- 04 3月, 2014 18 次提交
-
-
由 Heiko Carstens 提交于
Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com>
-
由 Heiko Carstens 提交于
Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com>
-
由 Heiko Carstens 提交于
Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com>
-
由 Heiko Carstens 提交于
Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com>
-
由 Heiko Carstens 提交于
Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com>
-
由 Heiko Carstens 提交于
Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com>
-
由 Heiko Carstens 提交于
Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com>
-
由 Heiko Carstens 提交于
Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com>
-
由 Heiko Carstens 提交于
Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com>
-
由 Heiko Carstens 提交于
Introduce a new compat_wrap.c file which contains the s390 specific compat system call wrappers. The s390 specific system call wrappers only perform sign, zero and pointer conversion of system call arguments before actually calling the non-compat system call. Therefore introduce COMPAT_SYSCALL_WRAPx macros which generate C code that is nearly identical to the assembly code. This has the advantage that the compile will generate correct code, and we avoid the frequent copy-paste errors seen in the compat_wrapper.S file. Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com>
-
由 Heiko Carstens 提交于
Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com>
-
由 Heiko Carstens 提交于
Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com>
-
由 Heiko Carstens 提交于
Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com>
-
由 Heiko Carstens 提交于
Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com>
-
由 Heiko Carstens 提交于
Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com>
-
由 Heiko Carstens 提交于
Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com>
-
由 Heiko Carstens 提交于
Convert s390 specific system calls to to the new COMPAT_SYSCALL_DEFINE macro. This allows us to get rid of the assembly compat wrappers. Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com>
-
由 Heiko Carstens 提交于
For architecture dependent compat syscalls in common code an architecture must define something like __ARCH_WANT_<WHATEVER> if it wants to use the code. This however is not true for compat_sys_getdents64 for which architectures must define __ARCH_OMIT_COMPAT_SYS_GETDENTS64 if they do not want the code. This leads to the situation where all architectures, except mips, get the compat code but only x86_64, arm64 and the generic syscall architectures actually use it. So invert the logic, so that architectures actively must do something to get the compat code. This way a couple of architectures get rid of otherwise dead code. Signed-off-by: NHeiko Carstens <heiko.carstens@de.ibm.com>
-
- 01 3月, 2014 1 次提交
-
-
由 Catalin Marinas 提交于
Commit fb4a9602 (arm64: kernel: fix per-cpu offset restore on resume) uses per_cpu_offset() unconditionally during CPU wakeup, however, this is only defined for the SMP case. Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com> Reported-by: NDave P Martin <Dave.Martin@arm.com>
-
- 28 2月, 2014 12 次提交
-
-
由 Steve Capper 提交于
Page table entries on ARM64 are 64 bits, and some pte functions such as pte_dirty return a bitwise-and of a flag with the pte value. If the flag to be tested resides in the upper 32 bits of the pte, then we run into the danger of the result being dropped if downcast. For example: gather_stats(page, md, pte_dirty(*pte), 1); where pte_dirty(*pte) is downcast to an int. This patch adds a double logical invert to all the pte_ accessors to ensure predictable downcasting. Signed-off-by: NSteve Capper <steve.capper@linaro.org> Cc: <stable@vger.kernel.org> Signed-off-by: NCatalin Marinas <catalin.marinas@arm.com>
-
由 Benjamin Herrenschmidt 提交于
We need to unmangle the full address, not just the register number, and we also need to support the real indirect bit being set for in-kernel uses. Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org> CC: <stable@vger.kernel.org> [v3.13]
