpus. The semantic for the output of /sys/devices/system/cpu/cpuidle/current_driver remains the same except the driver name will be related to the current cpu. The /sys/devices/system/cpu/cpu[0-9]/cpuidle/driver/name files are added allowing to read the per cpu driver name. [1] http://lwn.net/Articles/481055/Signed-off-by: NDaniel Lezcano <daniel.lezcano@linaro.org> Acked-by: NPeter De Schrijver <pdeschrijver@nvidia.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Daniel Lezcano 提交于
This patch is a preparation for the multiple cpuidle drivers support. As the next patch will introduce the multiple drivers with the Kconfig option and we want to keep the code clean and understandable, this patch defines a set of functions for encapsulating some common parts and splits what should be done under a lock from the rest. [rjw: Modified the subject and changelog slightly.] Signed-off-by: NDaniel Lezcano <daniel.lezcano@linaro.org> Acked-by: NPeter De Schrijver <pdeschrijver@nvidia.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Daniel Lezcano 提交于
The code is racy and the check with cpuidle_curr_driver should be done under the lock. I don't find a path in the different drivers where that could happen because the arch specific drivers are written in such way it is not possible to register a driver while it is unregistered, except maybe in a very improbable case when "intel_idle" and "processor_idle" are competing. One could unregister a driver, while the other one is registering. Signed-off-by: NDaniel Lezcano <daniel.lezcano@linaro.org> Acked-by: NPeter De Schrijver <pdeschrijver@nvidia.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Daniel Lezcano 提交于
We want to support different cpuidle drivers co-existing together. In this case we should move the refcount to the cpuidle_driver structure to handle several drivers at a time. Signed-off-by: NDaniel Lezcano <daniel.lezcano@linaro.org> Acked-by: NPeter De Schrijver <pdeschrijver@nvidia.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Daniel Lezcano 提交于
The "struct device" is only used in sysfs.c. The other .c files including the private header "cpuidle.h" do not need to pull the entire headers tree from there as they don't manipulate the "struct device". This patch fixes this by moving the header inclusion to sysfs.c and adding a forward declaration for the struct device. The number of lines generated by the preprocesor: Without this patch : 17269 loc With this patch : 16446 loc Signed-off-by: NDaniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Daniel Lezcano 提交于
The structure cpuidle_state_kobj is not used anywhere except in the sysfs.c file. The definition of this structure is not needed in the cpuidle header file. This patch moves it to the sysfs.c file in order to encapsulate the code a bit more. Signed-off-by: NDaniel Lezcano <daniel.lezcano@linaro.org> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Youquan Song 提交于
The function detect_repeating_patterns was not very useful for workloads with alternating long and short pauses, for example virtual machines handling network requests for each other (say a web and database server). Instead, try to find a recent sleep interval that is somewhere between the median and the mode sleep time, by discarding outliers to the up side and recalculating the average and standard deviation until that is no longer required. This should do something sane with a sleep interval series like: 200 180 210 10000 30 1000 170 200 The current code would simply discard such a series, while the new code will guess a typical sleep interval just shy of 200. The original patch come from Rik van Riel <riel@redhat.com>. Signed-off-by: NRik van Riel <riel@redhat.com> Signed-off-by: NYouquan Song <youquan.song@intel.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Youquan Song 提交于
When cpuidle governor choose a C-state to enter for idle CPU, but it notice that there is tasks request to be executed. So the idle CPU will not really enter the target C-state and go to run task. In this situation, it will use the residency of previous really entered target C-states. Obviously, it is not reasonable. So, this patch fix it by set the target C-state residency to 0. Signed-off-by: NRik van Riel <riel@redhat.com> Signed-off-by: NYouquan Song <youquan.song@intel.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Youquan Song 提交于
