1. 29 9月, 2014 1 次提交
  2. 16 9月, 2014 1 次提交
  3. 14 9月, 2014 2 次提交
  4. 03 8月, 2014 1 次提交
    • A
      net: filter: split 'struct sk_filter' into socket and bpf parts · 7ae457c1
      Alexei Starovoitov 提交于
      clean up names related to socket filtering and bpf in the following way:
      - everything that deals with sockets keeps 'sk_*' prefix
      - everything that is pure BPF is changed to 'bpf_*' prefix
      
      split 'struct sk_filter' into
      struct sk_filter {
      	atomic_t        refcnt;
      	struct rcu_head rcu;
      	struct bpf_prog *prog;
      };
      and
      struct bpf_prog {
              u32                     jited:1,
                                      len:31;
              struct sock_fprog_kern  *orig_prog;
              unsigned int            (*bpf_func)(const struct sk_buff *skb,
                                                  const struct bpf_insn *filter);
              union {
                      struct sock_filter      insns[0];
                      struct bpf_insn         insnsi[0];
                      struct work_struct      work;
              };
      };
      so that 'struct bpf_prog' can be used independent of sockets and cleans up
      'unattached' bpf use cases
      
      split SK_RUN_FILTER macro into:
          SK_RUN_FILTER to be used with 'struct sk_filter *' and
          BPF_PROG_RUN to be used with 'struct bpf_prog *'
      
      __sk_filter_release(struct sk_filter *) gains
      __bpf_prog_release(struct bpf_prog *) helper function
      
      also perform related renames for the functions that work
      with 'struct bpf_prog *', since they're on the same lines:
      
      sk_filter_size -> bpf_prog_size
      sk_filter_select_runtime -> bpf_prog_select_runtime
      sk_filter_free -> bpf_prog_free
      sk_unattached_filter_create -> bpf_prog_create
      sk_unattached_filter_destroy -> bpf_prog_destroy
      sk_store_orig_filter -> bpf_prog_store_orig_filter
      sk_release_orig_filter -> bpf_release_orig_filter
      __sk_migrate_filter -> bpf_migrate_filter
      __sk_prepare_filter -> bpf_prepare_filter
      
      API for attaching classic BPF to a socket stays the same:
      sk_attach_filter(prog, struct sock *)/sk_detach_filter(struct sock *)
      and SK_RUN_FILTER(struct sk_filter *, ctx) to execute a program
      which is used by sockets, tun, af_packet
      
      API for 'unattached' BPF programs becomes:
      bpf_prog_create(struct bpf_prog **)/bpf_prog_destroy(struct bpf_prog *)
      and BPF_PROG_RUN(struct bpf_prog *, ctx) to execute a program
      which is used by isdn, ppp, team, seccomp, ptp, xt_bpf, cls_bpf, test_bpf
      Signed-off-by: NAlexei Starovoitov <ast@plumgrid.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      7ae457c1
  5. 24 5月, 2014 1 次提交
    • D
      net: filter: let unattached filters use sock_fprog_kern · b1fcd35c
      Daniel Borkmann 提交于
      The sk_unattached_filter_create() API is used by BPF filters that
      are not directly attached or related to sockets, and are used in
      team, ptp, xt_bpf, cls_bpf, etc. As such all users do their own
      internal managment of obtaining filter blocks and thus already
      have them in kernel memory and set up before calling into
      sk_unattached_filter_create(). As a result, due to __user annotation
      in sock_fprog, sparse triggers false positives (incorrect type in
      assignment [different address space]) when filters are set up before
      passing them to sk_unattached_filter_create(). Therefore, let
      sk_unattached_filter_create() API use sock_fprog_kern to overcome
      this issue.
      Signed-off-by: NDaniel Borkmann <dborkman@redhat.com>
      Acked-by: NAlexei Starovoitov <ast@plumgrid.com>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      b1fcd35c
  6. 28 4月, 2014 1 次提交
  7. 14 1月, 2014 1 次提交
  8. 19 12月, 2013 2 次提交
  9. 11 12月, 2013 1 次提交
  10. 30 10月, 2013 1 次提交
    • D
      net: sched: cls_bpf: add BPF-based classifier · 7d1d65cb
      Daniel Borkmann 提交于
      This work contains a lightweight BPF-based traffic classifier that can
      serve as a flexible alternative to ematch-based tree classification, i.e.
      now that BPF filter engine can also be JITed in the kernel. Naturally, tc
      actions and policies are supported as well with cls_bpf. Multiple BPF
      programs/filter can be attached for a class, or they can just as well be
      written within a single BPF program, that's really up to the user how he
      wishes to run/optimize the code, e.g. also for inversion of verdicts etc.
      The notion of a BPF program's return/exit codes is being kept as follows:
      
           0: No match
          -1: Select classid given in "tc filter ..." command
        else: flowid, overwrite the default one
      
      As a minimal usage example with iproute2, we use a 3 band prio root qdisc
      on a router with sfq each as leave, and assign ssh and icmp bpf-based
      filters to band 1, http traffic to band 2 and the rest to band 3. For the
      first two bands we load the bytecode from a file, in the 2nd we load it
      inline as an example:
      
      echo 1 > /proc/sys/net/core/bpf_jit_enable
      
      tc qdisc del dev em1 root
      tc qdisc add dev em1 root handle 1: prio bands 3 priomap 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
      
      tc qdisc add dev em1 parent 1:1 sfq perturb 16
      tc qdisc add dev em1 parent 1:2 sfq perturb 16
      tc qdisc add dev em1 parent 1:3 sfq perturb 16
      
      tc filter add dev em1 parent 1: bpf run bytecode-file /etc/tc/ssh.bpf flowid 1:1
      tc filter add dev em1 parent 1: bpf run bytecode-file /etc/tc/icmp.bpf flowid 1:1
      tc filter add dev em1 parent 1: bpf run bytecode-file /etc/tc/http.bpf flowid 1:2
      tc filter add dev em1 parent 1: bpf run bytecode "`bpfc -f tc -i misc.ops`" flowid 1:3
      
      BPF programs can be easily created and passed to tc, either as inline
      'bytecode' or 'bytecode-file'. There are a couple of front-ends that can
      compile opcodes, for example:
      
      1) People familiar with tcpdump-like filters:
      
         tcpdump -iem1 -ddd port 22 | tr '\n' ',' > /etc/tc/ssh.bpf
      
      2) People that want to low-level program their filters or use BPF
         extensions that lack support by libpcap's compiler:
      
         bpfc -f tc -i ssh.ops > /etc/tc/ssh.bpf
      
         ssh.ops example code:
         ldh [12]
         jne #0x800, drop
         ldb [23]
         jneq #6, drop
         ldh [20]
         jset #0x1fff, drop
         ldxb 4 * ([14] & 0xf)
         ldh [%x + 14]
         jeq #0x16, pass
         ldh [%x + 16]
         jne #0x16, drop
         pass: ret #-1
         drop: ret #0
      
      It was chosen to load bytecode into tc, since the reverse operation,
      tc filter list dev em1, is then able to show the exact commands again.
      Possible follow-up work could also include a small expression compiler
      for iproute2. Tested with the help of bmon. This idea came up during
      the Netfilter Workshop 2013 in Copenhagen. Also thanks to feedback from
      Eric Dumazet!
      Signed-off-by: NDaniel Borkmann <dborkman@redhat.com>
      Cc: Thomas Graf <tgraf@suug.ch>
      Signed-off-by: NDavid S. Miller <davem@davemloft.net>
      7d1d65cb