-
由 Benjamin Herrenschmidt 提交于
The OPAL firmware functions opal_xscom_read and opal_xscom_write take a 64-bit argument for the XSCOM (PCB) address in order to support the indirect mode on P8. Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org> CC: <stable@vger.kernel.org> [v3.13]
-
由 Gavin Shan 提交于
As Ben suggested, the patch prints PHB diag-data with multiple fields in one line and omits the line if the fields of that line are all zero. With the patch applied, the PHB3 diag-data dump looks like: PHB3 PHB#3 Diag-data (Version: 1) brdgCtl: 00000002 RootSts: 0000000f 00400000 b0830008 00100147 00002000 nFir: 0000000000000000 0030006e00000000 0000000000000000 PhbSts: 0000001c00000000 0000000000000000 Lem: 0000000000100000 42498e327f502eae 0000000000000000 InAErr: 8000000000000000 8000000000000000 0402030000000000 0000000000000000 PE[ 8] A/B: 8480002b00000000 8000000000000000 [ The current diag data is so big that it overflows the printk buffer pretty quickly in cases when we get a handful of errors at once which can happen. --BenH ] Signed-off-by: NGavin Shan <shangw@linux.vnet.ibm.com> CC: <stable@vger.kernel.org> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Gavin Shan 提交于
The PHB diag-data is important to help locating the root cause for EEH errors such as frozen PE or fenced PHB. However, the EEH core enables IO path by clearing part of HW registers before collecting this data causing it to be corrupted. This patch fixes this by dumping the PHB diag-data immediately when frozen/fenced state on PE or PHB is detected for the first time in eeh_ops::get_state() or next_error() backend. Signed-off-by: NGavin Shan <shangw@linux.vnet.ibm.com> CC: <stable@vger.kernel.org> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Paul Mackerras 提交于
The new ELFv2 little-endian ABI increases the stack redzone -- the area below the stack pointer that can be used for storing data -- from 288 bytes to 512 bytes. This means that we need to allow more space on the user stack when delivering a signal to a 64-bit process. To make the code a bit clearer, we define new USER_REDZONE_SIZE and KERNEL_REDZONE_SIZE symbols in ptrace.h. For now, we leave the kernel redzone size at 288 bytes, since increasing it to 512 bytes would increase the size of interrupt stack frames correspondingly. Gcc currently only makes use of 288 bytes of redzone even when compiling for the new little-endian ABI, and the kernel cannot currently be compiled with the new ABI anyway. In the future, hopefully gcc will provide an option to control the amount of redzone used, and then we could reduce it even more. This also changes the code in arch_compat_alloc_user_space() to preserve the expanded redzone. It is not clear why this function would ever be used on a 64-bit process, though. Signed-off-by: NPaul Mackerras <paulus@samba.org> CC: <stable@vger.kernel.org> [v3.13] Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Liu Ping Fan 提交于
The branch target should be the func addr, not the addr of func_descr_t. So using ppc_function_entry() to generate the right target addr. Signed-off-by: NLiu Ping Fan <pingfank@linux.vnet.ibm.com> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Laurent Dufour 提交于
In copy_oldmem_page, the current check using max_pfn and min_low_pfn to decide if the page is backed or not, is not valid when the memory layout is not continuous. This happens when running as a QEMU/KVM guest, where RTAS is mapped higher in the memory. In that case max_pfn points to the end of RTAS, and a hole between the end of the kdump kernel and RTAS is not backed by PTEs. As a consequence, the kdump kernel is crashing in copy_oldmem_page when accessing in a direct way the pages in that hole. This fix relies on the memblock's service memblock_is_region_memory to check if the read page is part or not of the directly accessible memory. Signed-off-by: NLaurent Dufour <ldufour@linux.vnet.ibm.com> Tested-by: NMahesh Salgaonkar <mahesh@linux.vnet.ibm.com> CC: <stable@vger.kernel.org> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Tony Breeds 提交于
