- 12 12月, 2012 3 次提交
-
-
由 David Rientjes 提交于
mem_cgroup_out_of_memory() is only referenced from within file scope, so it can be marked static. Signed-off-by: NDavid Rientjes <rientjes@google.com> Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: NMichal Hocko <mhocko@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Rabin Vincent 提交于
This is useful to diagnose the reason for page allocation failure for cases where there appear to be several free pages. Example, with this alloc_pages(GFP_ATOMIC) failure: swapper/0: page allocation failure: order:0, mode:0x0 ... Mem-info: Normal per-cpu: CPU 0: hi: 90, btch: 15 usd: 48 CPU 1: hi: 90, btch: 15 usd: 21 active_anon:0 inactive_anon:0 isolated_anon:0 active_file:0 inactive_file:84 isolated_file:0 unevictable:0 dirty:0 writeback:0 unstable:0 free:4026 slab_reclaimable:75 slab_unreclaimable:484 mapped:0 shmem:0 pagetables:0 bounce:0 Normal free:16104kB min:2296kB low:2868kB high:3444kB active_anon:0kB inactive_anon:0kB active_file:0kB inactive_file:336kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:331776kB mlocked:0kB dirty:0kB writeback:0kB mapped:0kB shmem:0kB slab_reclaimable:300kB slab_unreclaimable:1936kB kernel_stack:328kB pagetables:0kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:0 all_unreclaimable? no lowmem_reserve[]: 0 0 Before the patch, it's hard (for me, at least) to say why all these free chunks weren't considered for allocation: Normal: 0*4kB 0*8kB 0*16kB 0*32kB 0*64kB 0*128kB 1*256kB 1*512kB 1*1024kB 1*2048kB 3*4096kB = 16128kB After the patch, it's obvious that the reason is that all of these are in the MIGRATE_CMA (C) freelist: Normal: 0*4kB 0*8kB 0*16kB 0*32kB 0*64kB 0*128kB 1*256kB (C) 1*512kB (C) 1*1024kB (C) 1*2048kB (C) 3*4096kB (C) = 16128kB Signed-off-by: NRabin Vincent <rabin.vincent@stericsson.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Namjae Jeon 提交于
There is no reason to pass the nr_pages_dirtied argument, because nr_pages_dirtied value from the caller is unused in balance_dirty_pages_ratelimited_nr(). Signed-off-by: NNamjae Jeon <linkinjeon@gmail.com> Signed-off-by: NVivek Trivedi <vtrivedi018@gmail.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 11 12月, 2012 3 次提交
-
-
由 Marek Szyprowski 提交于
dmapool always calls dma_alloc_coherent() with GFP_ATOMIC flag, regardless the flags provided by the caller. This causes excessive pruning of emergency memory pools without any good reason. Additionaly, on ARM architecture any driver which is using dmapools will sooner or later trigger the following error: "ERROR: 256 KiB atomic DMA coherent pool is too small! Please increase it with coherent_pool= kernel parameter!". Increasing the coherent pool size usually doesn't help much and only delays such error, because all GFP_ATOMIC DMA allocations are always served from the special, very limited memory pool. This patch changes the dmapool code to correctly use gfp flags provided by the dmapool caller. Reported-by: NSoeren Moch <smoch@web.de> Reported-by: NThomas Petazzoni <thomas.petazzoni@free-electrons.com> Signed-off-by: NMarek Szyprowski <m.szyprowski@samsung.com> Tested-by: NAndrew Lunn <andrew@lunn.ch> Tested-by: NSoeren Moch <smoch@web.de> Cc: stable@vger.kernel.org
-
由 Linus Torvalds 提交于
This reverts commits a5091539 and d7c3b937. This is a revert of a revert of a revert. In addition, it reverts the even older i915 change to stop using the __GFP_NO_KSWAPD flag due to the original commits in linux-next. It turns out that the original patch really was bogus, and that the original revert was the correct thing to do after all. We thought we had fixed the problem, and then reverted the revert, but the problem really is fundamental: waking up kswapd simply isn't the right thing to do, and direct reclaim sometimes simply _is_ the right thing to do. When certain allocations fail, we simply should try some direct reclaim, and if that fails, fail the allocation. That's the right thing to do for THP allocations, which can easily fail, and the GPU allocations want to do that too. So starting kswapd is sometimes simply wrong, and removing the flag that said "don't start kswapd" was a mistake. Let's hope we never revisit this mistake again - and certainly not this many times ;) Acked-by: NMel Gorman <mgorman@suse.de> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Rik van Riel <riel@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Linus Torvalds 提交于
This reverts commit 782fd304. We are going to reinstate the __GFP_NO_KSWAPD flag that has been removed, the removal reverted, and then removed again. Making this commit a pointless fixup for a problem that was caused by the removal of __GFP_NO_KSWAPD flag. The thing is, we really don't want to wake up kswapd for THP allocations (because they fail quite commonly under any kind of memory pressure, including when there is tons of memory free), and these patches were just trying to fix up the underlying bug: the original removal of __GFP_NO_KSWAPD in commit c6543459 ("mm: remove __GFP_NO_KSWAPD") was simply bogus. Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 09 12月, 2012 1 次提交
-
-
由 Johannes Weiner 提交于