The prediction for future is difficult and when the cpuidle governor prediction fails and govenor possibly choose the shallower C-state than it should. How to quickly notice and find the failure becomes important for power saving. The patch extends to general case that prediction logic get a small predicted residency, so it choose a shallow C-state though the expected residency is large . Once the prediction will be fail, the CPU will keep staying at shallow C-state for a long time. Acutally, the CPU has change enter into deep C-state. So when the expected residency is long enough but governor choose a shallow C-state, an timer will be added in order to monitor if the prediction failure. When C-state is waken up prior to the adding timer, the timer will be cancelled initiatively. When the timer is triggered and menu governor will quickly notice prediction failure and re-evaluates deeper C-states possibility. Signed-off-by: NRik van Riel <riel@redhat.com> Signed-off-by: NYouquan Song <youquan.song@intel.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-
由 Youquan Song 提交于
The prediction for future is difficult and when the cpuidle governor prediction fails and govenor possibly choose the shallower C-state than it should. How to quickly notice and find the failure becomes important for power saving. cpuidle menu governor has a method to predict the repeat pattern if there are 8 C-states residency which are continuous and the same or very close, so it will predict the next C-states residency will keep same residency time. There is a real case that turbostat utility (tools/power/x86/turbostat) at kernel 3.3 or early. turbostat utility will read 10 registers one by one at Sandybridge, so it will generate 10 IPIs to wake up idle CPUs. So cpuidle menu governor will predict it is repeat mode and there is another IPI wake up idle CPU soon, so it keeps idle CPU stay at C1 state even though CPU is totally idle. However, in the turbostat, following 10 registers reading is sleep 5 seconds by default, so the idle CPU will keep at C1 for a long time though it is idle until break event occurs. In a idle Sandybridge system, run "./turbostat -v", we will notice that deep C-state dangles between "70% ~ 99%". After patched the kernel, we will notice deep C-state stays at >99.98%. In the patch, a timer is added when menu governor detects a repeat mode and choose a shallow C-state. The timer is set to a time out value that greater than predicted time, and we conclude repeat mode prediction failure if timer is triggered. When repeat mode happens as expected, the timer is not triggered and CPU waken up from C-states and it will cancel the timer initiatively. When repeat mode does not happen, the timer will be time out and menu governor will quickly notice that the repeat mode prediction fails and then re-evaluates deeper C-states possibility. Below is another case which will clearly show the patch much benefit: #include <stdlib.h> #include <stdio.h> #include <unistd.h> #include <signal.h> #include <sys/time.h> #include <time.h> #include <pthread.h> volatile int * shutdown; volatile long * count; int delay = 20; int loop = 8; void usage(void) { fprintf(stderr, "Usage: idle_predict [options]\n" " --help -h Print this help\n" " --thread -n Thread number\n" " --loop -l Loop times in shallow Cstate\n" " --delay -t Sleep time (uS)in shallow Cstate\n"); } void *simple_loop() { int idle_num = 1; while (!(*shutdown)) { *count = *count + 1; if (idle_num % loop) usleep(delay); else { /* sleep 1 second */ usleep(1000000); idle_num = 0; } idle_num++; } } static void sighand(int sig) { *shutdown = 1; } int main(int argc, char *argv[]) { sigset_t sigset; int signum = SIGALRM; int i, c, er = 0, thread_num = 8; pthread_t pt[1024]; static char optstr[] = "n:l:t:h:"; while ((c = getopt(argc, argv, optstr)) != EOF) switch (c) { case 'n': thread_num = atoi(optarg); break; case 'l': loop = atoi(optarg); break; case 't': delay = atoi(optarg); break; case 'h': default: usage(); exit(1); } printf("thread=%d,loop=%d,delay=%d\n",thread_num,loop,delay); count = malloc(sizeof(long)); shutdown = malloc(sizeof(int)); *count = 0; *shutdown = 0; sigemptyset(&sigset); sigaddset(&sigset, signum); sigprocmask (SIG_BLOCK, &sigset, NULL); signal(SIGINT, sighand); signal(SIGTERM, sighand); for(i = 0; i < thread_num ; i++) pthread_create(&pt[i], NULL, simple_loop, NULL); for (i = 0; i < thread_num; i++) pthread_join(pt[i], NULL); exit(0); } Get powertop V2 from git://github.com/fenrus75/powertop, build powertop. After build the above test application, then run it. Test plaform can be Intel Sandybridge or other recent platforms. #./idle_predict -l 10 & #./powertop We will find that deep C-state will dangle between 40%~100% and much time spent on C1 state. It is because menu governor wrongly predict that repeat mode is kept, so it will choose the C1 shallow C-state even though it has chance to sleep 1 second in deep C-state. While after patched the kernel, we find that deep C-state will keep >99.6%. Signed-off-by: NRik van Riel <riel@redhat.com> Signed-off-by: NYouquan Song <youquan.song@intel.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com>
-