Currently we're storing a host endian RTAS token in rtas_stop_self_args.token. We then pass that directly to rtas. This is fine on big endian however on little endian the token is not what we expect. This will typically result in hitting: panic("Alas, I survived.\n"); To fix this we always use the stop-self token in host order and always convert it to be32 before passing this to rtas. Signed-off-by: NTony Breeds <tony@bakeyournoodle.com> Cc: stable@vger.kernel.org Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Paolo Bonzini 提交于
Commit e504c909 (kvm, vmx: Fix lazy FPU on nested guest, 2013-11-13) highlighted a real problem, but the fix was subtly wrong. nested_read_cr0 is the CR0 as read by L2, but here we want to look at the CR0 value reflecting L1's setup. In other words, L2 might think that TS=0 (so nested_read_cr0 has the bit clear); but if L1 is actually running it with TS=1, we should inject the fault into L1. The effective value of CR0 in L2 is contained in vmcs12->guest_cr0, use it. Fixes: e504c909Reported-by: NKashyap Chamarty <kchamart@redhat.com> Reported-by: NStefan Bader <stefan.bader@canonical.com> Tested-by: NKashyap Chamarty <kchamart@redhat.com> Tested-by: NAnthoine Bourgeois <bourgeois@bertin.fr> Cc: stable@vger.kernel.org Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Andrew Honig 提交于
The problem occurs when the guest performs a pusha with the stack address pointing to an mmio address (or an invalid guest physical address) to start with, but then extending into an ordinary guest physical address. When doing repeated emulated pushes emulator_read_write sets mmio_needed to 1 on the first one. On a later push when the stack points to regular memory, mmio_nr_fragments is set to 0, but mmio_is_needed is not set to 0. As a result, KVM exits to userspace, and then returns to complete_emulated_mmio. In complete_emulated_mmio vcpu->mmio_cur_fragment is incremented. The termination condition of vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments is never achieved. The code bounces back and fourth to userspace incrementing mmio_cur_fragment past it's buffer. If the guest does nothing else it eventually leads to a a crash on a memcpy from invalid memory address. However if a guest code can cause the vm to be destroyed in another vcpu with excellent timing, then kvm_clear_async_pf_completion_queue can be used by the guest to control the data that's pointed to by the call to cancel_work_item, which can be used to gain execution. Fixes: f78146b0Signed-off-by: NAndrew Honig <ahonig@google.com> Cc: stable@vger.kernel.org (3.5+) Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
由 Marc Zyngier 提交于
Commit 1fcf7ce0 (arm: kvm: implement CPU PM notifier) added support for CPU power-management, using a cpu_notifier to re-init KVM on a CPU that entered CPU idle. The code assumed that a CPU entering idle would actually be powered off, loosing its state entierely, and would then need to be reinitialized. It turns out that this is not always the case, and some HW performs CPU PM without actually killing the core. In this case, we try to reinitialize KVM while it is still live. It ends up badly, as reported by Andre Przywara (using a Calxeda Midway): [ 3.663897] Kernel panic - not syncing: unexpected prefetch abort in Hyp mode at: 0x685760 [ 3.663897] unexpected data abort in Hyp mode at: 0xc067d150 [ 3.663897] unexpected HVC/SVC trap in Hyp mode at: 0xc0901dd0 The trick here is to detect if we've been through a full re-init or not by looking at HVBAR (VBAR_EL2 on arm64). This involves implementing the backend for __hyp_get_vectors in the main KVM HYP code (rather small), and checking the return value against the default one when the CPU notifier is called on CPU_PM_EXIT. Reported-by: NAndre Przywara <osp@andrep.de> Tested-by: NAndre Przywara <osp@andrep.de> Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Cc: Rob Herring <rob.herring@linaro.org> Acked-by: NChristoffer Dall <christoffer.dall@linaro.org> Signed-off-by: NMarc Zyngier <marc.zyngier@arm.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 27 2月, 2014 2 次提交