commit c702418f ("mm: vmscan: do not keep kswapd looping forever due to individual uncompactable zones") removed zone watermark checks from the compaction code in kswapd but left in the zone congestion clearing, which now happens unconditionally on higher order reclaim. This messes up the reclaim throttling logic for zones with dirty/writeback pages, where zones should only lose their congestion status when their watermarks have been restored. Remove the clearing from the zone compaction section entirely. The preliminary zone check and the reclaim loop in kswapd will clear it if the zone is considered balanced. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Reviewed-by: NRik van Riel <riel@redhat.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 07 12月, 2012 3 次提交
-
-
由 Mel Gorman 提交于
This fixes a regression in 3.7-rc, which has since gone into stable. Commit 00442ad0 ("mempolicy: fix a memory corruption by refcount imbalance in alloc_pages_vma()") changed get_vma_policy() to raise the refcount on a shmem shared mempolicy; whereas shmem_alloc_page() went on expecting alloc_page_vma() to drop the refcount it had acquired. This deserves a rework: but for now fix the leak in shmem_alloc_page(). Hugh: shmem_swapin() did not need a fix, but surely it's clearer to use the same refcounting there as in shmem_alloc_page(), delete its onstack mempolicy, and the strange mpol_cond_copy() and __mpol_cond_copy() - those were invented to let swapin_readahead() make an unknown number of calls to alloc_pages_vma() with one mempolicy; but since 00442ad0, alloc_pages_vma() has kept refcount in balance, so now no problem. Reported-and-tested-by: NTommi Rantala <tt.rantala@gmail.com> Signed-off-by: NMel Gorman <mgorman@suse.de> Signed-off-by: NHugh Dickins <hughd@google.com> Cc: stable@vger.kernel.org Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
When a zone meets its high watermark and is compactable in case of higher order allocations, it contributes to the percentage of the node's memory that is considered balanced. This requirement, that a node be only partially balanced, came about when kswapd was desparately trying to balance tiny zones when all bigger zones in the node had plenty of free memory. Arguably, the same should apply to compaction: if a significant part of the node is balanced enough to run compaction, do not get hung up on that tiny zone that might never get in shape. When the compaction logic in kswapd is reached, we know that at least 25% of the node's memory is balanced properly for compaction (see zone_balanced and pgdat_balanced). Remove the individual zone checks that restart the kswapd cycle. Otherwise, we may observe more endless looping in kswapd where the compaction code loops back to reclaim because of a single zone and reclaim does nothing because the node is considered balanced overall. See for example https://bugzilla.redhat.com/show_bug.cgi?id=866988Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Reported-and-tested-by: NThorsten Leemhuis <fedora@leemhuis.info> Reported-by: NJiri Slaby <jslaby@suse.cz> Tested-by: NJohn Ellson <john.ellson@comcast.net> Tested-by: NZdenek Kabelac <zkabelac@redhat.com> Tested-by: NBruno Wolff III <bruno@wolff.to> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
Commit 0bf380bc ("mm: compaction: check pfn_valid when entering a new MAX_ORDER_NR_PAGES block during isolation for migration") added a check for pfn_valid() when isolating pages for migration as the scanner does not necessarily start pageblock-aligned. Since commit c89511ab ("mm: compaction: Restart compaction from near where it left off"), the free scanner has the same problem. This patch makes sure that the pfn range passed to isolate_freepages_block() is within the same block so that pfn_valid() checks are unnecessary. In answer to Henrik's wondering why others have not reported this: reproducing this requires a large enough hole with the right aligment to have compaction walk into a PFN range with no memmap. Size and alignment depends in the memory model - 4M for FLATMEM and 128M for SPARSEMEM on x86. It needs a "lucky" machine. Reported-by: NHenrik Rydberg <rydberg@euromail.se> Signed-off-by: NMel Gorman <mgorman@suse.de> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 01 12月, 2012 6 次提交
-
-
由 Naoya Horiguchi 提交于
When we try to soft-offline a thp tail page, put_page() is called on the tail page unthinkingly and VM_BUG_ON is triggered in put_compound_page(). This patch splits thp before going into the main body of soft-offlining. Signed-off-by: NNaoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Tony Luck <tony.luck@intel.com> Cc: Andi Kleen <andi.kleen@intel.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
With "mm: vmscan: scale number of pages reclaimed by reclaim/compaction based on failures" reverted, Zdenek Kabelac reported the following Hmm, so it's just took longer to hit the problem and observe kswapd0 spinning on my CPU again - it's not as endless like before - but still it easily eats minutes - it helps to turn off Firefox or TB (memory hungry apps) so kswapd0 stops soon - and restart those apps again. (And I still have like >1GB of cached memory) kswapd0 R running task 0 30 2 0x00000000 Call Trace: preempt_schedule+0x42/0x60 _raw_spin_unlock+0x55/0x60 put_super+0x31/0x40 drop_super+0x22/0x30 prune_super+0x149/0x1b0 shrink_slab+0xba/0x510 The sysrq+m indicates the system has no swap so it'll never reclaim anonymous pages as part of reclaim/compaction. That is one part of the problem but not the root cause as file-backed pages could also be reclaimed. The likely underlying problem is that kswapd is woken up or kept awake for each THP allocation request in the page allocator slow path. If compaction fails for the requesting process then compaction will be deferred for a time and direct reclaim is avoided. However, if there are a storm of THP requests that are simply rejected, it will still be the the case that kswapd is awake for a prolonged period of time as pgdat->kswapd_max_order is updated each time. This is noticed by the main kswapd() loop and it will not call kswapd_try_to_sleep(). Instead it will loopp, shrinking a small number of pages and calling shrink_slab() on each iteration. This patch defers when kswapd gets woken up for THP allocations. For !THP allocations, kswapd is always woken up. For THP allocations, kswapd is woken up iff the process is willing to enter into direct reclaim/compaction. [akpm@linux-foundation.org: fix typo in comment] Signed-off-by: NMel Gorman <mgorman@suse.de> Cc: Zdenek Kabelac <zkabelac@redhat.com> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Jiri Slaby <jirislaby@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Robert Jennings <rcj@linux.vnet.ibm.com> Cc: Valdis Kletnieks <Valdis.Kletnieks@vt.edu> Cc: Glauber Costa <glommer@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Andrew Morton 提交于
It apepars that this patch was innocent, and we hope that "mm: avoid waking kswapd for THP allocations when compaction is deferred or contended" will fix the final kswapd-spinning cause. Cc: Zdenek Kabelac <zkabelac@redhat.com> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Valdis Kletnieks <Valdis.Kletnieks@vt.edu> Cc: Jiri Slaby <jirislaby@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Robert Jennings <rcj@linux.vnet.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
Kswapd does not in all places have the same criteria for a balanced zone. Zones are only being reclaimed when their high watermark is breached, but compaction checks loop over the zonelist again when the zone does not meet the low watermark plus two times the size of the allocation. This gets kswapd stuck in an endless loop over a small zone, like the DMA zone, where the high watermark is smaller than the compaction requirement. Add a function, zone_balanced(), that checks the watermark, and, for higher order allocations, if compaction has enough free memory. Then use it uniformly to check for balanced zones. This makes sure that when the compaction watermark is not met, at least reclaim happens and progress is made - or the zone is declared unreclaimable at some point and skipped entirely. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Reported-by: NGeorge Spelvin <linux@horizon.com> Reported-by: NJohannes Hirte <johannes.hirte@fem.tu-ilmenau.de> Reported-by: NTomas Racek <tracek@redhat.com> Tested-by: NJohannes Hirte <johannes.hirte@fem.tu-ilmenau.de> Reviewed-by: NRik van Riel <riel@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jianguo Wu 提交于
I enable CONFIG_DEBUG_VIRTUAL and CONFIG_SPARSEMEM_VMEMMAP, when doing memory hotremove, there is a kernel BUG at arch/x86/mm/physaddr.c:20. It is caused by free_section_usemap()->virt_to_page(), virt_to_page() is only used for kernel direct mapping address, but sparse-vmemmap uses vmemmap address, so it is going wrong here. ------------[ cut here ]------------ kernel BUG at arch/x86/mm/physaddr.c:20! invalid opcode: 0000 [#1] SMP Modules linked in: acpihp_drv acpihp_slot edd cpufreq_conservative cpufreq_userspace cpufreq_powersave acpi_cpufreq mperf fuse vfat fat loop dm_mod coretemp kvm crc32c_intel ipv6 ixgbe igb iTCO_wdt i7core_edac edac_core pcspkr iTCO_vendor_support ioatdma microcode joydev sr_mod i2c_i801 dca lpc_ich mfd_core mdio tpm_tis i2c_core hid_generic tpm cdrom sg tpm_bios rtc_cmos button ext3 jbd mbcache usbhid hid uhci_hcd ehci_hcd usbcore usb_common sd_mod crc_t10dif processor thermal_sys hwmon scsi_dh_alua scsi_dh_hp_sw scsi_dh_rdac scsi_dh_emc scsi_dh ata_generic ata_piix libata megaraid_sas scsi_mod CPU 39 Pid: 6454, comm: sh Not tainted 3.7.0-rc1-acpihp-final+ #45 QCI QSSC-S4R/QSSC-S4R RIP: 0010:[<ffffffff8103c908>] [<ffffffff8103c908>] __phys_addr+0x88/0x90 RSP: 0018:ffff8804440d7c08 EFLAGS: 00010006 RAX: 0000000000000006 RBX: ffffea0012000000 RCX: 000000000000002c ... Signed-off-by: NJianguo Wu <wujianguo@huawei.com> Signed-off-by: NJiang Liu <jiang.liu@huawei.com> Reviewd-by: NWen Congyang <wency@cn.fujitsu.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Reviewed-by: NYasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Reviewed-by: NMichal Hocko <mhocko@suse.cz> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
Commit ef6c5be6 ("fix incorrect NR_FREE_PAGES accounting (appears like memory leak)") fixes a NR_FREE_PAGE accounting leak but missed the return value which was also missed by this reviewer until today. That return value is used by compaction when adding pages to a list of isolated free pages and without this follow-up fix, there is a risk of free list corruption. Signed-off-by: NMel Gorman <mgorman@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 27 11月, 2012 2 次提交