-
-
由 Peter Zijlstra 提交于
Vince "Super Tester" Weaver reported a new round of syscall fuzzing (Trinity) failures, with perf WARN_ON()s triggering. He also provided traces of the failures. This is I think the relevant bit: > pec_1076_warn-2804 [000] d... 147.926153: x86_pmu_disable: x86_pmu_disable > pec_1076_warn-2804 [000] d... 147.926153: x86_pmu_state: Events: { > pec_1076_warn-2804 [000] d... 147.926156: x86_pmu_state: 0: state: .R config: ffffffffffffffff ( (null)) > pec_1076_warn-2804 [000] d... 147.926158: x86_pmu_state: 33: state: AR config: 0 (ffff88011ac99800) > pec_1076_warn-2804 [000] d... 147.926159: x86_pmu_state: } > pec_1076_warn-2804 [000] d... 147.926160: x86_pmu_state: n_events: 1, n_added: 0, n_txn: 1 > pec_1076_warn-2804 [000] d... 147.926161: x86_pmu_state: Assignment: { > pec_1076_warn-2804 [000] d... 147.926162: x86_pmu_state: 0->33 tag: 1 config: 0 (ffff88011ac99800) > pec_1076_warn-2804 [000] d... 147.926163: x86_pmu_state: } > pec_1076_warn-2804 [000] d... 147.926166: collect_events: Adding event: 1 (ffff880119ec8800) So we add the insn:p event (fd[23]). At this point we should have: n_events = 2, n_added = 1, n_txn = 1 > pec_1076_warn-2804 [000] d... 147.926170: collect_events: Adding event: 0 (ffff8800c9e01800) > pec_1076_warn-2804 [000] d... 147.926172: collect_events: Adding event: 4 (ffff8800cbab2c00) We try and add the {BP,cycles,br_insn} group (fd[3], fd[4], fd[15]). These events are 0:cycles and 4:br_insn, the BP event isn't x86_pmu so that's not visible. group_sched_in() pmu->start_txn() /* nop - BP pmu */ event_sched_in() event->pmu->add() So here we should end up with: 0: n_events = 3, n_added = 2, n_txn = 2 4: n_events = 4, n_added = 3, n_txn = 3 But seeing the below state on x86_pmu_enable(), the must have failed, because the 0 and 4 events aren't there anymore. Looking at group_sched_in(), since the BP is the leader, its event_sched_in() must have succeeded, for otherwise we would not have seen the sibling adds. But since neither 0 or 4 are in the below state; their event_sched_in() must have failed; but I don't see why, the complete state: 0,0,1:p,4 fits perfectly fine on a core2. However, since we try and schedule 4 it means the 0 event must have succeeded! Therefore the 4 event must have failed, its failure will have put group_sched_in() into the fail path, which will call: event_sched_out() event->pmu->del() on 0 and the BP event. Now x86_pmu_del() will reduce n_events; but it will not reduce n_added; giving what we see below: n_event = 2, n_added = 2, n_txn = 2 > pec_1076_warn-2804 [000] d... 147.926177: x86_pmu_enable: x86_pmu_enable > pec_1076_warn-2804 [000] d... 147.926177: x86_pmu_state: Events: { > pec_1076_warn-2804 [000] d... 147.926179: x86_pmu_state: 0: state: .R config: ffffffffffffffff ( (null)) > pec_1076_warn-2804 [000] d... 147.926181: x86_pmu_state: 33: state: AR config: 0 (ffff88011ac99800) > pec_1076_warn-2804 [000] d... 147.926182: x86_pmu_state: } > pec_1076_warn-2804 [000] d... 147.926184: x86_pmu_state: n_events: 2, n_added: 2, n_txn: 2 > pec_1076_warn-2804 [000] d... 147.926184: x86_pmu_state: Assignment: { > pec_1076_warn-2804 [000] d... 147.926186: x86_pmu_state: 0->33 tag: 1 config: 0 (ffff88011ac99800) > pec_1076_warn-2804 [000] d... 147.926188: x86_pmu_state: 1->0 tag: 1 config: 1 (ffff880119ec8800) > pec_1076_warn-2804 [000] d... 147.926188: x86_pmu_state: } > pec_1076_warn-2804 [000] d... 147.926190: x86_pmu_enable: S0: hwc->idx: 33, hwc->last_cpu: 0, hwc->last_tag: 1 hwc->state: 0 So the problem is that x86_pmu_del(), when called from a group_sched_in() that fails (for whatever reason), and without x86_pmu TXN support (because the leader is !x86_pmu), will corrupt the n_added state. Reported-and-Tested-by: NVince Weaver <vincent.weaver@maine.edu> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Stephane Eranian <eranian@google.com> Cc: Dave Jones <davej@redhat.com> Cc: <stable@vger.kernel.org> Link: http://lkml.kernel.org/r/20140221150312.GF3104@twins.programming.kicks-ass.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Marcelo Tosatti 提交于