-
-
由 Mel Gorman 提交于
Commit 5515061d ("mm: throttle direct reclaimers if PF_MEMALLOC reserves are low and swap is backed by network storage") introduced a check for fatal signals after a process gets throttled for network storage. The intention was that if a process was throttled and got killed that it should not trigger the OOM killer. As pointed out by Minchan Kim and David Rientjes, this check is in the wrong place and too broad. If a system is in am OOM situation and a process is exiting, it can loop in __alloc_pages_slowpath() and calling direct reclaim in a loop. As the fatal signal is pending it returns 1 as if it is making forward progress and can effectively deadlock. This patch moves the fatal_signal_pending() check after throttling to throttle_direct_reclaim() where it belongs. If the process is killed while throttled, it will return immediately without direct reclaim except now it will have TIF_MEMDIE set and will use the PFMEMALLOC reserves. Minchan pointed out that it may be better to direct reclaim before returning to avoid using the reserves because there may be pages that can easily reclaim that would avoid using the reserves. However, we do no such targetted reclaim and there is no guarantee that suitable pages are available. As it is expected that this throttling happens when swap-over-NFS is used there is a possibility that the process will instead swap which may allocate network buffers from the PFMEMALLOC reserves. Hence, in the swap-over-nfs case where a process can be throtted and be killed it can use the reserves to exit or it can potentially use reserves to swap a few pages and then exit. This patch takes the option of using the reserves if necessary to allow the process exit quickly. If this patch passes review it should be considered a -stable candidate for 3.6. Signed-off-by: NMel Gorman <mgorman@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Sonny Rao <sonnyrao@google.com> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
With "mm: vmscan: scale number of pages reclaimed by reclaim/compaction based on failures" reverted, Zdenek Kabelac reported the following Hmm, so it's just took longer to hit the problem and observe kswapd0 spinning on my CPU again - it's not as endless like before - but still it easily eats minutes - it helps to turn off Firefox or TB (memory hungry apps) so kswapd0 stops soon - and restart those apps again. (And I still have like >1GB of cached memory) kswapd0 R running task 0 30 2 0x00000000 Call Trace: preempt_schedule+0x42/0x60 _raw_spin_unlock+0x55/0x60 put_super+0x31/0x40 drop_super+0x22/0x30 prune_super+0x149/0x1b0 shrink_slab+0xba/0x510 The sysrq+m indicates the system has no swap so it'll never reclaim anonymous pages as part of reclaim/compaction. That is one part of the problem but not the root cause as file-backed pages could also be reclaimed. The likely underlying problem is that kswapd is woken up or kept awake for each THP allocation request in the page allocator slow path. If compaction fails for the requesting process then compaction will be deferred for a time and direct reclaim is avoided. However, if there are a storm of THP requests that are simply rejected, it will still be the the case that kswapd is awake for a prolonged period of time as pgdat->kswapd_max_order is updated each time. This is noticed by the main kswapd() loop and it will not call kswapd_try_to_sleep(). Instead it will loopp, shrinking a small number of pages and calling shrink_slab() on each iteration. The temptation is to supply a patch that checks if kswapd was woken for THP and if so ignore pgdat->kswapd_max_order but it'll be a hack and not backed up by proper testing. As 3.7 is very close to release and this is not a bug we should release with, a safer path is to revert "mm: remove __GFP_NO_KSWAPD" for now and revisit it with the view to ironing out the balance_pgdat() logic in general. Signed-off-by: NMel Gorman <mgorman@suse.de> Cc: Zdenek Kabelac <zkabelac@redhat.com> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: Valdis Kletnieks <Valdis.Kletnieks@vt.edu> Cc: Jiri Slaby <jirislaby@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Robert Jennings <rcj@linux.vnet.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 22 11月, 2012 1 次提交
-
-
由 Dave Hansen 提交于
There have been some 3.7-rc reports of vm issues, including some kswapd bugs and, more importantly, some memory "leaks": http://www.spinics.net/lists/linux-mm/msg46187.html https://bugzilla.kernel.org/show_bug.cgi?id=50181 Commit 1fb3f8ca ("mm: compaction: capture a suitable high-order page immediately when it is made available") took split_free_page() and reused it for the compaction code. It does something curious with capture_free_page() (previously known as split_free_page()): int capture_free_page(struct page *page, int alloc_order, ... __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order)); - /* Split into individual pages */ - set_page_refcounted(page); - split_page(page, order); + if (alloc_order != order) + expand(zone, page, alloc_order, order, + &zone->free_area[order], migratetype); Note that expand() puts the pages _back_ in the allocator, but it does not bump NR_FREE_PAGES. We "return" 'alloc_order' worth of pages, but we accounted for removing 'order' in the __mod_zone_page_state() call. For the old split_page()-style use (order==alloc_order) the bug will not trigger. But, when called from the compaction code where we occasionally get a larger page out of the buddy allocator than we need, we will run in to this. This patch simply changes the NR_FREE_PAGES manipulation to the correct 'alloc_order' instead of 'order'. I've been able to repeatedly trigger this in my testing environment. The amount "leaked" very closely tracks the imbalance I see in buddy pages vs. NR_FREE_PAGES. I have confirmed that this patch fixes the imbalance Signed-off-by: NDave Hansen <dave@linux.vnet.ibm.com> Acked-by: NMel Gorman <mgorman@suse.de> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 17 11月, 2012 10 次提交
-
-
由 Andrew Morton 提交于
Revert commit 7f1290f2 ("mm: fix-up zone present pages") That patch tried to fix a issue when calculating zone->present_pages, but it caused a regression on 32bit systems with HIGHMEM. With that change, reset_zone_present_pages() resets all zone->present_pages to zero, and fixup_zone_present_pages() is called to recalculate zone->present_pages when the boot allocator frees core memory pages into buddy allocator. Because highmem pages are not freed by bootmem allocator, all highmem zones' present_pages becomes zero. Various options for improving the situation are being discussed but for now, let's return to the 3.6 code. Cc: Jianguo Wu <wujianguo@huawei.com> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Petr Tesarik <ptesarik@suse.cz> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Acked-by: NDavid Rientjes <rientjes@google.com> Tested-by: NChris Clayton <chris2553@googlemail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Hugh Dickins 提交于
Under a particular load on one machine, I have hit shmem_evict_inode()'s BUG_ON(inode->i_blocks), enough times to narrow it down to a particular race between swapout and eviction. It comes from the "if (freed > 0)" asymmetry in shmem_recalc_inode(), and the lack of coherent locking between mapping's nrpages and shmem's swapped count. There's a window in shmem_writepage(), between lowering nrpages in shmem_delete_from_page_cache() and then raising swapped count, when the freed count appears to be +1 when it should be 0, and then the asymmetry stops it from being corrected with -1 before hitting the BUG. One answer is coherent locking: using tree_lock throughout, without info->lock; reasonable, but the raw_spin_lock in percpu_counter_add() on used_blocks makes that messier than expected. Another answer may be a further effort to eliminate the weird shmem_recalc_inode() altogether, but previous attempts at that failed. So far undecided, but for now change the BUG_ON to WARN_ON: in usual circumstances it remains a useful consistency check. Signed-off-by: NHugh Dickins <hughd@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Hugh Dickins 提交于
Fuzzing with trinity hit the "impossible" VM_BUG_ON(error) (which Fedora has converted to WARNING) in shmem_getpage_gfp(): WARNING: at mm/shmem.c:1151 shmem_getpage_gfp+0xa5c/0xa70() Pid: 29795, comm: trinity-child4 Not tainted 3.7.0-rc2+ #49 Call Trace: warn_slowpath_common+0x7f/0xc0 warn_slowpath_null+0x1a/0x20 shmem_getpage_gfp+0xa5c/0xa70 shmem_fault+0x4f/0xa0 __do_fault+0x71/0x5c0 handle_pte_fault+0x97/0xae0 handle_mm_fault+0x289/0x350 __do_page_fault+0x18e/0x530 do_page_fault+0x2b/0x50 page_fault+0x28/0x30 tracesys+0xe1/0xe6 Thanks to Johannes for pointing to truncation: free_swap_and_cache() only does a trylock on the page, so the page lock we've held since before confirming swap is not enough to protect against truncation. What cleanup is needed in this case? Just delete_from_swap_cache(), which takes care of the memcg uncharge. Signed-off-by: NHugh Dickins <hughd@google.com> Reported-by: NDave Jones <davej@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Will Deacon 提交于
kmap_to_page returns the corresponding struct page for a virtual address of an arbitrary mapping. This works by checking whether the address falls in the pkmap region and using the pkmap page tables instead of the linear mapping if appropriate. Unfortunately, the bounds checking means that PKMAP_ADDR(LAST_PKMAP) is incorrectly treated as a highmem address and we can end up walking off the end of pkmap_page_table and subsequently passing junk to pte_page. This patch fixes the bound check to stay within the pkmap tables. Signed-off-by: NWill Deacon <will.deacon@arm.com> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Mel Gorman 提交于