Read-only large sptes can be created due to read-only faults as follows: - QEMU pagetable entry that maps guest memory is read-only due to COW. - Guest read faults such memory, COW is not broken, because it is a read-only fault. - Enable dirty logging, large spte not nuked because it is read-only. - Write-fault on such memory causes guest to loop endlessly (which must go down to level 1 because dirty logging is enabled). Fix by dropping large spte when necessary. Signed-off-by: NMarcelo Tosatti <mtosatti@redhat.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 26 2月, 2014 2 次提交
-
-
由 Kees Cook 提交于
This silences build warnings about unexported variables and functions. Signed-off-by: NKees Cook <keescook@chromium.org> Link: http://lkml.kernel.org/r/20140209215644.GA30339@www.outflux.netSigned-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
由 Eugene Surovegin 提交于
Include kASLR offset in VMCOREINFO ELF notes to assist in debugging. [ hpa: pushing this for v3.14 to avoid having a kernel version with kASLR where we can't debug output. ] Signed-off-by: NEugene Surovegin <surovegin@google.com> Link: http://lkml.kernel.org/r/20140123173120.GA25474@www.outflux.netSigned-off-by: NKees Cook <keescook@chromium.org> Signed-off-by: NH. Peter Anvin <hpa@linux.intel.com>
-
- 22 2月, 2014 5 次提交
-
-
由 Stephane Eranian 提交于
This patch updates the CBOX PMU filters mapping tables for SNB-EP and IVT (model 45 and 62 respectively). The NID umask always comes in addition to another umask. When set, the NID filter is applied. The current mapping tables were missing some code/umask combinations to account for the NID umask. This patch fixes that. Cc: mingo@elte.hu Cc: ak@linux.intel.com Reviewed-by: NYan, Zheng <zheng.z.yan@intel.com> Signed-off-by: NStephane Eranian <eranian@google.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20140219131018.GA24475@quadSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
由 Peter Zijlstra 提交于
The current code simply assumes Intel Arch PerfMon v2+ to have the IA32_PERF_CAPABILITIES MSR; the SDM specifies that we should check CPUID[1].ECX[15] (aka, FEATURE_PDCM) instead. This was found by KVM which implements v2+ but didn't provide the capabilities MSR. Change the code to DTRT; KVM will also implement the MSR and return 0. Cc: pbonzini@redhat.com Reported-by: N"Michael S. Tsirkin" <mst@redhat.com> Suggested-by: NEduardo Habkost <ehabkost@redhat.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20140203132903.GI8874@twins.programming.kicks-ass.netSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
由 Markus Metzger 提交于
When using BTS on Core i7-4*, I get the below kernel warning. $ perf record -c 1 -e branches:u ls Message from syslogd@labpc1501 at Nov 11 15:49:25 ... kernel:[ 438.317893] Uhhuh. NMI received for unknown reason 31 on CPU 2. Message from syslogd@labpc1501 at Nov 11 15:49:25 ... kernel:[ 438.317920] Do you have a strange power saving mode enabled? Message from syslogd@labpc1501 at Nov 11 15:49:25 ... kernel:[ 438.317945] Dazed and confused, but trying to continue Make intel_pmu_handle_irq() take the full exit path when returning early. Cc: eranian@google.com Cc: peterz@infradead.org Cc: mingo@kernel.org Signed-off-by: NMarkus Metzger <markus.t.metzger@intel.com> Signed-off-by: NAndi Kleen <ak@linux.intel.com> Signed-off-by: NPeter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1392425048-5309-1-git-send-email-andi@firstfloor.orgSigned-off-by: NThomas Gleixner <tglx@linutronix.de>
-
由 Max Filippov 提交于
Signed-off-by: NMax Filippov <jcmvbkbc@gmail.com>
-
由 Max Filippov 提交于
Connect xtfpga board ethernet MAC to the clock in the DTS. Set up MAC base frequency in the platform data in case of build w/o CONFIG_OF. Signed-off-by: NMax Filippov <jcmvbkbc@gmail.com>
-