Jiri Slaby reported the following: (It's an effective revert of "mm: vmscan: scale number of pages reclaimed by reclaim/compaction based on failures".) Given kswapd had hours of runtime in ps/top output yesterday in the morning and after the revert it's now 2 minutes in sum for the last 24h, I would say, it's gone. The intention of the patch in question was to compensate for the loss of lumpy reclaim. Part of the reason lumpy reclaim worked is because it aggressively reclaimed pages and this patch was meant to be a sane compromise. When compaction fails, it gets deferred and both compaction and reclaim/compaction is deferred avoid excessive reclaim. However, since commit c6543459 ("mm: remove __GFP_NO_KSWAPD"), kswapd is woken up each time and continues reclaiming which was not taken into account when the patch was developed. Attempts to address the problem ended up just changing the shape of the problem instead of fixing it. The release window gets closer and while a THP allocation failing is not a major problem, kswapd chewing up a lot of CPU is. This patch reverts commit 83fde0f2 ("mm: vmscan: scale number of pages reclaimed by reclaim/compaction based on failures") and will be revisited in the future. Signed-off-by: NMel Gorman <mgorman@suse.de> Cc: Zdenek Kabelac <zkabelac@redhat.com> Tested-by: NValdis Kletnieks <Valdis.Kletnieks@vt.edu> Cc: Jiri Slaby <jirislaby@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Johannes Hirte <johannes.hirte@fem.tu-ilmenau.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Xiaotian Feng 提交于
There's a name leak introduced by commit 91a27b2a ("vfs: define struct filename and have getname() return it"). Add the missing putname. [akpm@linux-foundation.org: cleanup] Signed-off-by: NXiaotian Feng <dannyfeng@tencent.com> Reviewed-by: NJeff Layton <jlayton@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Hugh Dickins 提交于
When MEMCG is configured on (even when it's disabled by boot option), when adding or removing a page to/from its lru list, the zone pointer used for stats updates is nowadays taken from the struct lruvec. (On many configurations, calculating zone from page is slower.) But we have no code to update all the lruvecs (per zone, per memcg) when a memory node is hotadded. Here's an extract from the oops which results when running numactl to bind a program to a newly onlined node: BUG: unable to handle kernel NULL pointer dereference at 0000000000000f60 IP: __mod_zone_page_state+0x9/0x60 Pid: 1219, comm: numactl Not tainted 3.6.0-rc5+ #180 Bochs Bochs Process numactl (pid: 1219, threadinfo ffff880039abc000, task ffff8800383c4ce0) Call Trace: __pagevec_lru_add_fn+0xdf/0x140 pagevec_lru_move_fn+0xb1/0x100 __pagevec_lru_add+0x1c/0x30 lru_add_drain_cpu+0xa3/0x130 lru_add_drain+0x2f/0x40 ... The natural solution might be to use a memcg callback whenever memory is hotadded; but that solution has not been scoped out, and it happens that we do have an easy location at which to update lruvec->zone. The lruvec pointer is discovered either by mem_cgroup_zone_lruvec() or by mem_cgroup_page_lruvec(), and both of those do know the right zone. So check and set lruvec->zone in those; and remove the inadequate attempt to set lruvec->zone from lruvec_init(), which is called before NODE_DATA(node) has been allocated in such cases. Ah, there was one exceptionr. For no particularly good reason, mem_cgroup_force_empty_list() has its own code for deciding lruvec. Change it to use the standard mem_cgroup_zone_lruvec() and mem_cgroup_get_lru_size() too. In fact it was already safe against such an oops (the lru lists in danger could only be empty), but we're better proofed against future changes this way. I've marked this for stable (3.6) since we introduced the problem in 3.5 (now closed to stable); but I have no idea if this is the only fix needed to get memory hotadd working with memcg in 3.6, and received no answer when I enquired twice before. Reported-by: NTang Chen <tangchen@cn.fujitsu.com> Signed-off-by: NHugh Dickins <hughd@google.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
oom_badness() takes a totalpages argument which says how many pages are available and it uses it as a base for the score calculation. The value is calculated by mem_cgroup_get_limit which considers both limit and total_swap_pages (resp. memsw portion of it). This is usually correct but since fe35004f ("mm: avoid swapping out with swappiness==0") we do not swap when swappiness is 0 which means that we cannot really use up all the totalpages pages. This in turn confuses oom score calculation if the memcg limit is much smaller than the available swap because the used memory (capped by the limit) is negligible comparing to totalpages so the resulting score is too small if adj!=0 (typically task with CAP_SYS_ADMIN or non zero oom_score_adj). A wrong process might be selected as result. The problem can be worked around by checking mem_cgroup_swappiness==0 and not considering swap at all in such a case. Signed-off-by: NMichal Hocko <mhocko@suse.cz> Acked-by: NDavid Rientjes <rientjes@google.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NKOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: NKAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 David Rientjes 提交于
do_wp_page() sets mmun_called if mmun_start and mmun_end were initialized and, if so, may call mmu_notifier_invalidate_range_end() with these values. This doesn't prevent gcc from emitting a build warning though: mm/memory.c: In function `do_wp_page': mm/memory.c:2530: warning: `mmun_start' may be used uninitialized in this function mm/memory.c:2531: warning: `mmun_end' may be used uninitialized in this function It's much easier to initialize the variables to impossible values and do a simple comparison to determine if they were initialized to remove the bool entirely. Signed-off-by: NDavid Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michel Lespinasse 提交于
Iterating over the vma->anon_vma_chain without anon_vma_lock may cause NULL ptr deref in anon_vma_interval_tree_verify(), because the node in the chain might have been removed. BUG: unable to handle kernel paging request at fffffffffffffff0 IP: [<ffffffff8122c29c>] anon_vma_interval_tree_verify+0xc/0xa0 PGD 4e28067 PUD 4e29067 PMD 0 Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC CPU 0 Pid: 9050, comm: trinity-child64 Tainted: G W 3.7.0-rc2-next-20121025-sasha-00001-g673f98e-dirty #77 RIP: 0010: anon_vma_interval_tree_verify+0xc/0xa0 Process trinity-child64 (pid: 9050, threadinfo ffff880045f80000, task ffff880048eb0000) Call Trace: validate_mm+0x58/0x1e0 vma_adjust+0x635/0x6b0 __split_vma.isra.22+0x161/0x220 split_vma+0x24/0x30 sys_madvise+0x5da/0x7b0 tracesys+0xe1/0xe6 RIP anon_vma_interval_tree_verify+0xc/0xa0 CR2: fffffffffffffff0 Figured out by Bob Liu. Reported-by: NSasha Levin <sasha.levin@oracle.com> Cc: Bob Liu <lliubbo@gmail.com> Signed-off-by: NMichel Lespinasse <walken@google.com> Reviewed-by: NRik van Riel <riel@redhat.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 09 11月, 2012 1 次提交
-
-
由 Takamori Yamaguchi 提交于
In kswapd(), set current->reclaim_state to NULL before returning, as current->reclaim_state holds reference to variable on kswapd()'s stack. In rare cases, while returning from kswapd() during memory offlining, __free_slab() and freepages() can access the dangling pointer of current->reclaim_state. Signed-off-by: NTakamori Yamaguchi <takamori.yamaguchi@jp.sony.com> Signed-off-by: NAaditya Kumar <aaditya.kumar@ap.sony.com> Acked-by: NDavid Rientjes <rientjes@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 26 10月, 2012 4 次提交
-
-
由 David Rientjes 提交于
Commit 957f822a ("mm, numa: reclaim from all nodes within reclaim distance") caused zone_reclaim_mode to be set for all systems where two nodes are within RECLAIM_DISTANCE of each other. This is the opposite of what we actually want: zone_reclaim_mode should be set if two nodes are sufficiently distant. Signed-off-by: NDavid Rientjes <rientjes@google.com> Reported-by: NJulian Wollrath <jwollrath@web.de> Tested-by: NJulian Wollrath <jwollrath@web.de> Cc: Hugh Dickins <hughd@google.com> Cc: Patrik Kullman <patrik.kullman@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Gavin Shan 提交于
While allocating mmu_notifier with parameter GFP_KERNEL, swap would start to work in case of tight available memory. Eventually, that would lead to a deadlock while the swap deamon swaps anonymous pages. It was caused by commit e0f3c3f7 ("mm/mmu_notifier: init notifier if necessary"). ================================= [ INFO: inconsistent lock state ] 3.7.0-rc1+ #518 Not tainted --------------------------------- inconsistent {RECLAIM_FS-ON-W} -> {IN-RECLAIM_FS-W} usage. kswapd0/35 [HC0[0]:SC0[0]:HE1:SE1] takes: (&mapping->i_mmap_mutex){+.+.?.}, at: page_referenced+0x9c/0x2e0 {RECLAIM_FS-ON-W} state was registered at: mark_held_locks+0x86/0x150 lockdep_trace_alloc+0x67/0xc0 kmem_cache_alloc_trace+0x33/0x230 do_mmu_notifier_register+0x87/0x180 mmu_notifier_register+0x13/0x20 kvm_dev_ioctl+0x428/0x510 do_vfs_ioctl+0x98/0x570 sys_ioctl+0x91/0xb0 system_call_fastpath+0x16/0x1b irq event stamp: 825 hardirqs last enabled at (825): _raw_spin_unlock_irq+0x30/0x60 hardirqs last disabled at (824): _raw_spin_lock_irq+0x19/0x80 softirqs last enabled at (0): copy_process+0x630/0x17c0 softirqs last disabled at (0): (null) ... Simply back out the above commit, which was a small performance optimization. Signed-off-by: NGavin Shan <shangw@linux.vnet.ibm.com> Reported-by: NAndrea Righi <andrea@betterlinux.com> Tested-by: NAndrea Righi <andrea@betterlinux.com> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Avi Kivity <avi@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Sagi Grimberg <sagig@mellanox.co.il> Cc: Haggai Eran <haggaie@mellanox.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Bob Liu 提交于
If start_isolate_page_range() failed, unset_migratetype_isolate() has been done inside it. Signed-off-by: NBob Liu <lliubbo@gmail.com> Cc: Ni zhan Chen <nizhan.chen@gmail.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jan Kara 提交于
On s390 any write to a page (even from kernel itself) sets architecture specific page dirty bit. Thus when a page is written to via buffered write, HW dirty bit gets set and when we later map and unmap the page, page_remove_rmap() finds the dirty bit and calls set_page_dirty(). Dirtying of a page which shouldn't be dirty can cause all sorts of problems to filesystems. The bug we observed in practice is that buffers from the page get freed, so when the page gets later marked as dirty and writeback writes it, XFS crashes due to an assertion BUG_ON(!PagePrivate(page)) in page_buffers() called from xfs_count_page_state(). Similar problem can also happen when zero_user_segment() call from xfs_vm_writepage() (or block_write_full_page() for that matter) set the hardware dirty bit during writeback, later buffers get freed, and then page unmapped. Fix the issue by ignoring s390 HW dirty bit for page cache pages of mappings with mapping_cap_account_dirty(). This is safe because for such mappings when a page gets marked as writeable in PTE it is also marked dirty in do_wp_page() or do_page_fault(). When the dirty bit is cleared by clear_page_dirty_for_io(), the page gets writeprotected in page_mkclean(). So pagecache page is writeable if and only if it is dirty. Thanks to Hugh Dickins for pointing out mapping has to have mapping_cap_account_dirty() for things to work and proposing a cleaned up variant of the patch. The patch has survived about two hours of running fsx-linux on tmpfs while heavily swapping and several days of running on out build machines where the original problem was triggered. Signed-off-by: NJan Kara <jack@suse.cz> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: <stable@vger.kernel.org> [3.0+] Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 25 10月, 2012 1 次提交
-
-
由 Yinghai Lu 提交于
We will not map partial pages, so need to make sure memblock allocation will not allocate those bytes out. Also we will use for_each_mem_pfn_range() to loop to map memory range to keep them consistent. Signed-off-by: NYinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/CAE9FiQVZirvaBMFYRfXMmWEcHbKSicQEHz4VAwUv0xFCk51ZNw@mail.gmail.comAcked-by: NJacob Shin <jacob.shin@amd.com> Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com> Cc: <stable@vger.kernel.org>
-
- 23 10月, 2012 1 次提交
-
-
由 Bob Liu 提交于
If start_isolate_page_range() failed, unset_migratetype_isolate() has been done inside it. Signed-off-by: NBob Liu <lliubbo@gmail.com> Signed-off-by: NMarek Szyprowski <m.szyprowski@samsung.com>
-
- 20 10月, 2012 2 次提交
-
-
由 Mel Gorman 提交于
Thierry reported that the "iron out" patch for isolate_freepages_block() had problems due to the strict check being too strict with "mm: compaction: Iron out isolate_freepages_block() and isolate_freepages_range() -fix1". It's possible that more pages than necessary are isolated but the check still fails and I missed that this fix was not picked up before RC1. This same problem has been identified in 3.7-RC1 by Tony Prisk and should be addressed by the following patch. Signed-off-by: NMel Gorman <mgorman@suse.de> Tested-by: NTony Prisk <linux@prisktech.co.nz> Reported-by: NThierry Reding <thierry.reding@avionic-design.de> Acked-by: NRik van Riel <riel@redhat.com> Acked-by: NMinchan Kim <minchan@kernel.org> Cc: Richard Davies <richard@arachsys.com> Cc: Shaohua Li <shli@kernel.org> Cc: Avi Kivity <avi@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Linus Torvalds 提交于
In commit 0b173bc4 ("mm: kill vma flag VM_CAN_NONLINEAR") we replaced the VM_CAN_NONLINEAR test with checking whether the mapping has a '->remap_pages()' vm operation, but there is no guarantee that there it even has a vm_ops pointer at all. Add the appropriate test for NULL vm_ops. Reported-by: NSasha Levin <levinsasha928@gmail.com> Cc: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 17 10月, 2012 1 次提交
-
-
由 David Rientjes 提交于
When reading /proc/pid/numa_maps, it's possible to return the contents of the stack where the mempolicy string should be printed if the policy gets freed from beneath us. This happens because mpol_to_str() may return an error the stack-allocated buffer is then printed without ever being stored. There are two possible error conditions in mpol_to_str(): - if the buffer allocated is insufficient for the string to be stored, and - if the mempolicy has an invalid mode. The first error condition is not triggered in any of the callers to mpol_to_str(): at least 50 bytes is always allocated on the stack and this is sufficient for the string to be written. A future patch should convert this into BUILD_BUG_ON() since we know the maximum strlen possible, but that's not -rc material. The second error condition is possible if a race occurs in dropping a reference to a task's mempolicy causing it to be freed during the read(). The slab poison value is then used for the mode and mpol_to_str() returns -EINVAL. This race is only possible because get_vma_policy() believes that mm->mmap_sem protects task->mempolicy, which isn't true. The exit path does not hold mm->mmap_sem when dropping the reference or setting task->mempolicy to NULL: it uses task_lock(task) instead. Thus, it's required for the caller of a task mempolicy to hold task_lock(task) while grabbing the mempolicy and reading it. Callers with a vma policy store their mempolicy earlier and can simply increment the reference count so it's guaranteed not to be freed. Reported-by: NDave Jones <davej@redhat.com> Signed-off-by: NDavid Rientjes <rientjes@google.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 15 10月, 2012 1 次提交
-
-
由 Ralf Baechle 提交于
Certain configurations won't implicitly pull in <linux/pagemap.h> resulting in the following build error: mm/huge_memory.c: In function 'release_pte_page': mm/huge_memory.c:1697:2: error: implicit declaration of function 'unlock_page' [-Werror=implicit-function-declaration] mm/huge_memory.c: In function '__collapse_huge_page_isolate': mm/huge_memory.c:1757:3: error: implicit declaration of function 'trylock_page' [-Werror=implicit-function-declaration] cc1: some warnings being treated as errors Reported-by: NDavid Daney <david.daney@cavium.com> Signed-off-by: NRalf Baechle <ralf@linux-mips.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-